Plug in your Peripherals with the Propeller Chip

Order the Propeller Starter Kit (#32300; $49.95) at www.parallax.com/propeller or call our Sales Department toll-free at 888-512-1094 (Mon-Fri, 7am-5pm, PDT).

Propeller, Parallax and the Parallax logo are trademarks of Parallax Inc.
Digital Storage Oscilloscope Module

Convert any PC with USB interface to a high performance Digital Storage Oscilloscope. This is a sophisticated PC based scope adaptor providing performance comparable to mid/high level stand alone products costing much more! Comes with two probes.

Details at Web Site Test Equipment Instek Test Equipment

<table>
<thead>
<tr>
<th>Model</th>
<th>PC based Storage Oscilloscope, 200MHz 5Gs/s equi. sampling USB interface.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-2062</td>
<td>$890.00</td>
<td></td>
</tr>
<tr>
<td>GS-2064</td>
<td>$1210.00</td>
<td></td>
</tr>
<tr>
<td>GS-2102</td>
<td>$1160.00</td>
<td></td>
</tr>
<tr>
<td>GS-2104</td>
<td>$1470.00</td>
<td></td>
</tr>
<tr>
<td>GS-2202</td>
<td>$1470.00</td>
<td></td>
</tr>
<tr>
<td>GS-2204</td>
<td>$1800.00</td>
<td></td>
</tr>
</tbody>
</table>

Details at Web Site Digital Storage Oscilloscope/Oscilloscope/Outstanding Price

3-1/2 Digit LCD Panel Meter (enhanced version)

The PM-128E is an enhanced version of our best selling PM-128A. The E-version can be set to work with either a 5VDC or 9VDC power source, will perform with either a common ground or an isolated ground, and is supplied with easy to use jumper points so the end user can easily set the measurement range required.

Details at Web Site Panel Meters Digital Panel Meters

<table>
<thead>
<tr>
<th>Model</th>
<th>3-1/2 Digit LCD Panel Meter</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-128E</td>
<td>$90.00</td>
<td></td>
</tr>
</tbody>
</table>

Jumbo LCD 9V Independent Ground Panel Meter

The PM-1028A is designed to run off of a 9V (7-11V) independent power source. The figure height is 2.5mm. High quality circuitry is used with highly visible LED and the decimal point selection is conveniently done by wire jumpers. The panel meter implements dual slope integration A-D conversion measuring methods.

Details at Web Site Panel Meters Digital Panel Meters

<table>
<thead>
<tr>
<th>Model</th>
<th>Jumbo LCD 9V Independent Ground Panel Meter</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-1028A</td>
<td>$12.95</td>
<td></td>
</tr>
</tbody>
</table>

3-1/2 Digit LED Panel Meter w/5V Common Ground

This CX-102X series of digital panel meters have high reliability, good quality and fine workmanship. They can be used for a wide variety of applications and are competitively priced. Your unmatched performance makes these digital panel meters the first choice for applications that require instrumentation.

Details at Web Site Panel Meters Digital Panel Meters

<table>
<thead>
<tr>
<th>Model</th>
<th>3-1/2 Digit LED Panel Meter w/5V Common Ground</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX102X</td>
<td>$14.95</td>
<td></td>
</tr>
</tbody>
</table>

Stepper Motor Controllers: 2 Phase Microstepping Stepper Motor Driver (Bi-polar & Unipolar Motors)

- **Part #:** AX302B
- **42BYGH404**
- **Price:** $49.95
- **Quantity:** 2
- **New Lower Price:** $39.95
- Details at Web Site Soldering Equipment & Supplies

Soldering Station w/Iron & SMD Hot Tweezers

- **Part #:** CX102BC
- **42BYGH405**
- **Price:** $39.95
- **Quantity:** 2
- **New Lower Price:** $34.95
- Details at Web Site Soldering Equipment & Supplies

Focused Infrared Soldering System

The CSI-IR1 is a modular and flexible infrared technology soldering system for effective high yield rework of even the most advanced packages, as well as being suitable for lead or lead-free solder. It brings sophisticated rework network systems to the simplicity of a handheld and can be used widely for reworking BGAs, micro-BGAs, QFPs, PLCCs, SODs and even SMD.

Details at Web Site Soldering Equipment & Supplies

<table>
<thead>
<tr>
<th>Model</th>
<th>Focus Infrared Soldering System</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI-IR1</td>
<td>$1399.00</td>
<td></td>
</tr>
</tbody>
</table>

Circuit Specialists, Inc.

220 S. Country Club Dr., Mesa, AZ 85210

Phone: 800-258-1477 / 480-464-2467 Fax: 480-464-5824
Go Wireless
Go Rabbit®

Check out our new Wi-Fi and ZigBee® core modules — the latest additions to our pin-compatible family.

$72 (qty. 100)
RCM4510W
ZigBee RabbitCore®

$99 (qty. 100)
RCM4400W
Wi-Fi RabbitCore

Wireless Development Kits
Only $199 (reg. $299)

Applications
- Industrial Control
- Remote Terminal Unit (RTU)
- Building Automation
- Data Acquisition

RCM4500W Family
- ZigBee/802.15.4
- 49 GPIO
- 6 Serial Ports

RCM4400W Family
- Wi-Fi/802.11
- 35 GPIO
- 6 Serial Ports

Order Your Kit Today
Development kits include everything to start your development, Dynamic C® software, wireless RabbitCore module, development board, programming cables and accessories.

www.wirelessrabbit.com
NUTS AND VOLTS
OCTOBER 2007

PROJECTS and FEATURES

32 ANALOG: MIXED AND MATCHED
This device is both an audio mixer and distribution system.
By Larry Cicchinelli

40 CONTROL YOUR WORLD
By Michael Simpson

48 TILT LIGHTS
Make customized lights for your family and friends.
By J. Ronald Eyton

52 BINGO
Bring a classic board game into the digital world.
By Charles Irwin

58 DFT BASICS
Put this powerful signal processing technique to work.
By Paul Kafig

68 A LOGIC ANALYZER TUTORIAL Part 2
Put the analyzer to use this month, learning its powerful features along with its limitations.
By Vaughn Martin

72 DIGITAL TV — READY OR NOT, HERE IT COMES!
February 17, 2009 will mark a monumental day in the US television broadcasting landscape.
By Jeff Mazur

COLUMNS

10 TECHKNOWLEDGEY 2007
Events, advances, and news from the electronics world.

14 THE DESIGN CYCLE
Peter circles the drain while Fred keeps the Ethernet MINI driver conversion rolling.

24 Q&A
Battery saver, surround sound, more.

79 OPEN COMMUNICATION
HD radio in your future?

84 PERSONAL ROBOTICS
Evolution of the Boogiebot mobile platform.

88 GETTING STARTED WITH PICs
PICkit 2 starter kit versus the PICkit 2 debug express.

104 IN THE SPOTLIGHT
This month: Electronics 123.

DEPARTMENTS

06 DEVELOPING PERSPECTIVES

08 READER FEEDBACK

28 NEW PRODUCTS

30 SHOWCASE

66 ELECTRO-NET

94 CLASSIFIEDS

96 NV WEBSITE

100 TECH FORUM

105 ADVERTISERS INDEX

Nuts & Volts (ISSN 1528-9885/CDN Pub Agree#40702530) is published monthly for $24.95 per year by T & L Publications, Inc., 439 Prisceland Court, Corona, CA 92879. PERIODICALS POSTAGE PAID AT CORONA, CA AND AT ADDITIONAL MAILING OFFICES. POSTMASTER: Send address changes to Nuts & Volts, P.O. Box 15277, North Hollywood, CA 91615 or Station A, P.O. Box 54, Windsor ON N9A 6J5; secretaries@nutsvolts.com.
Digital Oscilloscopes

- 2 Channel Digital Oscilloscope
- 500 MSa/s max single shot rate
- 1Mpt sample memory
 - 250 MSa/S (Dual channel) 512 Kpts
 - 500 MSa/S (Single channel) 1 Mpts
- Only 9 oz and 7” x 3.5” x 1.5”
- Portable and Battery powered
- USB 2.0
- FFT Spectrum Analyzer
 - DSO-8202 (200MSa,128K) $799
 - DSO-8902 (500MSa,1Mpt) $950

Logic Analyzer & Pattern Generator

- 32 channels Logic Analyzer
- up to 32 channels Pattern Generator
- up to 400 MSa/s
- Variable Threshold
- 2 External Clocks
- SPI output and disassembly
- I²C output and disassembly
- up to 2Msamples/ch
 - IO-3208A $750
 - IO-3232A $899
 - IO-3232B $1399

www.Link-instruments.com
(973) 808-8990
In this issue of *Nuts & Volts*, we’re fortunate to feature several excellent articles, including Jeff Mazur’s introduction to digital broadcasting and Paul Kafig’s discussion of the discrete Fourier transform (DFT). Both topics represent sea changes in the evolution of electronics, but through very different mechanisms.

Change has been slow in the move to digital broadcasting because of the inertia associated with the installed base of analog receivers and transmitters. Digital broadcasting has several advantages over the analog broadcasting infrastructure built over the past half century, including obviously superior image and sound quality, the ability to multicast, and support for interactive video and data services. Despite these and other advantages of digital broadcasting, it’s difficult to convince a consumer with an inexpensive, fully-functioning analog TV receiver to part with several hundred dollars for a new digital receiver system or even purchase a less expensive converter.

Similarly, the owner of a broadcast station with tens of thousands of dollars invested in analog equipment would like to be able to attract additional advertising revenue to cover the cost of a digital upgrade. However, because the FCC has set the final transition date of February 2009 for the move from analog to digital broadcasting, broadcasters must either fold or convert. After February 2009, the current analog channels will be put to other use.

The DFT, in contrast, is an enabler of the practice of modern, computer-based electrical engineering. Digital signal processing and related operations that make digital broadcasting possible would be impractical without the fast Fourier transform (FFT) and related algorithms used to compute the discrete Fourier transform. Unfortunately, the gulf between the frequency and time domains is more than simply perspective, but is one of facility with higher math. Electrical engineering students are introduced early on in their training to matrix algebra and other forms of higher math used to define the DFT. In contrast, technicians, hobbyists, and experimenters typically develop an intuitive, time-based understanding of signals.

Fortunately, it doesn’t require higher math or the ability to reason in the frequency domain to be able to apply the DFT to applications ranging from spectral analysis to data compression. Of course, it’s useful to understand the limits of the DFT used in a particular oscilloscope/spectrum analyzer, for example, so that you know when to trust the measurements and when to suspect — and how to test for — instrument error.

If you’re not comfortable shifting between the frequency and time domains in your design and debugging work, consider broadening your horizon by studying the DFT and related mathematics. There are many experimenters who are content to work with vacuum tubes and discrete transistors, leaving digital circuitry and DSP techniques to other enthusiasts and formally trained engineers. However, that approach is limiting.

Although the FCC won’t demand you learn digital signal processing techniques using the DFT by a given date, you are free to establish your own deadline. In addition to reading the DFT series in *Nuts & Volts*, consider some of the better DFT sites on the web, such as Julius Smith’s Mathematics of the DFT at Stanford’s Center for Computer Research in Music and Acoustics, ccrma.stanford.edu/~jos/mdft/. Give yourself a few months to absorb the material and concepts. When you’re done, you’ll have a new appreciation for the frequency domain and the myriad applications in electronics. **NV**
Announcing a complete hardware and software solution from NetBurner

The NetBurner MOD5234
ETHERNET CORE MODULE with eTPU

Only $99

NetBurner MOD5234 Ethernet Core Module Features

INDUSTRIAL TEMPERATURE RANGE
-40°C to +85°C

PERFORMANCE AND MEMORY
- 32-Bit CPU | Freescale ColdFire MCF5234 147 Mhz
- 2MB Flash Memory | 8MB SDRAM

DEVICE CONNECTIVITY
- 10/100 Ethernet | 3 UARTs | 16-channel eTPU | I²C | SPI | CAN
- 47 Digital I/O | 16-bit Data Bus | SD/MMC Flash Card Support

Customize with NetBurner’s Royalty-free Software Suite

DEVELOPMENT SOFTWARE
- NB Eclipse IDE | Graphical Debugger | Deployment Tools | Examples

COMMUNICATION SOFTWARE
- TCP/IP Stack | HTTP Web Server | FTP | E-Mail | PPP | Flash File System

All hardware and software is included with the **NetBurner MOD5234 Development Kit for only $299!**

The Development Kit features NetBurner’s Eclipse, an enterprise level professional IDE that provides editing, downloading and debugging in one environment.

Order the MOD5234 Development Kit: Product No. NNDK-MOD5234-KIT

Product No. | MOD5234-100IR
Information and Sales | sales@netburner.com
Web | www.netburner.com
Telephone | 1-800-695-6828
A MORE DIRECT LINK

On page 26 of the August ‘07 issue, it is mentioned by Russell Kincaid to go to the link at www.linear.com and get a copy of the LT Spice sim software... well, it is a bit difficult to find! Here is the direct link: www.linear.com/designtools/software/index.jsp.

You will find other goodies, as well.

Teddy

CHARGED UP OVER GOING GREEN

I thought the new “Green Power” section in the August edition was an excellent idea. I hope to see this section in future copies. “Going green” has never been a more timely and important subject than right now.

I am currently studying fuel cell technology. I have stumbled across some “how-to” articles from the mid-nineties. I would love to see a current version of this subject covered in Nuts & Volts.

Travis Crose

DOESN’T SEE THE CNC

I just received the July issue of Nuts & Volts magazine. For the last few months, I have been working on a project to build a 3D laser scanner. I have most of the hardware built and am now working on the software side of things. So, imagine my surprise and relief when glancing through the table of contents, I discovered the article entitled “Introduction to 3D Scanning” by Dan Mauch along with the description “Learn how to make 3D scans at a fraction of the normal cost.”

I turned to page 74 and started reading in great interest only to discover the article was basically a three page ad for a kit from Camtronics-CNC.

Where is the nuts and volts of this article? I was expecting an article about the hardware and software required to perform this task. I was disappointed and will approach articles in the future with more caution.

James Weikle
Claremont, NC

OFF THE RADAR

In the August ‘07 issue of Nuts & Volts, I was surprised to see the published Tech Forum answer to #6071 that stated that “Most all grocery door sensors are PIR.” Maybe that is true in Kansas, but in south Florida, most are radar. Anyone with a radar detector who lives in this area knows this is true. Many...
Renesas Technology

No.1* supplier of microcontrollers in the world

presents a wide range of M16C microcontrollers. M16C is the only fully code-compatible platform in the industry that addresses the entire 8-bit through 32-bit performance application space. Your application can range between 24K Bytes and 1M Bytes of code size, with between 42pins and 144pins of package size, while keeping the same code base and development tools. The consistency and compatibility of the M16C Platform enables you to reduce your development time while still allowing the flexibility to adapt to changing system requirements.

M16C Product Roadmap

Top Reasons To Select M16C

- **Broad Platform** - Wide range of selection: 24KB to 1M8 on-board Flash; 42pin to 144pin
- **Compatibility** - Pin and Code compatibility across the platform enables you to upgrade/downgrade MCU in same package without changing the board design and peripherals.
- **Powerful** - High speed interrupts (M16C: 0.61us see in 32MHz), optimized instructions for Toyota operations, Hi-speed hardware multiplier.
- **Versatile** - Specialized on-chip peripherals: CAN, LIN, SPI/JV RM, DMA, etc.
- **Efficient** - Multiple clock sources and multiple power saving modes
- **Quiet** - Built-in noise cancellation circuits provides excellent EMI/EMS characteristics that outperform IEEE standard specs
- **Easy** - Same Tool Chain for evaluation and development across the board
- **Reliable and secured** - Trusted flash and built-in fail safe features such as oscillation-stop detection circuit, protect registers, enhanced WDT, etc.

*MSource: Gartner Dataquest (April 2008) "2005 Worldwide Microcontroller Vendor Revenue"

Get Started Today -
Go online and register to be eligible for a FREE Starter Kit

www.america.renesas.com/ReachM16C/e
Pancreatic cancer presents few obvious symptoms and is notoriously difficult to detect. In addition, the pancreas can become dangerously inflamed by standard inspection techniques, so it is not routinely examined. As a result, more than 33,000 people in the US died of the disease last year. But a team led by engineering Professor Vadim Backman, of Northwestern University (www.northwestern.edu), has come up with a new approach that appears to provide highly effective and minimally invasive early detection. It is based on a combination of “elastic light-scattering” and “low-coherence enhanced back-scattering” techniques that Backman et al. have developed over the past five years. Possibly the best news is that it is necessary to scan only the outer few centimeters of the colon, so colonoscopies may soon be a thing of the past. If further research pans out, the instrument may provide similar results with breast, lung, and other cancers. It may be available for clinical use in three to five years.

ANOTHER STEP TOWARD FUSION

Although news agencies and politicians tend to treat power from nuclear fusion as something of a fantasy, it is worth noting that progress continues in the background. Earlier this year, researchers at Sandia National Laboratories (www.sandia.gov) announced a development that they uncharacteristically described as “revolutionary.”

Sandia’s research is based on inertial confinement, which traditionally has been viewed as less promising than the other current approach — magnetic confinement. In the former, a laser pulse is used to compress and heat hydrogen pellets to fusion temperatures, creating a reaction that is confined by the inertia of the fuel itself. In the latter, a continuous reaction is confined by trapping the plasma within magnetic fields.

A drawback to inertial confinement has been that the fusion pulses cannot be created often enough to yield practical amounts of energy. It has been compared to a one-cylinder internal combustion engine that fires only every few hours. But a new system, developed at Russia’s Institute of High Current Electronics, has been tested at Sandia’s Z machine facility.

Preliminary experiments and computer simulations show that it can reliably produce bursts every 10.2 seconds for millions of cycles, which brings it into the realm of serious consideration. According to Sandia’s Keith Matzen, “This is the most significant advance in primary power generation in many decades.”

The new system is based on a circuit called a linear transformer driver (LTD), which is basically a switch tightly coupled to a pair of capacitors. When these “bricks” are packed in groups of 20 and connected in parallel, the resulting “cavity” can transmit a current of 0.5...
mA at 100 kV. (The next-generation system will produce 1.0 mA.)

At last count, a test cavity at Sandia had been fired flawlessly more than 11,000 times. The switch also eliminates the need for hundreds of thousands of gallons of insulating water and oil carried by the present Z structure, as well as (sadly) the highly entertaining electrical arcing over the water's surface.

The next step is to find $35 million over the next few years to build a test bed with 100 cavities. If all goes well, a working electrical generation plant could be as little as two decades away.

COMPUTERS AND NETWORKING
SUN INTRODUCES NEW MICROPROCESSOR

The UltraSPARC T2 is billed as the world’s fastest commodity microprocessor. PHOTO COURTESY OF SUN MICROSYSTEMS.

The latest from Sun Microsystems is that the company has entered the commercial silicon market with the UltraSPARC T2, billed as the world’s fastest commodity microprocessor. Available separately from Sun’s own systems, it offers eight cores and eight threads per core. With each thread capable of running its own operating system, the T2 provides a 64-way system on a single chip.

Developed under the “Niagara 2” program, the processor design will be offered to the free and open source community via the general public license (GPL), and it provides support for the open-source Solaris OS in addition to other real-time operating systems and future versions of Ubuntu Linux.

The device is designed to bring together virtualization, processing, networking, security, floating point units, and memory access on a single piece of silicon, thereby reducing cost and increasing performance, reliability, and energy efficiency. Clock rates range from 900 MHz to 1.4 GHz, which may not sound all that impressive. But marketing director Fadi Azhari noted, “The competition is simply continuing the brute-force method of increasing clock speed and creating trade-offs between performance and power consumption. Sun’s approach ... is much more holistic, based on efficient threading and the integration of key functions onto the chip itself.”

The T2 can handle up to 64 fully buffered DIMMs using four memory controllers and deliver better than 50 GB/s of memory access. In production now, the pricing starts at less than $1,000 per unit. For details, see www.sun.com/products/microelectronics.

SOFTWARE ENHANCES NASCAR

If you don’t already enjoy watching cars drive around in circles for hours, this probably won’t draw you into the NASCAR realm. But if you are a fan, you will probably enjoy Draft Track, a visualization tool based on an algorithm developed at the University of Washington (www.washington.edu). It was originally intended for interactive simulations in video games that would allow players to drive through smoke and fire, interact with weather when running a flight simulator, or drive in a virtual wind tunnel. But it now has been employed by Sportvision, Inc.

Visualization software shows speed and direction of airflow over NASCAR vehicles. PHOTO COURTESY OF ESPN.

www.sportvision.com, to enhance NASCAR broadcasts.

The visual enhancement first hit prime time in coverage of the Allstate 400 at the Brickyard race, held at the Indianapolis Motor Speedway last July. The code, which speeds up real-time fluid dynamics simulations, calculates air flow over the cars and displays it as colors trailing behind them. Green, blue, yellow, and red correspond to different speeds and directions, and it can track multiple cars moving at better than 200 mph. So pop open a Bud and enjoy.

NAME-BASED SEARCH ENGINE

Given the beaufit bucks raked in by Google, Yahoo!, and others, owning a search engine appears to be a highly desirable thing. The problem is that there are already more than anyone needs — unless you can think of a different approach. Enter www.spock.com — a site that is specifically geared to people. The beta version was launched in August, and as of this writing it lists more than 100 million people. With millions more added on a daily basis, its creators intend to build “the broadest and deepest people specific search engine,” with the goal of eventually indexing “everyone in the world.”

It seems to need some refinement, though, and not only because it still can’t find me. It zeroed in, appropriately enough, on Leonard Nimoy. But George Washington (the president) showed up behind George C. L. Washington (inventor of instant coffee). You can also...
search by category, and spock suggests such things as “NFL quarterback,” “actor,” and “executed by electric chair.” But a search on “pervert” placed newsman Bill O'Reilly in first place, which is probably undeserved.

In any event, you get a brief bio of the located individuals plus a collection of related links, so it could dredge up some useful information.

CIRCUITS AND DEVICES

AUDIO AMP DRIVER INTRODUCED

As an addition to its existing family of power amp output stage drivers, National Semiconductor (www.national.com) recently launched the model LME49810, a single-chip 200-V unit that sports an integrated Baker clamp (essentially, a bunch of diodes connected around a bipolar junction transistor to prevent saturation of the collector-emitter junction) that replaces more than 25 discretes in the device. It is aimed at high-end consumer and professional audio applications including powered studio monitors and subwoofers, audiovisual equipment, commercial sound reinforcement, mixing boards, and guitar amplifiers. It is designed to drive high-power discrete transistors in systems delivering up to 3,000 W.

In a complete system, the total harmonic distortion plus noise (THD+N) is rated at an impressive 0.0007 percent. Other specs include a slew rate of 50 V/s, a power supply rejection ratio (PSRR) of 110 dB, and an operating voltage range of ±20 V to ±100 V. The devices are available in a 15-lead TO-247 package and run $8.50 in 100-unit quantities.

BAD TO THE BONE?

The folks at Thanko sell some odd electronics on their Internet store (www.raremonoshop.com), and one of the strangest is the Vonia EZ-4200P Bone Conduction Headphone. Presented as a means of reducing stress and strain on your eardrums, you clamp the things onto your skull, and sound is conducted to the inner ear through solid bone. The headphones weigh only about 2.6 oz (73.5 kg) and offer sensitivity of 74 dB ± 3 dB. Frequency range is not included in the specs, perhaps because the high end is dampened by the echoes inside the average user’s cranial cavity. Anyway, for only $81.67, they can be yours.
Peter and I worked together on the EDTP Ethernet MINI C-to-PBP (PICBASIC PRO) conversion project that you have been reading about in this series of Design Cycle episodes. So, I’m up to speed and ready to go with this month’s MINI driver conversion subject matter. We’ve already gotten the basic driver stuff up and the latest EDTP Ethernet MINI PBP driver code for ARP, UDP, and ICMP (PING) was put up for you to grab via ftp last month. The PICBASIC PRO MINI code you have access to right now is enough to get the EDTP Ethernet MINI online. However, adding a touch of DHCP to the mix will add some flavor to our MINI stew.

JUST IN CASE

If you’re DHCP challenged, Peter presented the details of the innerworkings of DHCP and the embedded coding behind it all in a past Design Cycle column. If the concepts that I am presenting in this discussion are unfamiliar to you, I suggest refreshing your DHCP knowledge by checking out past Design Cycle columns.

DHCP WITH PICBASIC PRO

We’ll need to add some DHCP-specific PBP code modules to our existing PICBASIC PRO-based EDTP Ethernet MINI driver to get DHCP up and running on our EDTP Ethernet MINI hardware. Specifically, at a minimum, we’ll need to add a DHCP initialization routine, a DHCP engine routine, a DHCP transmit message routine, and a DHCP receive message routine to our existing code. While we’re at it, we’ll also code in a routine to allow us to display our received DHCP addressing information on a personal computer running a terminal emulator application. And, if that’s not enough excitement for you, we’ll throw in some PICBASIC PRO code to broadcast our newly acquired DHCP parameters using UDP and retrieve the UDP datagram using a Microchip PC application called MCHPDetect.

PLANTING THE FIRST DHCP SEED

Before we do anything about building up the aforementioned DHCP modular routines, we’ll need to tell our main PICBASIC PRO operating loop about the DHCP stuff we’re about to code up. Please consider the following PBP source code snippet:
forever con 1
;**
;* MAIN PROGRAM
;**
on interrupt goto int_handler
OSCTUNE = $40
;**
;* CONFIGURE AND START TIMERS2
;* SET TO OVERFLOW EVERY 1ms
;**
hours = 12
mins = $00
milliseconds = 0
T2CON = $79
PR2 = $A3
TMR2CON = 1
TMR2IE = 1
gosub init_EUSART
gosub init_IO
gosub init_67J60
DHCPSTATE = DHCP_ENTRY
gosub init_DHCP
while forever
 if EPKTCNT != 0 then
 gosub get_frame
 endif
gosub dhcp_state_engine
wend
end
//**
Nothing in the original MAIN PROGRAM code has changed, but I did take the liberty of adding some DHCP-
relative statements. The DHCPSTATE = DHCP_ENTRY PBP statement allows you to enable or disable the DHCP code
at compile time. For instance, equating the DHCPSTATE to DHCP_DISABLED will turn the code execution around at
the beginning of the DHCP initialization routine init_DHCP that is called following the declaration of the initial DHCP
state you desire. You can easily see how this “turn around” mechanism works by examining the simple PBP statements
that make up the DHCP initialization code module:

;**
;* INITIALIZE DHCP STATE MACHINE
;**
init_DHCP:
 if DHCPSTATE == DHCP_DISABLED then
 return
 endif
 dhcpflags = 0
 DHCPSTATE = 0
 DHCPSTATE = DHCP_ENTRY
return
//**

Once all of the hardware modules have been initialized and the DHCP state has been determined, the EDTP
Ethernet MINI driver will loop forever checking for incoming Ethernet frames and servicing the DHCP engine.

If you were able to get your hands on the previous EDTP Ethernet MINI PICBASIC PRO conversion Design
Cycle installments, you’ll recall that many a C-to-PBP pitfall lies in our path. One of those spiked booby traps involved
the way PBP handles SELECT CASE structures versus the way ANSI C treats its native SELECT structures. PICBASIC
PRO handles SELECT CASE perfectly in 99.999% of the situations the SELECT CASE statement is involved in.
However, although the PBP SELECT CASE statement in its native state doesn’t fit well into our DHCP engine code, it
seems that the PICBASIC PRO designers were really just trying to help us out. The ANSI C language delimits each
case structure within a SELECT structure with a break statement. A C programmer with too many hours behind
the keyboard and too much JOLT soda in his or her system may accidentally omit a break statement.

The C program will compile just fine. However, the case structure immediately following the omitted break
statement will execute without performing another select operation. That’s normally not a good thing. Guess what?
It was done intentionally in the EDTP Ethernet MINI C driver code. Here’s a code snippet of the original C version:

//**
//* DHCP STATE MACHINE
//**
void dhcp_state_engine(void)
{
 unsigned int i;
 switch(DHCPSTATE)
 {
 case DHCP_ENTRY:
 printf("\n\nDHCP RESET..\n");
 for(i=0;i<4;++i)
 tempipaddrc[i] = 0x00;
 DHCPSTATE = DHCP_INIT;
 case DHCP_INIT:
 printf("\n\nDHCP INIT..\n");
 for(i=0;i<6;++i)
 svrmacaddrc[i] = 0xFF;
 for(i=0;i<4;++i)
 svridc[i] = 0xFF;
 msecs_timer = 0;
 DHCPSTATE = DHCP_WAIT;
 case DHCP_WAIT:
 if(msecs_timer >= 2000)
 DHCPSTATE = DHCP_BROADCAST;
 break;
 //**
 Note the absence of the break statement between the
 DHCP_ENTRY, DHCP_INIT, and DHCP_WAIT case
 structures in the preceding C code snippet. Intentionally
 omitting the break statements causes the trio of case struc-
 tures to execute one after the other until a break statement
 is encountered. That may be clever in C, but it’s impossible
 to do in PICBASIC PRO. Accidental elimination of break
 statements within SELECT CASE structures is just the thing I
 believe the PICBASIC PRO designers are protecting us
 from. That’s one we should add to the Universal Rules of
 Computing: “You can’t screw it up if you can’t code it.”
 Since we can’t override the absence of SELECT CASE
 break statements in PBP, we’ll have to emulate the original
 DHCP engine code as best we can with the tools that
 PICBASIC PRO provides. As you can see in the PICBASIC
 PRO code snippet that follows, the ported PBP DHCP
 engine code converts the original EDTP Ethernet MINI C
DHCP engine code's SELECT structures to standard PBP if-then structures:

```plaintext
;********************************************************
;*    DHCP STATE MACHINE
;********************************************************
dhcp_state_engine:
if DHCPSTATE == DHCP_DISABLED then
    return
endif
if DHCPSTATE == DHCP_ENTRY then
    hserout[13,10,"DHCP RESET..."]
    for i8 = 0 to 3
        tempipaddrc[i8] = $00
    next i8
    DHCPSTATE = DHCP_INIT
endif
if DHCPSTATE == DHCP_INIT then
    hserout[13,10,"DHCP INIT..."]
    for i8 = 0 to 5
        svrmacaddrc[i8] = $FF
    next i8
    for i8 = 0 to 3
        svridc[i8] = $FF
    next i8
    msecs_timer = 0
    DHCPSTATE = DHCP_WAIT
endif
if DHCPSTATE == DHCP_WAIT then
    if(msecs_timer >= 2000) then
        DHCPSTATE = DHCP_BROADCAST
    endif
    goto breaker
/////////////////////////////////////////////////////////
breaker:
return
//******************************************************
```

Using consecutive if-then PBP structures allows us to emulate the “breakless” C SELECT constructs. When a break of execution is required, the much C programmer-maligned BASIC GOTO statement is brought into action. You can use GOTO in many C compiler implementations but odds are you'll never see a GOTO used in a serious C application. I must admit that I tend to avoid using the GOTO statement at all and I was really pulling for straws when I coded it into the PICBASIC PRO EDTP Ethernet MINI driver. The line of forward slashes (///) in the preceding PBP code snippet represents the rest of the dhcp_state_engine subroutine statements. The breaker label lies at the end of the dhcp_state_engine subroutine.

Other than the SELECT emulation, the rest of the dhcp_state_engine subroutine port was logical and straightforward. As you can see in the preceding code snippets, the C printf statements map easily to the PBP hserout statements. C-to-PBP if-then and for-next structures were also easy ports.

Another C form that is not native to PBP is the concept of non-assembler-based macros and function calls. Here’s what a bbound macro and send_dhcp function call within a SELECT case structure looks like in the EDTP Ethernet MINI C driver source:

```c
char dhcpflags;
#define bound   0x01
#define offerrec 0x02
#define done     0x04
#define trashit  0x08
#define newdhcppkt 0x10
#define bbound (dhcpflags & bound)
#define bofferrec (dhcpflags & offerrec)
#define bdone (dhcpflags & done)
#define btrashit (dhcpflags & trashit)
#define bnewdhcppkt (dhcpflags & newdhcppkt)
#define clr_bound dhcpflags &= ~bound
#define set_bound dhcpflags |= bound
#define clr_offerrec dhcpflags &= ~offerrec
#define set_offerrec dhcpflags |= offerrec
#define clr_done dhcpflags &= ~done
#define set_done dhcpflags |= done
#define clr_trashit dhcpflags &= ~trashit
#define set_trashit dhcpflags |= trashit
#define clr_newdhcppkt dhcpflags &= ~newdhcppkt
#define set_newdhcppkt dhcpflags |= newdhcppkt
```

Since PBP doesn’t support function calls with parameters, we must preload our emulated PBP function and convert the C function code to a PBP subroutine. This is illustrated by the PBP code following the else statement in the PBP if-then SELECT emulation code that follows:

```plaintext
if DHCPSTATE == DHCP_BROADCAST then
    leasetime = 60
    if (bbound)
    {
        DHCPSTATE = DHCP_REQUEST
    }
    else
    {
        send_dhcp(DHCP_DISCOVER_MESSAGE);
        msecs_timer = 0;
        DHCPSTATE = DHCP_DISCOVER;
        printf("\n\nSENT DISCOVER MESSAGE..");
    }
break;
```

Pain is not evident with every modular C-to-PBP porting operation. To handle flags such as bbound, I used an elaborate C macro scheme to clear and set software flags in the C version of the EDTP Ethernet MINI driver. Here’s an example:

```c
char dhcpflags;
#define bound   0x01
#define offerrec 0x02
#define done     0x04
#define trashit  0x08
#define newdhcppkt 0x10
#define bbound (dhcpflags & bound)
#define bofferrec (dhcpflags & offerrec)
#define bdone (dhcpflags & done)
#define btrashit (dhcpflags & trashit)
#define bnewdhcppkt (dhcpflags & newdhcppkt)
#define clr_bound dhcpflags &= ~bound
#define set_bound dhcpflags |= bound
#define clr_offerrec dhcpflags &= ~offerrec
#define set_offerrec dhcpflags |= offerrec
#define clr_donedhcpflags &= ~done
#define set_done dhcpflags |= done
#define clr_trashit dhcpflags &= ~trashit
#define set_trashit dhcpflags |= trashit
#define clr_newdhcppkt dhcpflags &= ~newdhcppkt
#define set_newdhcppkt dhcpflags |= newdhcppkt
```
Note that I simply declared a flag byte (dhcpflags) and manipulated each bit within the byte as a software flag. If you’re an ATMEL AVR C programmer, you’ve seen this method used many times in many places. Although I lose the convenience of just saying set this or clear that, the PBP port is very clean. I utilized the native functionality of PICBASIC PRO to produce this flag manipulation port:

```
dhcpflags var byte
bbound var dhcpflags.0
bofferrec var dhcpflags.1
bdone var dhcpflags.2
btrashit var dhcpflags.3
bnewdhcppkt var dhcpflags.4
```

To clear the bound flag in PBP, I simply code `bbound = 0`. Conversely, setting the `bbound` bit is as easy as `bbound = 1`. The “b” preceding bound identifies the `bbound` variable as a bit variable. Just as I did in the C version of the EDTP Ethernet MINI driver, testing the flag bits is normally done with an if-then structure. For example, to test and branch on the state of the `bbound` flag, we code:

```
If bbound then
   do stuff here
else
   do something else here instead
endif
```

The porting techniques I’ve described are used throughout the new PICBASIC PRO-based EDTP Ethernet MINI driver. There’s more ported EDTP Ethernet MINI code than I can show you and talk about here. So, I’ve provided a full listing of both the C and PICBASIC PRO versions of the EDTP Ethernet MINI driver on the Nuts & Volts website (www.nutsvolts.com). You can also get the code sets from the EDTP Electronics site. I’ve tried to keep the C and PICBASIC PRO source code versions in sync so you can follow the port from C to PICBASIC PRO line-by-line.

VERIFYING THE PORT

Just sitting behind my ThinkPad plinking out PBP code is one thing. Sitting behind three ThinkPads verifying my plinking is another. Here’s the 3-D setup with “our” ThinkPad residing in your virtual lap. The EDTP Ethernet MINI hardware is connected to our ThinkPad via Microchip’s REAL ICE, which is attached via USB. Our ThinkPad is running the MPLAB IDE, which is supporting the PICBASIC PRO compiler and the REAL ICE debugger/pro- grammer. All of the porting, loading, and debugging of the EDTP Ethernet MINI hardware is done from our ThinkPad. For those of you that are not familiar with the Microchip REAL ICE, I’ve put one under the camera in Photo 1.

The ThinkPad to the left is attached via CAT5 cable to a LinkSys EtherFast Cable/DSL router, which is acting as the DHCP server for our little EDTP Ethernet MINI/ThinkPad network. In addition to being the second host on the EDTP Ethernet MINI network, the left-hand ThinkPad is also running Tera Term Pro, an RS-232 terminal emulator application, at 57600 bps. Since these new-fangled laptops dropped their native RS-232 ports in favor of USB interfaces, I’m forced to connect the left-hand ThinkPad’s emulated COM2 to the EDTP Ethernet MINI’s serial port via a USB-to-serial dongle. The third ThinkPad to the right is dedicated to running Network General’s Sniffer Portable LAN Suite, which we will use to capture all of the DHCP activity flying around. Photo 2 shows them all chugging along.

If you’ve got your copy of the PBP source code port handy, you’ll see that I converted and coded a DHCP send routine, a DHCP receive routine, and a DHCP send_bound_message routine. Each routine that is important to us has a “talker” routine within it that sends a human readable serial message to the left-hand ThinkPad running...
Tera Term Pro. If everything works as designed, that same ThinkPad that is receiving the serial messages from the EDTP Ethernet MINI’s RS-232 port is also tasked with running the Microchip MCHPDetect program. The MCHPDetect program is looking for UDP broadcast messages on the network aimed at UDP port 30303. The send_bound_message routine in our PBP EDTP Ethernet MINI driver heaves the DHCP-parameters-laden UDP datagram at UDP port 30303. The left-hand ThinkPad, being an active participant in the network, is listening for UDP traffic addressed to UDP port 30303 by way of the MCHPDetect application it is running.

When the bits all line up, here’s what should happen. Since we have not specified that the DHCP engine be disabled at compile time, the dhcp_state_engine subroutine will be called. The dhcp_state_engine DHCP_ENTRY and DHCP_INIT if-then constructs will execute and we will see the talker statements DHCP RESET and DHCP INIT appear in the Tera Term Pro terminal emulator window. I’ve captured the Tera Term Pro output in Screenshot 1.

Approximately two seconds later, the PBP EDTP Ethernet MINI driver will issue a DHCP Discover message via the send_dhcp subroutine. The talker statement SENT DISCOVER MESSAGE will appear on the ThinkPad running Tera Term Pro when the Discover message is sent. I just happened to have the right-hand ThinkPad and Sniffer Portable LAN Suite online and I captured the EDTP Ethernet MINI’s outgoing DHCP Discover message in Screenshot 2.

With a certified DHCP Discover on the way to the Linksys router, the PBP EDTP Ethernet MINI driver will then sit back and wait for a response from the Linksys router, which is configured as the EDTP Ethernet MINI LAN’s DHCP server. The ThinkPad running Tera Term Pro has a hard-coded IP address below 192.168.0.100, which means our EDTP Ethernet MINI hardware should request and receive the first DHCP pool IP address of 192.168.0.100. The ThinkPad running the Sniffer Portable LAN Suite is not an active participant in the network it is monitoring and will not request an IP address from the Linksys router.

The Linksys router sees our DHCP Discover message and returns a DHCP Offer message, which kicks off the talker message RECEIVED DHCP OFFER MESSAGE on our ThinkPad that is running the Tera Term Pro terminal emulator application. The Sniffer Portable LAN Suite application is still monitoring the network and captures the Linksys-generated DHCP Offer

■ SCREENSHOT 2. Since you can’t really see the entire Sniff, this shot is aimed at providing a verification of the EDTP Ethernet MINI’s sending a correctly assembled DHCP Discover message. Note that I have asked for the network’s subnet mask and the IP addresses of any routers on the network. The fabricated non-IEEE-issued MAC address of 00EDTP results in the Sniffer incorrectly identifying us as IEEE-legal FordAe45450.

■ SCREENSHOT 3. I squeezed in all of the important stuff into this shot. Not only did we get all of the optional parameters we asked for, we also received an available IP address and lease time value that we may choose to use or reject.
Taking a look at Screenshot 3, we find everything we need to put the EDTP Ethernet MINI on the network. Note the Request IP address lease time value. Yet another pothole for PICBASIC PRO; 172800 decimal seconds equates to $2A300 PICBASIC PRO hexadecimal seconds. The lease time value is beyond the 16-bit arithmetic limit of PICBASIC PRO. Although there are 32-bit tricks PICBASIC PRO can perform, we'll fill this pothole with caveman code.

The lease time variable is 32 bits in length. To handle it with PBP, we need to arrange the 32 bits into PBP-chewable bytes:

```plaintext
templeasetimec[0] ; MSB
templeasetimec[1]
templeasetimec[2]
templeasetimec[3] ; LSB
```

The lease time byte arrangement allows us to use caveman code to perform the 32-bit arithmetic as shown in the code that follows:

```plaintext
if templeasetimec[2] >= $07  then
    for i16 = 0 to 1799
        if templeasetimec[3] == $FF then
        endif
        if templeasetimec[2] == $FF then
        endif
        if templeasetimec[1] == $FF then
            templeasetimec[0] = templeasetimec[0] - 1
        endif
    next i16
endif
```

The lease time code I have presented is used to subtract 1800 seconds from the lease time value that is offered to us by the Linksys router within the DHCP Offer message. We can use the same caveman algorithm to determine when the lease expires:

```plaintext
if DHCPSTATE == DHCP_BOUND then
    if bleaseflag then
        bleaseflag = 0
        if templeasetimec[3] == $FF then
        endif
        if templeasetimec[2] == $FF then
        endif
        if templeasetimec[1] == $FF then
            templeasetimec[0] = templeasetimec[0] - 1
        endif
            hserout[13,10,"DHCP LEASE TIME EXPIRED.."]
            DHCPSTATE = DHCP_INIT
        endif
    endif
endif
```

I added a bleaseflag bit variable to the existing dhcpflags byte variable. If you look at the timer interrupt routine in the PBP driver source code, you'll see that I set the bleaseflag.
every second. When the dhcp_state_engine subroutine is called, the bleaselflag value is checked and if the bleaselflag is set and the EDTP Ethernet MINI is bound to the Linksys router, the 32-bit lease time value is decremented. If the lease time value rolls into zero, the dhcp_state_engine code kicks off another DHCP lease request to the Linksys router.

Before we can use any of that nifty 32-bit caveman arithmetic, we must accept the gracious offer that the Linksys router has given to us. We do that by blasting out a DHCP Request message, which is seen in Sniffer format in Screenshot 4.

Up to this point, our ported PICBASIC PRO EDTP Ethernet MINI driver code is working perfectly. There’s only one more step to gaining access to the network: receiving the acknowledgment message to our lease request. The positive acknowledgment talker message in Screenshot 1 backs up the DHCP Ack Sniffer capture you see in Screenshot 5. All that’s left to do is parse the incoming DHCP Ack message and place the IP addresses, subnet masks, and lease time values into their proper memory slots.

Once the EDTP Ethernet MINI received its new IP and gateway addresses, the send_bound_datagram subroutine pushed a UDP datagram out onto the network. The MCHP Detect application captured the data you see in Screenshot 6.

You have joined an elite club. You are now part of the initial PICBASIC PRO EDTP Ethernet MINI driver rollout. To my knowledge, at this time there are no other free PICBASIC PRO ports of PIC18F67J60 network drivers available to the public.

The only brick that is yet to be placed in our PICBASIC PRO wall of networking fame is TCP. I think you all have enough knowledge to get that done without talking about it in an additional installment of Design Cycle. You have the C template in the PIC BASIC PRO port download package. And, you know all of my tricks. I’m sure you also have some tricks of your own. So, go forth and network, you Basic lovers. Make Peter and his potties proud! See you next time.

ANOTHER BRICK IN THE WALL

SOURCES

- **microEngineering Labs** (www.melabs.com): PICBASIC PRO
- **EDTP Electronics, Inc.** (www.edtp.com): EDTP Ethernet MINI
- **Microchip** (www.microchip.com): PIC18F67J60; MPLAB; REAL ICE
- **Network General** (www.networkgeneral.com): Sniffer Portable LAN Suite
- **HI-TECH Software** (www.htsoft.com): The original EDTP Ethernet MINI driver C application was coded with HI-TECH PICC-18.

CONTACT THE AUTHOR

Fred Eady can be reached via email at fred@edtp.com.
Simple Control for Complex Applications

Microchip’s 20-pin, general-purpose PIC® microcontrollers are flexible and easy to use – saving you design time and development costs.

Whether you’re designing an MP3 player or a flight control system, Microchip’s low-pin count devices give you the features you need to get the job done, while making configuration easy. A simple architecture, a cost-saving integrated peripheral set, and easy-to-use development tools allow you to spend your time perfecting your application – instead of debugging it.

20-PIN DEVICE OPTIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Program Memory</th>
<th>Data Memory</th>
<th>10-bit A/D (ch)</th>
<th>Timers 8/16-bit</th>
<th>Other Features</th>
<th>20-pin Package Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC16F631</td>
<td>1024</td>
<td>64</td>
<td>128</td>
<td>0</td>
<td>1/1</td>
<td>PDIP SSOP SOIC, 4mm x 4mm QFN</td>
</tr>
<tr>
<td>PIC16F677</td>
<td>2048</td>
<td>128</td>
<td>256</td>
<td>12</td>
<td>1/1</td>
<td>SPI/IC™ PDIP SSOP SOIC, 4mm x 4mm QFN</td>
</tr>
<tr>
<td>PIC16F685</td>
<td>4096</td>
<td>256</td>
<td>256</td>
<td>12</td>
<td>3/1</td>
<td>EUSART, SPI/IC™ PDIP SSOP SOIC, 4mm x 4mm QFN</td>
</tr>
<tr>
<td>PIC16F87</td>
<td>2048</td>
<td>128</td>
<td>256</td>
<td>12</td>
<td>1/1</td>
<td>EUSART, SPI/IC™ PDIP SSOP SOIC, 4mm x 4mm QFN</td>
</tr>
<tr>
<td>PIC16F89</td>
<td>4096</td>
<td>256</td>
<td>256</td>
<td>12</td>
<td>1/1</td>
<td>EUSART, SPI/IC™ PDIP SSOP SOIC, 4mm x 4mm QFN</td>
</tr>
<tr>
<td>PIC16F90</td>
<td>4096</td>
<td>256</td>
<td>256</td>
<td>12</td>
<td>2/1</td>
<td>EUSART, SPI/IC™ PDIP SSOP SOIC, 4mm x 4mm QFN</td>
</tr>
<tr>
<td>PIC16F785</td>
<td>2048</td>
<td>128</td>
<td>256</td>
<td>12</td>
<td>2/1</td>
<td>Op Amps, CCP Hardware PWM PDIP SSOP SOIC, 4mm x 4mm QFN</td>
</tr>
</tbody>
</table>

Get started today with the PICKit™ 2 Starter Development Kit for only $49.99!
Blinky-Eyes Animated Display
- Animated display of 66 super bright LED's!
- Microcontroller controlled!
- Changes brightness automatically!
- Animated with constant motion!

The ultimate animated LED kit that will dazzle you and delight your friends! Uses a microcontroller to randomly select from many different animations such as a long pause before a wink, or a twinkle of the eye to startle passers-by!

Four modes to satisfy any enthusiast’s desires: 1. Off for long random periods, then blinks or winks. Designed to scare! 2. On for long periods before performing an animation, perfect for costumes and displays! 3. Animates all the time for constant motion, perfect display attention-getter. 4. Random fire! When placed in a pumpkin will light it up like you wouldn’t believe! As if this weren’t enough, the BE66 can also control a small hobby motor to shake bushes at random intervals or signal an external player to make a scary sound! Also has a CDS cell to sense light. In one mode, the display will dim as it gets dark for battery operation, and in the other it will turn off when it’s too bright, so it plays only in the dark!

BE66 Blinky-Eyes Animated Display Kit $59.95

Automatic Animated Ghost
- Automatically greets your visitors!
- Responds to sudden noises!
- Built-in microphone!
- Adjustable sensitivity!

Who says there aren’t such things as ghosts? Once your friends come upon this one they’ll think differently! The unique circuit board design includes two ominous blinking eyes that change with various conditions, including sudden changes in ambient noise. A highly sensitive built-in microphone picks up anything from noises to talking and makes the ghost dance with its built-in motor, make eerie sounds with the built-in speaker, and randomly blink. A white cloth and a hanger are included as shown to make it look like the real thing. Runs on 2 AAA batteries (Not Included).

MK166 Automatic Animated Ghost Kit $23.95

Halloween Pumpkin
- 25 bright LED's!
- Random flash simulates flickering candle!
- Super bright LED illuminates entire pumpkin!
- Simple & safe 9V battery operation

The perfect “starter” kit with a terrific Halloween theme! You won’t be scraping the seeds and guts out of this pumpkin! Six transistor circuit provides a neat random flash pattern. Make it part of a flickering candle. Then a super bright LED illuminates the entire pumpkin with a spooky glow!

The pumpkin face is the actual PCB board, and assembly is easy through-hole soldering of all components and LED’s. Your pumpkin is powered by a standard 9V battery (not included) which snaps to the back of the pumpkin. An on/off switch is also included. Create a new kind of pumpkin this year, and learn about LED’s and electronics at the same time!

MK145 Electronic Halloween Pumpkin Kit $9.95

LED Red Blinky
- Great pumpkin eyes!
- Decorate your costume!
- Easy assembly!

A Halloween favorite! Alternately flashes two jumbo red LEDs that can be used as pumpkin eyes, costume eyes or other attention grabbers. This is the kit you’ve seen on name badges, buttons, hats, and toys. But, there’s more to it than that. Add a couple of relays and Christmas light strings and you’ll get yourself a super light chaser just like the theater marquee. Runs on 5-3 VDC, typically a 9V battery (not included).

BL1 LED Blinky Kit $7.95

LED SMT Blinky
- Submini SMT eyes!
- High intensity LEDs!
- Learn SMT!!
- Extra parts!

The subminiature high tech version of our classic BL1 blinky kit! This one is really neat and is designed using surface mount technology (SMT). The ultra bright SMT LEDs alternately flash for a fast and brilliant display. Runs on two LR55 Button cells that are included to make it complete enough to fit any application. Great attention grabber for any costume. We even include extra SMT parts and two standard LEDs in case you lose the SMT parts!

BL2 LED SMT Blinky Kit $17.95

Did You Know...
- It’s impossible to give you full specs on these products in a 1” space!
- A lot of our kits are also available “factory assembled and tested” if you don’t want to build it!
- We have over 250 products currently available, and all these don’t live here! (Visit www.ramseykits.com for the latest and greatest)

Visit www.ramseykits.com Free Giveaways and ALL the information you ever needed!
Personal Practice Guitar Amplifier

- Practice your guitar or bass without disturbing others!
- Standard 1/4" guitar audio plug input
- CD/MP3 player audio headphone input to practice to your favorite music!
- Switchable bass boost!
- Great as a B to your home stereo amplifier!
- Uses standard 9V battery
- Includes guitar strap/belt clip case!

So you’re a guitar musician, and you live in an apartment...what else needs to be said? You would love to plug into your 100 watt HI Watt (my favorite brand!) amplifier and let it crank, but the neighbors probably wouldn’t share your enthusiasm! The PGA1 was designed to give you hours of enjoyment playing your favorite electric guitar while isolating your family, friends, and neighbors from your music and your passion. (I still use the original engineering prototype with my SG with P90’s!)

Whether you use an acoustic electric, electric, or bass guitar, the PGA1 gives you an adjustable volume output to your favorite headphones. Unlike a lot of practice amps, the PGA1 has a special bass boost to enhance bass guitar use. One practice amp and you want your bass to sound good. The PGA1 has a standard style audio input to play to your favorite music! Just plug in your Walkman style CD player, MP3 player, or even the headphone output on your mixer board and you’ll hear both your music source and your guitar in your headphones!

The PGA1 uses a powerful LM386 power amplifier to provide one watt of power to your headphones, or even a small speaker! It gets even better...use the PGA1 as a cheap and easy direct inserter box to match your guitar into an aux input of a stereo receiver amplifier or PA amplifier! It sounds GREAT! A standard 1/4" audio input connector is wired to your guitar input, matching your standard guitar cables. A top mounted on/off/volume control adjusts the headphone output level through the full range. The small belt clip pocket size device runs on a standard 9V battery (not included). A LED indicates power-on and relative battery condition. The attractive compact case measures 4.5"H x 2.7"W x 1.1"D.

PGA1 Personal Practice Guitar Amplifier Kit $64.95
PGA1WT Personal Practice Guitar Amp, Factory Asmbl & Tested $99.95

Digital FM Stereo Transmitters

- Rock stable PLL synthesized
- Front panel digital control and display of all parameters!
- Professional metal case
- Super audio quality!
- 25MW and 1W models!

For nearly a decade we’ve been the leader in hobbyist FM radio transmitters. Now for 2005 we introduce our brand new FM30 series of FM Stereo Transmitters! We took our engineers we wanted a new technology transmitter that would provide FM100 series quality without the advanced mixer features. They took it as a challenge and designed not one, but TWO transmitters! That’s why our patent abstract is titled “Airband radio receiver which does not radiate interfering signals”. It doesn’t get any plainer than that!

Even with its compact design, we designed the ABM1 for easy construction by the electronic hobbyist. Through-hole parts are used for all customer assembly. Several SMT components are part of the circuit, and they are pre-installed at the factory! In addition, a factory-assembled and tested SMT version with additional shielding for adjacent channel overloading is also available for the aircraft professional that just wants to get listening quickly. Stereo earbuds are even included! If you’re a private pilot, commercial pilot, airport worker, aircraft enthusiast, attend air shows, or spend a lot of time in airports or onboard aircraft, the ABM1 is for you!

ABM1 Passive Air Band Monitor Kit $89.95
ABM1WT Passive Air Band Monitor, Factory Assembled & Tested $159.95

Specifications

- Receiver Type: Patented Passive Detector
- Frequency Range: 118 MHz to 136 MHz
- IF Frequencies: None
- Receiver Sensitivity: Less than 2 uV for detectable audio
- Audio Output: 700mW 8-24 ohms
- Headphone Jack: 3.5mm stereo phone, stereo earbuds included
- External Antenna: Headphone cord coupled
- Power Requirement: 9VDC battery
- Dimensions: 2.25" x 2.8" x 0.9"
- Weight: 4 oz. with battery

Written Up in Communications Magazines Worldwide!

For decades we have been known for our novel and creative product designs. Well, check this one out! An aircraft receiver that receives all nearby traffic without any tuning. It gets better...there is no local oscillator so it doesn’t produce, and can’t produce, any interference associated with all other receivers with an LO. That means you can use it onboard aircraft as a passive device! And what will you hear? The closest and strongest traffic, mainly the plane you’re sitting in! How unique is this? We have a patent on it, and that says it all!

This broadband radio monitors transmissions over the entire aircraft band of 118-136 MHz. The way it works is simple. Strongest wins! The strongest signal within the pass band of the radio will be heard. And unlike the FM capture effect, multiple aircraft signals will be heard simultaneously with the strongest one the loudest! And that means the aircraft closest to you, and the towers closest to you! All without any tuning or looking up frequencies! So, where would this come in handy?

1. At an air show! Just imagine listening to all the traffic as it happens
2. Onboard aircraft to listen to that aircraft and associated control towers
3. Private pilots to monitor ATIS and other field traffic during preflight activities (saves Hobbs time)
4. Commercial pilots to monitor ATIS and other field traffic as needed at their convenience
5. General aircraft monitoring enthusiasts

Wait, you can’t use a radio receiver onboard aircraft because they contain a local oscillator that could generate interfering signals! We have you covered on that one. The ABM1 has no local oscillator, it doesn’t, can’t, and won’t generate any RF whatsoever! That’s why our patent abstract is titled “Airband radio receiver which does not radiate interfering signals”. It doesn’t get any plainer than that!

Clearance Specials, Ramsey Museum, User Forums, Dealer Information, FAQ’s, FCC Info, Kit Building Guides, Downloads, Live Weather, Live Webcams, and much more!

www.ramseykits.com
800-446-2295

MORE than just friendly on-line ordering!

Get the latest 2007 Ramsey Hobby Catalog! 96 value packed pages of the newest goodies around! Order yours on-line today or give us a call! Or download the PDF at www.ramseykits.com.

Get The Catalog!
In this column, I answer questions about all aspects of electronics, including computer hardware, software, circuits, electronic theory, troubleshooting, and anything else of interest to the hobbyist. Feel free to participate with your questions, comments, or suggestions.

Send all questions and comments to: Q&A@nutsvolts.com

DETECTION OF STOPPED OBJECT IN A ZONE

I have a farm. I would like a circuit that will detect cars going into a zone on the road. I want to know if a car stops within the zone and does not pass through within a given time (around 30 seconds) from one direction only. For the detectors, I am using two battery-operated infrared sensors that send the detected trigger signal via RF back to a radio receiver. The output of the receiver would then go to the proposed circuit. This circuit could also be used in an industrial conveyor detection system as well, since the objective is the detection of an object going into a zone from only one direction and stopping. I would like to use all solid-state components.

— Bill Mack
Minneapolis, MN

A You have two sensors: A and B. If A senses a vehicle but B does not, we assume the vehicle stopped between A and B. If both A and B sense a vehicle, we assume it passed through and we don’t care about that. If B senses the vehicle first, it is going in the opposite direction and we don’t care about that either. The circuit will produce an alarm output if the time between A and B exceeds 30 seconds.

The circuit in Figure 1 works like this: IC1 is a 30 second timer; Q9 output goes high after 30 seconds. A set-reset flip-flop is formed by IC2C, IC2A, IC3C, and IC3A. I call this the start-stop flip-flop. A second set-reset flip-flop is formed by IC3B and IC2B. I call that one the alarm flip-flop.

When power is turned on, you want the start-stop flip-flop to be reset, ready to accept a positive pulse from the A input. That is the function of C2 and R4. The alarm flip-flop could power up in either state; you might have to press the manual reset to turn the alarm off. When a positive pulse occurs at the A input, the start-stop flip-flop is set and the counter starts. At the same time, the alarm flip-flop is reset if it was not already. If a positive pulse
occurs at the B input before the counter times out, the start-stop flip-flop is reset and the counter stops until another pulse occurs at the A input. If the B pulse does not happen and the timer times out, the alarm flip-flop is set, the timer stops, and stays in that condition until manually reset or another A input pulse occurs. VCC can be between five and 15 volts DC.

SURROUND SOUND

I am looking for a schematic for a transmitter and receiver that can be integrated into my home entertainment system. I have 5.1 surround and would like to find some way of sending the separate signals for each channel without the use of speaker wire. The transmitter can run off 110 VAC and the receivers can be battery operated. Any ideas would be appreciated.

— Robert Burleigh

My solution is straightforward but has lots of parts (see Figure 2). You can build the units from kits or buy ready-made units. The FM transmitter will be L-C tuned — not crystal controlled — unless you go for an expensive setup. The receiver also has to be L-C tuned, not frequency synthesized because the transmitter will drift in frequency. The L-C tuned receiver will have AFC (automatic frequency control) and be able to track the drifting transmitter.

MAILBAG

Dear Russell,

Here is an alternative for your R/C Eliminator schematic, Figure 6 on page 27 of the August '07 Nuts & Volts. This should eliminate both the high speed pulses and the gap in pulses you mentioned with the two switch types. I have reproduced only the right half of that figure and simplified the capacitor arrangement in Figure 3.

— Edwin Hampton

Response: Thanks for the feedback, that is one to remember!

— Russell

Dear Russell,

A source that I use for up to 60 watts at 1.5 MHz is the LM12. National made this power op-amp about 20 years ago and there are still tens of thousands in supply, so I think they qualify as hobby material. I seem to remember the spec as 60 Vpp max, 10 amp max and unity gain at 3 MHz. I forget if the LM12 is unity gain stabilized, but I usually feed them back at X10 gain and set a signal divider on the input to give the desired output swing. They come in a five pin TO-3 case and there used to be sockets available for them. I usually use a Texas size heatsink designed for a three pin TO-3. I think Jameco (www.jameco.com) sells the insulating mica for them; I use this as a template to drill the other three holes in the heatsink. Two of the pins match the normal TO-3 pattern.

— Joe

Response: I looked up the LM12 and found that Digi-Key has it in stock for $42 each. The version available now has four pins (case is V-) and has a small signal bandwidth of 700 kHz. It will output 10 amps and has a power bandwidth of 6 kHz. The older five pin device was perhaps compensated for a gain of 10. Anyone planning to use it for high frequency should insure that they are getting the five pin device.

— Russell
The RadioShack receiver is inexpensive but you might want to use a Ramsey kit (www.ramseyelectronics.com) for a better looking integration. The 20 watt class D audio amp from Ramsey should be plenty of power; you will have 120 watts total with all six working. I built a class D amp once; the intermodulation distortion was horrible, but I guess the ear is not very discerning because I have never heard anyone complain about it.

BATTERY SAVER

Q I’d like to build a 12V battery saver. I have a 12V cooler in my SUV but if I use it too long, my battery

Mailbag continued ...

Dear Russell,

In the July ‘07 issue, you stated that the program was written in PICBASIC. Whose version of PICBASIC are you referring to? Is the program available for download?

— Gunther Hartung

Response: PICBASIC and PICBASIC PRO compilers are available from microEngineering Labs, Inc. (www.melabs.com). You will also want Microcode Studio or the Microcode Studio Plus integrated development environment, also available from microEngineering Labs. Microcode Studio is free but only supports 16F628.

— Russell

Dear Russell,

I believe there are several errors on pages 30 and 32 of the July issue. Figure 7 shows D1 as 1N4149 and the text calls it 1N4148. Figure 11 shows D2 and D3 in the wrong direction; I believe it requires a positive voltage to initiate the threshold. If so, the diodes should be reversed. If not, would you explain the triggering operation? I took another look at Figure 11; the IC1A is a 555 and IC1B is part of a 556. They are labeled correctly but the pin numbers are incorrect for a 556.

I need to say that I receive several electronic magazines and of them all, I really enjoy Nuts & Volts the most. Every issue has something that interests me. Thank you for being associated with such a great magazine.

— Al Izatt

Response: You are right. I intended 1N4148 in Figure 7, but...
there is no practical difference in this application. In Figure 11, the diodes are in error but turning them around won’t fix it. The IC is triggered when the TR pin goes low, but since either right or left is always low, the circuit won’t work. Turning the diodes around and inserting an NPN transistor will solve the problem (see Figure 5). The schematic symbol in the library is incorrect; I will modify it. Thanks for the kind words.
— Russell

Mailbag continued...

A

The typical auto battery is 100 ampere-hours and the typical cooler draws 10 amps, therefore the battery will go dead in 10 hours or less. The timer in Figure 4 is designed for five hours. It starts timing when the power is turned on and shuts the cooler down when it times out. To restart, turn the power off and on again. IC4A and B are the oscillator of 116 Hz which, when divided by 2²¹, gives an output pulse in five hours. The pulse from IC1 sets the flip-flop IC3A and turns the transistor switch, Q1, off. Pin 2 of IC3A is fed back to the oscillator to turn it off although it was not necessary to do so. C2 and R4 cause a reset of the flip-flop at power turn on to insure that the transistor switch is initially on. The LED will be lit when the cooler is cooling and will be dark when the timer has run out. NV
C COMPILER FOR PIC24 MCUs AND DSPIC® DSCs PCD

C CS is now offering PCD which is a low cost, quality 24-bit C compiler for PIC24 MCUs and dsPIC® DSCs. PCD is in the fundamental development period and now available for sale at www.ccsinfo.com/picc. PCD is offered as a command-line compiler ($250), an add-on to an existing PCWH compiler ($150), a stand-alone IDE compiler ($350), and as a full version PCWHD compiler ($575).

The compiler includes peripheral libraries for SPI, I2C, UART, RTC, Input Capture, and PWMs. PCD includes new built-in functions and examples to aid in getting a project started.

CCS will also be offering prototyping boards to aid in PIC24 and dsPIC DSC development. The DSP Starter Development Kit is now available and features a dsPIC30F2010 prototyping board. The DSP Starter Development Kit is a general-purpose development board including a potentiometer, a pushbutton, three LEDs, and RS-232 level converter, and an LCD connector, and header to access the dsPIC30F2010 chip. CCS will also offer two PIC24 Development Kits and DSP Analog/Audio Development Kits by the end of the year. The DSP Analog/Audio board will demonstrate the DSP features of the dsPIC by providing an example audio conditioning board. Kits may be purchased with a PCD compiler or as a board-only option.

For more information, contact:
CCS
Tel: 262-522-6500
Web: www.ccsinfo.com/picc

TINY TRANSCEIVER OPENS WORLD OF BI-DIRECTIONAL COMMUNICATION

Linx Technologies announces the tiny LT Series transceivers which offer the longest range and lowest power consumption of any transceiver ever offered by Linx. They are also the lowest in cost. This makes the transceivers ideally suited for a diverse range of consumer and industrial applications that require reliable, cost-effective, bi-directional communication. Remote control/command with confirmation, paging and call systems with acknowledgment, industrial process and control, access and security, HVAC, periodic data exchange, low-rate networks, repeaters — the markets and applications are limitless. As with all Linx RF modules, no external RF components are required (except an antenna), allowing for rapid integration, even by engineers without previous RF design experience.

LT Series transceivers operate in the favorable 260 to 470 MHz band and are designed for full regulatory compliance and interference immunity, ideally suiting them to domestic, as well as export wireless applications. The modules operate over a 2.1 to 3.6 VDC range and feature very low power consumption (7.6 mA TX, 6.1 mA RX, 11.5 μA sleep), a wide operational temperature range (-40° to +85°C), adjustable transmitter power with up to +10 dBm output, and a typical receiver sensitivity in excess of -112 dBm.

This makes the modules capable of transparent serial data transfer at rates of up to 10 kbps over outdoor line-of-sight distances in excess of one mile. However, when the transmit power is set to the maximum allowed under FCC limits, that range will typically be reduced to 3,000 feet or less. Even applications not requiring long ranges will benefit from increased link reliability.

Data can originate from virtually any serial data source, including microcontrollers, RS-232, a Linx transcoder IC, or a Linx USB module. The modules are RoHS compliant and housed in a compact SMD package that is well suited to both prototyping and high-volume production. The transceiver is actually smaller than Linx LR Series receiver modules. The transceiver can also be utilized with existing Linx LC and LR Series transmitters and receivers, allowing for mixed mode and legacy configurations, as well as repeater capability for range extension.

The LT Series is available immediately in production quantities. For a comprehensive look at the exciting new LT Series, please visit Linx at their website.

For more information, contact:
Linx Technologies, Inc.
159 Ort Ln.
Merlin, OR 97532
Tel: 541-471-6256
Web: www.linxtechnologies.com

PICOSCOPE 5000 PC OSCILLOSCOPES

The PicoScope 5000 series PC oscilloscopes are Pico’s top-performing scopes, with one of the fastest real-time sampling rates (of 1 GS/s for a USB
PC scope). This, together with a probe-tip bandwidth of 250 MHz, makes them ideal for use with high-speed analog and digital signals. The scope’s large memory buffer — either 32 M or 128 M samples depending on the version — ensures that the high sampling rate can be used on a wide range of timebases without losing detail.

The new advanced trigger types are part of a continuing program of upgrades for the PicoScope 5000 series scopes, which has recently seen the addition of an auto-setup command and a new spectrum view. The new trigger types are dual edge, window, pulse-width, drop-out, interval, and logic triggering.

Window triggering detects when signals go into or out of a given range, so is useful for finding overvoltages. Pulse-width triggering can recognize short or long pulses, so helps you find glitches and timing violations. The drop-out trigger finds the moment when a repetitive signal — such as a clock — goes dead. Interval triggering detects when two successive clock edges fail to meet a timing condition. Finally, logic triggering lets you trigger on practically any combination of up to four input levels or voltage windows.

If you’re troubleshooting digital signals, you will be able to use these new trigger types to obtain a stable display of complex digital waveforms such as serial data streams and control signals. The PicoScope 5000 series scopes are ideal instruments for digital troubleshooting because of their high sampling rate and large buffer size which, when used together, allow you to capture long duration snapshots with high time resolution.

Alan Tong, Managing Director of Pico Technology, said “This is the latest in a series of improvements to the PicoScope 5000 series scopes and the PicoScope 6 software. Our customers can expect regular free upgrades to PicoScope 6 as we learn more about what they need from our products.”

The latest PicoScope 6 upgrade with advanced triggering is available now for download — free of charge — from the Pico Technology website.

MULTI-FUNCTION DMM BREAKS PRICE BARRIERS

A five-in-one, multi-function, 4,000 count, DMM — the Model 6300 and a Category III-600V economy priced DMM — the Model 6100, are the latest additions to the Protek Test & Measurement roster.

The Model 6300 “Five-in-One” DMM has built-in light level, sound level, relative humidity, and temperature capabilities in addition to DMM functions. The Model 6300 sells for $58.

The 6300 and 6100 are auto-ranging 4000 count DMMs, with 3-3/4 digit display. In addition to measuring...
AC/DC voltages from 100 μV to 1,000 V, AC/DC current from 400 μA to 10 A, and resistance from 0.1 Ω to 40 MegΩ, the models also offer duty cycle, frequency, capacitance, diode check, and transistor test capabilities. The Model 6100 has a user price of $34.

Both units have “smart jacks” that light up to indicate appropriate input. The jacks flash and buzz to warn of current overload and/or incorrect inputs. Overload protection fuses may be reset without opening the meter case. Relative mode, data hold, as well as auto-power-off (sleep mode), add to the functional ease.

For more information, contact: Protek Test and Measurement
Web: www.protektест.com

TWO HIGH PERFORMANCE HDMI SWITCHES

Texas Instruments has introduced two new video switches for digital video interface (DVI) or high definition multimedia interface (HDMI). The new devices connect either two or three digital video signals coming from devices such as game consoles, digital video switch boxes, set-top boxes, or DVD players to a single HDTV display (see www.ti.com/tmds351-pr).

Both the TMDS351 three-port switch and the TMDS251 two-port switch integrate four transition minimized differential signaling (TMDS) channels, one hot plug detector, and a digital display control interface on each port. Each TMDS channel supports signaling rates up to 2.5 Gbps to allow 1080p resolution in 12-bit color depth, making it compatible with the HDMI 1.3a standard. Switchable termination resistors (50 ohm) are integrated at each TMDS receiver input, eliminating the need for external terminations. Both devices share the same package and pinout allowing customers to easily and quickly develop common platforms for two and three HDMI inputs.

The new HDMI/DVI switches provide selectable receiver equalization to accommodate different input cable lengths, allowing longer cable reaches and improved opening of the data eye for better noise budgeting. Each device provides strong electrostatic discharge (ESD) protection at the connector by featuring 8 kV human body model (HBM) circuitry on the TMDS inputs.

These new switches support power saving operation. When a system is in standby mode and there is no transmission of digital audio/visual content from a connected source, the 3.3V supply voltage can be powered off to minimize power consumption from the TMDS inputs, outputs, and internal switching circuits.

The TMDS351 and TMDS251 devices join TI’s extensive offering of high-performance analog and digital signal processor (DSP) products for video applications, including DaVinci™ processors optimized for digital video systems, the TVP7000/1 triple 8/10-bit video ADCs, and DLP® technology. TI provides the silicon, software, systems expertise, and support for customers’ video designs, enabling them to accelerate market entry. For more information on TI’s video products, see the Video and Imaging Solutions Guide at www.ti.com/video.

The TMDS351 and TMDS251 switches are available now in 64-pin TQFP packages.
SHOWCASE

Add USB to Your Projects

USB Mass Storage: Designing and Programming Devices and Embedded Hosts
ISBN 1-931448-04-3
287 pages $29.95

USB Complete: Everything You Need to Develop Custom USB Peripherals
ISBN 1-931448-02-7
572 pages $49.95

Lakeview Research LLC www.Lvr.com

The Power SchmartModule™ will power up your circuits with your choice of, -9, -12, +2.5, +3.3, +5, +9 and +12 volts.

$15
Very Schmart!

www.schmartboard.com

1 Amp Smart Battery Charger

The Model 150 (1A) Smart charger features a precision, temperature-tracking voltage reference and three mode charging sequence. Charger may be left connected, will not overcharge. If a load is applied, the charger will contribute its bulk current to the load. Not a switcher! Low RF noise linear charger. Good for Radio Use. Input 120 VAC, Output 13.8 VDC. 4"W x 6"D x 3"H. Weighs only 3 lbs. Other voltages available, see website for details.

Complete KIT (Order #155-KIT)................... $ 59.95
Assembled & Tested (Order #155-ASY)........ $ 79.95

CA Residents add 7.75% sales tax. S & H $12.50 to US 48 (insured)
AK, HI and Foreign Orders, please contact us for details

w w w . a - a e n g i n e e r i n g . c o m
2521 W. LaPalma #K
• Anaheim CA 92801
(714) 952-2114 • FAX (714) 952-3280

Solderless LED clock kits
9" x 5" models $25-33. Free shipping!

48+ red or blue LEDs. Price through 03/2008 w/$2 coupon code w3 at http://LEDkit.biz

Big, bright, fun! Includes all materials. Incl. transformer, panel, stands, instruction book.

w w w . l e d k i t . b i z

PRINTED CIRCUIT BOARDS

QUALITY PRODUCT
FAST DELIVERY
COMPETITIVE PRICING

10 pcs (3 days)
1 or 2 layers $249
10 pcs (5 days)
4 layers $695

(up to 30 sq. in. ea.)
includes tinning, artwork, LPI mask & legend

www.pulsar-inc.com • sales@pulsar-inc.com

PULSAR, INC.
9910 W. Pacific Ave.
Franklin Park, IL 60131
Phone 847.233.0012
Fax 847.233.0013

SHOWCASE

SHOWCASE

1 Amp Smart Battery Charger

For Gel-Cell or Lead Acid Batteries

The Model 150, 1Amp charger features include a precision temperature-tracking voltage reference and three mode charging sequence. Charger may be left connected, will not overcharge. If a load is applied, the charger will contribute its bulk current to the load. Not a switcher! Low RF noise linear charger. Good for Radio Use. Input 120 VAC, Output 13.8 VDC. 4"W x 6"D x 3"H. Weighs only 3 lbs. Other voltages available, see website for details.

Complete KIT (Order #155-KIT)................... $ 59.95
Assembled & Tested (Order #155-ASY)........ $ 79.95

CA Residents add 7.75% sales tax. S & H $12.50 to US 48 (insured)
AK, HI and Foreign Orders, please contact us for details

w w w . a - a e n g i n e e r i n g . c o m
2521 W. LaPalma #K
• Anaheim CA 92801
(714) 952-2114 • FAX (714) 952-3280

Solderless LED clock kits
9" x 5" models $25-33. Free shipping!

48+ red or blue LEDs. Price through 03/2008 w/$2 coupon code w3 at http://LEDkit.biz

Big, bright, fun! Includes all materials. Incl. transformer, panel, stands, instruction book.

w w w . l e d k i t . b i z
The device described in this article is both a 4:1 audio mixer and a 1:4 distribution system. Each of the input and output channels has its own volume control. One mixer channel and one distribution channel are used for the interface to my transceiver and I have also installed a transmit/receive switch on the front panel. One other distribution channel drives the powered speakers of my PC.

Although I am using this system with my PC, any audio system which needs to expand its line level input and/or output capability can easily make use of it. The system is built using separate circuit boards for the mixer and distribution systems so that you only need to implement the part your system requires.

Circuit Descriptions

In the following discussions, only the left channel operation will be described since the right channel is identical in every case. In the case of the distribution and mixer blocks, the component references are to the first block.

Each circuit description contains a simplified schematic. Additional files (including assembly files showing placement of all components) are available on the Nuts & Volts website (www.nutsvolts.com) and on my website at WWW.QSL.NET/K3PTO. I have also posted the Gerber PCB files in case anyone wants to have their circuit boards made elsewhere.

Distribution Amplifier

The distribution amplifier is a “follower with gain” circuit (Figure 1) which multiplies the input signal by a factor of approximately 6 and is defined by the formula $R_2/R_1 + 1$. The purpose of R_3 is to keep the positive input of the dual op-amp from floating and to insure that it is biased to ground when there is no input connected. The purpose of R_4 is to isolate the output of the amplifier from the gain controls of the four distribution blocks (see Figure 2).

Since each distribution block has a 5K potentiometer, the total parallel resistance “seen” by each channel is about 1.25K. This causes the total gain of the amplifier — from the input to the top of the distribution system — to be $4.99K/1.25K = 3.99$. Each mixer channel has its own 1K potentiometer, so the total gain of each channel is $3.99 + 1 = 4.99$.

All of my interfaces between the radio and my PC have been homebrew. I am now on my third generation interface and believe that it will probably be my last. So far, I have not been tempted to use any of the newer digital audio interfaces since I still like analog control of the volume/level.
potentiometer — to be about 3.3.

Distribution Blocks

The circuit for the distribution block is another follower with gain circuit (Figure 2). The gain is set to 2 by the formula of \(R_2/R_1 + 1 \). This makes up for the gain reduction due to the potentiometers in parallel (see full schematic).

The output header (H2) of the distribution amp and the input headers (H3, etc.) of the distribution blocks allow you to implement a switch between them, if desired (see block diagram). The traces on the circuit board connect all of the left channel inputs to the left channel output of the distribution amplifier.

The right channel is wired identically. It is not difficult to cut those traces with either an X-acto™ knife or a Dremel™ tool. If you use all four distribution blocks, you will need a two-pole four-position switch (see Schematic 1).

Mixer Blocks

The mixer blocks (Figure 3) are also followers with gain. The gain is approximately 6 and is set by the formula \(R_2/R_1 + 1 \). R3 is there to equalize the offset voltage, as well as to provide some protection for the input. R4 is to keep the input from floating when there is no input connected.

Mixer Amplifier

Both channels of the mixer amplifier have four inputs (one input shown) consisting of four potentiometers (5K) and four sets of 10K resistors and is a typical inverting amplifier circuit. The gain of the mixer amplifier is about -1 and is set by the formula.
-R1/R2. The mixer sums (and inverts) each of the four inputs. There is going to be some interaction between the position of the wiper on the pot and the 10K resistor since they are roughly the same magnitude. For practical purposes, that interaction can be ignored.

I chose an op-amp inverter for this circuit because it enables each of the summing resistors (R2, etc.) to work into a virtual ground. This gives complete isolation among the four volume controls used on the mixer blocks.

The main reason why the potentiometer is part of the mixer amplifier rather than the mixer blocks is that if a switch is used, I did not want the low level output of the potentiometer to be switched. This wiring allows the high level signal to be switched instead.

In the same way as the distribution blocks, the mixer blocks are...
wired to the inputs of the mixer amplifier. They can be cut and a switch inserted, if desired. Also, if you have a signal with a high enough level and can tolerate a 5K load, you can bypass the mixer block altogether and connect directly to the top of the potentiometer.

A general note for each of the above systems: You can customize the gain values per channel if your application would benefit simply by changing the resistor ratios. I would change the resistor connected between the op-amp output and its input. Also, there is a practical limit before the circuit will become unstable. I suggest that the gain NOT be increased enough to

SCHEMATIC 3

FIGURE 5

The switch is actually a 4Pole-4Pos Sw., so it can switch both the L and R channels.
handle microphones. Most mics have outputs in the range of about -60 dbm (about 1 mv at 600 ohms). This is quite a low level signal and more care needs to be exercised in order to amplify this level than I have taken with this implementation (see Schematic 2).

Power Supply

Refer to Schematic 3. The power supply I implemented is powered by a 20 VAC wall-wart. I strongly recommend the use of a wall-wart or external transformer in order to keep AC mains outside of the box. The supply circuit I built consists of two half wave rectifiers and 12 volt regulators. There is provision on the board for a full wave rectifier if you use a transformer with a center tap. The value of the two series resistors — 10 ohms on my board — should be selected based on the voltage source. Just make sure that their power rating is sufficient.

Ideally, the resistors should drop enough voltage so that the regulators are presented with about five volts above their output voltage. This will help minimize the regulators’ power dissipation, as well as provide better filtering of the rectified AC input. The two audio boards draw a total of about 100 mA.

Due to the symmetry of the power supply...
system, the same current flows through both the positive and negative supplies. I used 12 volt regulators simply because I have a number of them on hand. I believe that either nine or 15 volt regulators would work equally well.

Assembly

The case I purchased (see the bill of materials) has fairly soft aluminum so I had to be careful drilling it in order to not bend it out of shape. I also mounted a rectangular piece of wood (1/2” x 1/2” x 5”) to the top of the inside cover so that the back surface has some bracing when inserting connectors. Most of the connectors are standard 1/8” dia. stereo types. The ones I used are isolated, except the ones to and from the PC, but that is not really necessary. Since one input and output channel goes to my ham radio transceiver, I decided to use a single, seven-pin connector for its interface. Obviously, you can use whatever connectors are appropriate for your application.

I used 0.1” single row connectors for making the various connections. Each connector housing needs to be cut to length. This is easily done with a utility knife. The cost of using this method is about $0.15 per connection. I believe that the added cost is well worth the flexibility it provides. I can completely disconnect any of the subsystems without having to unsolder wires.

The hardest part of using the connectors is that each of the wires is terminated with a crimp pin. I happen to have access to a hand crimper tool that made it relatively easy for me. However, I have hand crimped many of them in previous projects. For hand crimping, I would work under a lighted magnifying lens and use a pair of small, curved nose, needle-nose pliers. One hint for hand crimping: Leave the pin on the strip while crimping the wire.

One minor problem I encountered was with the knobs for the pots. The pots have 1/4” shafts and the knobs were supposed to be for 1/4” shafts. However, they turned out to be for fluted shafts (probably my mistake). I had to partially drill out the fluting in the knobs to make them fit. I suggest you try to find knobs with set screws.

PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>VALUE</th>
<th>QTY</th>
<th>SUPPLIER/PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Amp:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1,C3</td>
<td>10 μF</td>
<td>2</td>
<td>Mouser/80-T491B106K020</td>
</tr>
<tr>
<td>C2,C4</td>
<td>0.22 μF</td>
<td>2</td>
<td>Mouser/581-08053C224M</td>
</tr>
<tr>
<td>D1,D2</td>
<td>CD214A-B150</td>
<td>2</td>
<td>Mouser/652-CD214A-B150</td>
</tr>
<tr>
<td>IC1-IC5</td>
<td>LM833</td>
<td>5</td>
<td>Mouser/511-LM833D</td>
</tr>
<tr>
<td>H1-H11</td>
<td>Pin Headers</td>
<td>23 pins</td>
<td>Jameco/160882</td>
</tr>
<tr>
<td>R1,3,5,7,8, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24</td>
<td>1K</td>
<td>22</td>
<td>Mouser/292-1.0K-RC</td>
</tr>
<tr>
<td>R2,R6</td>
<td>4.99K</td>
<td>2</td>
<td>Mouser/292-4.99K-RC</td>
</tr>
<tr>
<td>R9,R14,R19, R24</td>
<td>5K dual pot</td>
<td>4</td>
<td>Mouser/313-1240F-5K</td>
</tr>
<tr>
<td></td>
<td>Knob</td>
<td>4</td>
<td>Mouser/450-AE141</td>
</tr>
<tr>
<td>Mixer:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1,C3</td>
<td>10 μF</td>
<td>2</td>
<td>Mouser/80-T491B106K020</td>
</tr>
<tr>
<td>C2,C4</td>
<td>0.22 μF</td>
<td>2</td>
<td>Mouser/581-08053C224M</td>
</tr>
<tr>
<td>D1,D2</td>
<td>CD214A-B150</td>
<td>2</td>
<td>Mouser/652-CD214A-B150</td>
</tr>
<tr>
<td>IC1-IC5</td>
<td>LM833</td>
<td>5</td>
<td>Mouser/511-LM833D</td>
</tr>
<tr>
<td>H1-H14</td>
<td>Pin Headers</td>
<td>34 pins</td>
<td>Jameco/160882</td>
</tr>
<tr>
<td>R1,3,4,6,7,8,9,10, 12,13,15,16,18,19, 21,22,24</td>
<td>1K</td>
<td>16</td>
<td>Mouser/292-1.0K-RC</td>
</tr>
<tr>
<td>R2,5,8,11,14, 17,20,23</td>
<td>4.99K</td>
<td>8</td>
<td>Mouser/292-4.99K-RC</td>
</tr>
<tr>
<td>R26,27,29,30, 32,33,35,36,37, 38,39,40,41,42, 43,44,45,46</td>
<td>10K</td>
<td>18</td>
<td>Mouser/292-10K-RC</td>
</tr>
<tr>
<td>R25,28,31,34</td>
<td>5K dual pot</td>
<td>4</td>
<td>Mouser/313-1240F-5K</td>
</tr>
<tr>
<td></td>
<td>Knob</td>
<td>4</td>
<td>Mouser/450-AE141</td>
</tr>
<tr>
<td>Power Supply:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1,D2</td>
<td>CD214A-B150</td>
<td>2 or 4</td>
<td>Mouser/652-CD214A-B150</td>
</tr>
<tr>
<td>R12 (see text)</td>
<td>22, 1/2W</td>
<td>2</td>
<td>Mouser/292-2.21K-RC</td>
</tr>
<tr>
<td>R3</td>
<td>2.2K</td>
<td>1</td>
<td>Mouser/450-AE141</td>
</tr>
<tr>
<td>C1,C3</td>
<td>1000 μF</td>
<td>2</td>
<td>Jameco/544358</td>
</tr>
<tr>
<td>C2,C4,C5,C6</td>
<td>0.22 μF</td>
<td>4</td>
<td>Jameco/544358</td>
</tr>
<tr>
<td>U1</td>
<td>LM7812CT</td>
<td>1</td>
<td>Jameco/51481</td>
</tr>
<tr>
<td>U2</td>
<td>LM7912CT</td>
<td>1</td>
<td>Jameco/51334</td>
</tr>
<tr>
<td>H1,H2</td>
<td>Pin Headers</td>
<td>8 pins</td>
<td>Jameco/160882</td>
</tr>
<tr>
<td>LED</td>
<td>LED</td>
<td>1</td>
<td>Jameco/160882</td>
</tr>
</tbody>
</table>

System

<table>
<thead>
<tr>
<th>ITEM</th>
<th>VALUE</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>1</td>
<td>Mouser/40UB103</td>
</tr>
<tr>
<td>3.5 mm Phone Jacks</td>
<td>10</td>
<td>Mouser/161-7300-EX</td>
</tr>
<tr>
<td>3.5 mm Phone Plugs</td>
<td>10</td>
<td>Mouser/171-2035</td>
</tr>
<tr>
<td>2.5 mm DC Pwr Plug</td>
<td>1</td>
<td>Mouser/171-0725</td>
</tr>
<tr>
<td>2.5 mm DC Pwr Jack</td>
<td>1</td>
<td>Mouser/161-0725-E</td>
</tr>
<tr>
<td>Power Switch</td>
<td>1</td>
<td>Jameco/421585</td>
</tr>
<tr>
<td>AC Wall Wart</td>
<td>1</td>
<td>Jameco/421585</td>
</tr>
<tr>
<td>Pin Headers</td>
<td>40 pins</td>
<td>Jameco/160882</td>
</tr>
<tr>
<td>Socket Housing</td>
<td>36 pins</td>
<td>Jameco/160882</td>
</tr>
<tr>
<td>Socket Pins</td>
<td>1 set</td>
<td>Jameco/100766</td>
</tr>
<tr>
<td>Circuit Boards</td>
<td>1 set</td>
<td>FAR Circuits</td>
</tr>
</tbody>
</table>
Both the mixer and distribution boards are mounted to the front of the case using only the pot shafts. This seems to be quite adequate. The power supply board is mounted using a single 4-40 screw through the bottom of the case with spacers between the inside surface and the bottom of the board. There is a copper ring around the hole for this bolt which is used to ground the board to the case.

Final Comments

I typically get my circuit boards made by FAR Circuits. They do not have plated-through holes so the leads of some components are used to connect the top side and bottom side traces. I strongly suggest you use a soldering iron with a fairly fine tip and small diameter solder so you do not wind up heating two or more pins of the SMD op-amps at one time.

I also find it helpful to work using a magnifying lens with a lamp. Mine is 3X, but there are times I wished it was 5X.

I have included two block diagrams showing possible implementations of the audio center (see Figures 5 and 6). Keep in mind that, although I am using this with my PC, the system can be used with any sound system desiring this type of expansion. **NV**

Hobby Boards

Your premier source for 1-Wire devices

Many Uses:
- Weather Monitoring
- Home Automation
- Garden and Yard Automation

Many Options:
- Fully Assembled Devices
- Boards, Kits and Parts Cases

Our devices are featured in Wyle’s Extreme Tech series Weather Toys by Tim Bitson. This book is available on our website.

www.hobbyboards.com
CAMCORDER / IPOD VIDEO AV CABLE
3.5mm (4-conductor) plug on one end, three RCA jacks (red, white, yellow) on the other end. 3 ft cable. Allows iPods and many camcorders to connect directly to television or video monitor via standard A/V stereo cable. CAT# CB-218

$3.00 each

DSL FILTER
Suttle #900LCS-50E. In-line DSL filter for single-line telephones, faxes, answering machines or other phone devices. Eliminates interference between your DSL line and analog telephone lines. Two output jacks; one for computer, one for phone device. Integrated 3" modular cord plugs into standard phone jack. UL, CSA. CAT# FTR-108

$2.00 each

FLAT-SCREEN TV STEREO SPEAKERS
Full-range 15W, 4 ohm stereo speakers for Philips flat-screen television. Very good sound reproduction produced by two 2" 8W woofers and one 1" 15W tweeter. An oval 4.7" x 1.9" resonant diaphragm helps accentuate the bass response. Unbreakable plastic enclosures are 15" x 3" x 2.55" deep. Set of two speakers, left and right. CAT# SK-314

$8.00 per pair

SOLAR-CELLS W/CHARGING CIRCUIT - 3 RED LED'S
Here's a great start for a solar cell project. These assemblies for sun-powered garden lights consist of two glass photovoltaic cells mounted on a plastic bracket with a charging circuit, two rechargeable AA cells, and three red LEDs. Between the solar cells is a photosresistor to sense light and dark conditions. In daylight the solar cells charge the battery. When it gets dark, the LEDs light. These are working units but the batteries are old and may not take a charge. Solar cell surface area is 3.78" x 1.98". Cells provide 2.6 Vdc @ 25mA in bright sunlight. CAT# SPL-05

10 for $2.50 each

$3.00 each

8X MINI-MONOCULAR
8 X 20 mm mini-monocular provides wonderful image quality at a fraction of the size of standard binoculars. Ideal for travel, sporting or cultural events. Fully coated lenses provide bright, high-contrast images. Small enough to fit in any pack or pocket. Includes neck cord and protective leatherette storage case.

Overall dimensions, 3" x 1.5" x 1.5". Field of view: 288 ft @ 1000 yds (96M @ 1000M) or 6 degrees

Magnification: 8x

Objective Diameter 20mm

Weight: 1.8 oz / 50g

$15.00 each

MINIATURE 12VDC PUSH-TYPE SOLENOID
Ledex™ 0.5" dia. x 1" long tubular solenoid with 3/8" diameter threaded bushing for mounting. 1/16" diameter x 1/2" long plunger. 40 Ohm coil. Operates on 12 Vdc. 1" wire leads. CAT# SOL-102

10 for $9.25 each

$3.25 each

EL BACKLIGHT, 3" X 5"
Salmon color in off-state. Glows light-green when energized by 120 Vac or inverter. For backlighting control panels, LCDs, special-effects lighting, models etc. Solderable pins extend 0.16" beyond plastic laminate exterior. CAT# EL-13

10 for $9.25 each

$9.75 each

250W SERVER POWER SUPPLY
Sparkle Power Intl Ltd. # FSP250-601U. 1U/2U server supply. ATX and ATX12V standard. Input: 100-240V, 6.3A 50-60 Hz. Outputs: 3.3V @ 16A, 5V @ 25A, 12V @ 13A, 5V @ 2A, -5V @ 0.3A, -12V @ 0.8A. Fan-cooled, 2-fans with Noise Killer (thermal fan speed control). Remote on/off function. Low noise and ripple. Overvoltage, short circuit and overcurrent protection. Re-settable power shutdown 3.9" x 1.6" x 8.0". RoHs. UL, CSA, CE, CB, DVE. CAT# PS-601

$24.00 each

DPDT MINI-TOGGLE SWITCH W/ LONG HANDLE
C&K # 7201. D.P.D.T. ON-ON, miniature toggle switch. Standard 1/4-40 threaded bushing. Rated 3A 120 Vac. Solder lug terminals. Toggle handle is 0.68" long. (Standard handle is 0.4" long).

CAT# MTS-881

10 for $1.00 each

$1.15 each

Shop ON-LINE www.allelectronics.com
ORDER TOLL FREE 1-800-826-5432

MAIL ORDERS TO:
ALL ELECTRONICS CORP.
14928 OXNARD ST., VAN NUYS, CA 91411-2610

FAX (818) 781-2653 • INFO (818) 904-0524
E-MAIL allcorp@allcorp.com

NO MINIMUM ORDER • All Orders Can Be Charged to Visa, Mastercard, American Express or Discover • Checks and Money Orders Accepted by Mail • Orders Delivered in the State of California must include California State Sales Tax • NO C.O.D. • Shipping and Handling $7.00 for the 48 Continental United States - ALL OTHERS including Alaska, Hawaii, P.R. and Canada Must Pay Full Shipping • Quantities Limited • Prices Subject to change without notice.

MANUFACTURERS - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or Fax Your LIST.
In this installment of the wireless weather station, I am going to show you how to build the Indoor Weather Satellite.

Once assembled, we will run some tests with our PC interface satellite as shown in the network diagram in Figure 1.

CONTROL YOUR WORLD

Build a Wireless Weather System: Part 2

You should have the Maxstream mesh network firmware installed in each of the XBee modules you plan on using in your wireless network as outlined in Part 1 of this project. Using the Maxstream USB and RS-232 development boards, you should have performed some basic tests to make sure your XBee modules are properly configured.

Building the Indoor Weather Satellite

The indoor satellite has a couple of functions to perform. Since the XBee module has been configured as a coordinator, its main job is to give all the other satellites a place on the network as they are added. It also serves as our main indoor data collection point. Here, we will collect barometric pressure, indoor humidity, and indoor temperature. I will be using the AAG humidity sensor, Hobby Boards pressure sensor, and a DS1820 to collect temperature data. For the wireless side of things, I chose to use a standard XBee module and SparkFun's breakout board. A small regulator module and a DiosPro 28 from KronosRobotics will also be used to power and control everything. All these items will be attached to two pieces of plastic and connected with SchmartBoard jumpers as shown in Figure 2.

As we build this satellite, you can refer to Schematic 1 for detailed connection information.

- **STEP 1:** You will need two pieces of acrylic as shown in Figure 3. The size I used was 5” x 5”. A little larger size won’t hurt, but I would not cut them any smaller. I also drilled a 5/32” hole into each corner of one piece. I then used that piece to mark and drill the second. This will insure that the holes line up when you add the standoffs later.

 (As we proceed, refer to Figure 11 for the actual layout of all the assembled components and sensors. I recommend you assemble all the kits, dry fit, and mark them before final assembly.)

- **STEP 2:** You need to assemble a Dios Carrier 1 board according to the included instructions, with
the exception of the two, 16-pin headers. For this project, you need to install the headers on top of the board as shown in Figure 4. Use two layers of double stick foam tape to attach the carrier to the base, and then install the Dios Pro chip as shown.

Note: If you plan on programming the DiosPro while the top piece of acrylic is in place, you need to place this module closer to the edge of the acrylic. This will allow you to plug in the EZRS232 board.

• **STEP 3:** Assemble the Kronos Robotics five-volt regulator board and attach it to the base. To do this, place the regulator on the base and mark the location of the four holes. Drill four 5/32 holes on the marks, then install #4 machine screws and nuts as shown in Figure 5. Next, slip the regulator over the screws and add four more as shown in Figure 6.

• **STEP 4:** You have three assembly choices for the wireless module. The purpose of this is to provide a 3.3V to 5V interface, as well as a way to attach and secure the XBee module. The actual assembly instructions for each version are available at:

- SchmartBoard 2mm proto board (Figure 7a) — www.kronosrobotics.com/Projects/MaxStreamInterface2.shtml
- SchmartBoard .1” proto board and SparkFun breakout board (Figure 7b) — www.kronosrobotics.com/Projects/MaxStreamInterface3.shtml
- KronosRobotics 3.3V-5V interface and SparkFun breakout board (Figure 7c) — www.kronosrobotics.com/Projects/MaxStreamInterface4.shtml

I used the .1” proto board shown in Figure 7b, but all will work. The 2 mm SchmartBoard shown in Figure 7a will require that you attach a standard .1” header to the top of the 2 mm headers in order to use the jumpers.
• **STEP 5:** You will need to prep the Hobby Boards 1Wire pressure sensor so that you can attach the jumpers later. To do this, break off a male header and remove the plastic from the pin. You can use straight or right angle headers for this as shown in Figure 8. Later, we will be inserting jumpers on these pins.

If you are going to connect an indoor humidity sensor, you will need to connect two 4” wires to the headers shown in Figure 8. These will route to the humidity sensor when we install it later. If you wish, you may use different colors for the wires.

• **STEP 6:** The pressure sensor only has two mounting holes and the tolerance between the hole and the other components is quite close. I marked the holes and attached two #4 machine screws and nuts to the base, then attached the pressure sensor to machine screws. Because of the tight tolerance, I used some rather thin #4 standoffs to attach the board as shown in Figure 9. You can also attach the sensor with two layers of double stick foam tape.

• **STEP 7:** If you are using the humidity sensor, you have two choices in mounting. You can use two #4 machine screws or double stick foam tape. To access the mounting holes, you need to remove the PCB (printed circuit board) first. This is held in place by the four small terminal screws.

Note that the Hobby Boards humidity sensor will work, as well. Once mounted and connected, its operation is identical to that of the AAG sensor.

Next, you need to connect the two wires from the pressure sensor to the humidity sensor. The green wire (Gnd) is connected to the green terminal on the humidity sensor. The yellow wire (DQ) is connected to the yellow terminal on the humidity sensor as shown in Figure 10. If you are using the Hobby Boards sensor, it is a bit easier. Connect the Gnd and DQ terminals on the pressure sensor to the Gnd and DQ terminals on the humidity sensor.

• **STEP 8:** All components for the indoor satellite are now in place as shown in Figure 11. Attach four 1-1/4” #4 standoffs to the bottom base as shown in Figure 11. You can use single standoffs or combinations. You may also use larger standoffs if you want more clearance. At this point, I also mounted four rubber feet on the bottom of my base, as well. Just about any will do. I purchased these from my local home center.
STEP 9: Using jumpers, connect the + and – terminals on the regulator to the Dios Carrier 1 board as shown in Figure 12. If you are not clear on the actual pins, refer to the included hookup sheets.

Next, connect the + and – terminals as shown in Figure 12 to the XBee module.

STEP 10: Attach the VIN terminal on the regulator to the +14V terminal on the pressure sensor as shown in Figure 13. Then connect the Vss terminal on the regulator to the Gnd terminal on the pressure sensor as shown in Figure 13.

STEP 11: Using a small two-pin female header, attach a 1K resistor between the two pins. Then attach a single male header to one of the pins as shown in Figure 14. Slip this assembly over the Carrier 1 header ports 12 and 13. Make sure the header pin that you added to the connector is on port 12. The resistor is used to hold the port 1Wire network high. Later in our software, we will set port 13 as an output and to a high state. This will supply the voltage needed to the resistor which will, in turn, supply the network.

STEP 12: Run a jumper from the pressure sensor DQ terminal to the port 12 header as shown in Figure 15.

STEP 13: The last two jumpers connect the transmit and receive leads on the XBee module to the DiosPro chip. Connect the TX lead on the XBee module to port 8 on the Dios Carrier. Connect the RX lead on the XBee module to port 9 on the Dios Carrier (Figure 16).

STEP 14: In order to perform tests and to supply a status LED for the satellite, we need to attach an LED to the DiosPro microcontroller. To create this LED, wire a standard LED in series with a 1K resistor to a two-pin female header as shown in Figure 17. The location of the resistor does not matter. You may also want to add a small amount of heat shrink, depending on the length of your LED leads. Attach the header to the Dios Carrier header ports 0 and 1. The flat side of the LED connects to port 0 as shown in Figure 18.

Testing the Indoor Satellite

You will need to use an AC
adapter that supplies 14 volts in order to supply enough power to the pressure sensor. I used a 12 volt unregulated AC adapter for this. When you apply power to the 5V regulator, the LED on the regulator should light up. If it does not or is very dim, then you have a bad power connection somewhere. Disconnect the power immediately.

The DiosPro ships with a test program installed on the chip. When power is applied, the status LED should blink. This indicates that the chip is getting enough power.

In order to program the DiosPro chip, you need an RS-232 adapter to connect the chip to your PC. These are available from the Kronos Robotics website for under $10. The EZRS232 interface comes in kit form with a five-pin male header. In order to connect the EZRS232 to our Carrier 1, we need to create a small adapter by connecting two five-pin female headers together as shown in Figure 19.

As an option, you may forgo the male header and attach a five-pin female header in its place as shown in Figure 20. This is the preferred method of programming the Dios Carrier 1 when the headers are on the top of the board.

The EZRS232 interface board is connected to the carrier by slipping the female header over the programming leads. These are the first five leads on the right side of the carrier as shown in Figure 21. You can now connect the PC to the indoor satellite and apply power.

If you have not already done so, download and install the free Dios Compiler from the Kronos Robotics website. You can pick up a copy at www.kronosrobotics.com/downloads/DiosSetup.exe.

Once installed, start the program and load the code from Program 1 into the compiler and hit the program button. The compiler should compile the program, then upload the code to your DiosPro chip. Once done, the status LED will blink and the word “test” will continue to print on the debug terminal of the program.

Back in March, I showed you how to build the 1Wire temperature sensor shown in Figure 22. Information for this sensor is also available on the Kronos Robotics website.

You will need one of these remote sensors connected to your indoor satellite. Once built, just plug the connector into one of the existing sensors mounted on the satellite.

Performing a Network Search

In order to read
the 1Wire sensors, you will need to obtain the ROM serial numbers from each of the sensors on the network. Included with the downloads for this project is a program called Networksearch.txt. With the temperature sensor connected to your satellite, load and run the Networksearch.txt program. If your sensors are connected properly, the data from the three sensors should be displayed as shown in Figure 23.

Unfortunately, both the humidity sensor and the pressure sensor use the same 1Wire interface chips so it is up to you to determine which ROM number is associated with which sensor. To do this, you can temporarily disconnect the humidity sensor and run the search program.

PARTS LIST

The following is a breakdown of the sources for all the components needed for Parts 2 and 3 of this project.

MAXSTREAM
- Starter Kit #XB24-DKS
 - http://store.maxstream.net/index.cfm?fuseaction=product.display&Product_ID=1
- Also available from Mouser at: [www.mouser.com/search/ProductDetail.aspx?R=XB24-DKSvirtualkey61440000virtualkey888-XB24-DKS](http://store.maxstream.net/index.cfm?fuseaction=product.display&Product_ID=1)

JAMECO ELECTRONICS
- Standoffs
 - [www.jameco.com/webapp/wcs/stores/servlet/CategoryDisplay?storeId=10001&catalogId=10001&langId=-1&categoryPath=355050](http://store.maxstream.net/index.cfm?fuseaction=product.display&Product_ID=1)

KRONOS ROBOTICS
- DiosPro 28 Chip
- Dios Carrier 1
- 3.3V to 5V Interface Kit
- 40-Pin Male Header

SPARK FUN ELECTRONICS
- SCP1000
- XBee Breakout Board (used to build various interface boards)
- 2 mm Connectors (you need two for each breakout board)

HOBBY BOARDS
- Barometer Module (B1-R1-A)
- Humidity Module (H3-R1-A)

LOCAL HARDWARE OR HOME CENTER
- Double Sided Tape
- PlexiGlas (or equivalent)
To test the sensors, run the program called SensorTest.txt. This program will take readings from the temperature sensor, barometric sensor and the humidity sensor and display them on the debug terminal. At the very beginning of the program are three entries that assign the ROM addresses for the sensors. You will need to change these entries to match your own sensors.

The sensor data will also be sent over the network via the XBee module. If you connect your PC to one of your development boards and run the X-CTU software in terminal mode, you should be able to see the network data.

Final Thoughts

I wanted to get into the protocol I developed for this project but just did not have the space to do it this month. So it will have to wait until the end of the series, which is where it is needed anyway.

We used the Hobby Board 1Wire pressure sensor in this project. It has a built-in thermometer, but due to the heat generated by the sensor, this thermometer may be a bit unreliable. This also applies to the humidity sensor. On the other hand, you could have used the SparkFun pressure sensor that I presented last month in the barometer plotter. This sensor has both a reliable pressure sensor and a temperature gauge so the need for an external sensor is not required. The use of an indoor humidity sensor is really not required. I like to have one because I do a lot of work with wood, and I like to know what the humidity is in my lab/shop area.

What’s Next

Stay tuned because next month, we will build the Outdoor Weather Satellite. Again, we will be using a Maxstream XBee module, as well as a DiosPro 28 to interface with the various sensors.

Be sure to check for updates at www.kronosrobotics.com/Projects/wirelessweather.shtml.

LINKS

- Hobby Boards
 www.hobby-boards.com
- Spark Fun Electronics
 www.sparkfun.com
- Kronos Robotics
- SchmartBoard
- Jameco Electronics
 www.jameco.com
We’ve got semis on the brain. Jameco offers more major brands of semiconductors than anyone — almost twice as many as these catalog distributors.* It’s another Jameco advantage.

<table>
<thead>
<tr>
<th>Mouser®</th>
<th>Allied®</th>
<th>Newark®</th>
<th>Jameco®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmel Semiconductor</td>
<td>Analog Devices</td>
<td>Altera</td>
<td>Altera</td>
</tr>
<tr>
<td>Avago Technologies</td>
<td>Atmel Semiconductor</td>
<td>Analog Devices</td>
<td>Analog Devices</td>
</tr>
<tr>
<td>Cypress</td>
<td>Avago Technologies</td>
<td>Avago Technologies</td>
<td>Avago Technologies</td>
</tr>
<tr>
<td>Diodes INC.</td>
<td>Freescale Semiconductor</td>
<td>Cypress</td>
<td>Cypress</td>
</tr>
<tr>
<td>Fairchild Semiconductor</td>
<td>Infineon Technologies</td>
<td>Freescale Semiconductor</td>
<td>Freescale Semiconductor</td>
</tr>
<tr>
<td>Freescale Semiconductor</td>
<td>Integrated Devices</td>
<td>Integrated Devices</td>
<td>Diodes INC.</td>
</tr>
<tr>
<td>Intersil</td>
<td>Intel Corporation</td>
<td>Intel Corporation</td>
<td>Fairchild Semiconductor</td>
</tr>
<tr>
<td>Lattice Semiconductor</td>
<td>Intersil</td>
<td>Intersil</td>
<td>Freescale Semiconductor</td>
</tr>
<tr>
<td>Lite-On Semiconductor</td>
<td>Lattice Semiconductor</td>
<td>Lattice Semiconductor</td>
<td>Infineon Technologies</td>
</tr>
<tr>
<td>NEC</td>
<td>Maxim</td>
<td>Maxim</td>
<td>Integrated Devices</td>
</tr>
<tr>
<td>Sharp Microelectronics</td>
<td>National Semiconductor</td>
<td>National Semiconductor</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>ST Microelectronics</td>
<td>NXP (formerly Philips)</td>
<td>ST Microelectronics</td>
<td>Intersil</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>ST Microelectronics</td>
<td>Texas Instruments</td>
<td>Lattice Semiconductor</td>
</tr>
</tbody>
</table>

Free shipping on these and 79 other brands. Call for details.

OTHER JAMECO ADVANTAGES:

- More major passive, interconnect and electro-mechanical brands than other distributors.
- 99% of catalog products ship the same day.
- Lowest prices guaranteed, or we pay 10%.
- Major brand names and generic equivalents for even greater cost savings.

Order 24 hours a day, 7 days a week

www.Jameco.com

Or call 800-831-4242 anytime

©Jameco Electronics. *According to their web sites on August 28, 2007. Trademarks are the property of their respective owners.
These simple-to-build tilt light projects were designed to please different members of the family.

There’s a tilt flashlight for mom, a tilt emergency light for dad, a tilt curio box light for a little girl, and a tilt dump truck light for a little boy.

Keep ‘em on the kitchen counter, on your desk, or by your bedside — these little light units stay ‘off’ in the upright position and turn ‘on’ when laid flat or when a lid is lifted. They are great as emergency lighting or flashlights. For kids, they are reassuring devices that — when kept nearby — can be turned on for occasional monster checks.

All four units described here are made from only five components (battery, battery holder, LED cluster, tilt switch, and project box or other container) and are very easy to construct. The LED clusters are all available from www.elec-goldmine.com in a variety of colors and formats (see Table 1). The tilt switches can be found from a number of vendors; the ones used for these projects (see Figure 1) consist of two types: a mercury tilt switch (part # 1700 TLMC) and a rollerball tilt switch (part # 1700 TLRB) available from www.elecxpress.com. Figure 2 shows the basic wired components (LED cluster, tilt switch, and batteries) in several on and off configurations. A small button was cemented to the top of the project case to indicate off when the button is up. All components — with the

Table 1. LED Clusters

<table>
<thead>
<tr>
<th>Description</th>
<th>Operating Voltage</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 LED White Cluster and Reflector</td>
<td>4.8 VDC-6.0 VDC</td>
<td>G15654</td>
</tr>
<tr>
<td>Brilliant White</td>
<td>3.0 VDC-3.8 VDC</td>
<td>G14877</td>
</tr>
<tr>
<td>4 LED Cluster</td>
<td>3.0 VDC-3.8 VDC</td>
<td>G14877</td>
</tr>
<tr>
<td>Blinding Blue</td>
<td>9.0 VDC-14.0 VDC</td>
<td>G15261</td>
</tr>
<tr>
<td>Blinding Yellow</td>
<td>9.0 VDC-12.0 VDC</td>
<td>G15605</td>
</tr>
<tr>
<td>3 LED Cluster</td>
<td>9.0 VDC-12.0 VDC</td>
<td>G15605</td>
</tr>
</tbody>
</table>

Figure 1. Rollerball tilt switch (left) and mercury tilt switch (right) available from Electronix Express. The body of each unit is about one half inch in length.

Figure 2. Basic wiring with different on and off positions.
exception of the battery holder(s) —
were anchored using hot melt glue.

A tilt light flashlight constructed
from the three white LED cluster
attached to a 4” x 2” x 1-1/4” project
box is shown in Figure 3. A one watt,
33 ohm dropping resistor was used
with a nine volt battery to provide the
power supply (Figure 4). This unit can
be used like a conventional flashlight
by rotating the project box 180
degrees (Figure 5) to turn it on and
then tilting the box up and down 45
degrees for sweeping an area without
shutting it off. A smaller version of this
unit (utilizing a project box 3” x 2” x
1-1/8”) without a reflector is shown in
Figure 6. The four white LED cluster
was glued to the outside of the box
and powered by a nine volt battery
wired in series with a one watt, 270
ohm dropping resistor (Figure 7) and
creates a ton of illumination when
used as a compact emergency light
(Figure 8).

Figure 9 is a photo of a curio box
used to make a tilt light by wiring the
LEDs and the switch into the lid so
that it turns on when opened. The
blue three LED cluster was coupled to
two nine volt batteries wired in series,
using a one watt, 330 ohm dropping
resistor to provide the light source
(Figure 10). A John Deere dump truck (RC2 Brands, Inc., Stock Number 35322 found in Wal-Mart) provided the vehicle (pun intended!) for the construction of the tilt light shown in Figure 11. The yellow three LED cluster wired directly to a nine volt battery turns on when the dump is raised (Figure 12).

The neat thing about these lights is that the user doesn’t have to fumble for a switch, and if the batteries are fresh, it should be obvious when the lights are on or off. The main problem with these lights is that if you use them as a gift, you need to place them carefully somewhere so that they remain off and don’t drain the batteries. NV

FIGURE 12. Truck tilt light with raised dump in the on position.
Free Catalog!

Download the HIDmaker FS Test Drive today!
www.TraceSystemsInc.com
301-262-0300

Source Code: NVM54

October 2007 NUTS & VOLTS 51
This project was inspired when I was playing BINGO with my friends. Somehow during play, the numbers that were called got mixed up, and there was confusion as to whether or not one of the players had actually won the game.

It seemed to me that having a microcontroller select and verify the numbers would be much more reliable.

The game of BINGO is quite simple: any number from 1 to 75 is picked and called out to the players. Numbers may not be called more than once during any game. Once a player has selected all the numbers in a row (vertical, horizontal, or diagonal), he yells out “BINGO” and wins the game.

A program for BINGO must be able to randomly pick any number from 1 to 75, and display it as it should be called, i.e., “B17” or “N39.” The program must keep track of which numbers have been used and prevent them from being displayed again in the same game. The displayed numbers must then be available for verification once a player has called BINGO. (See the sidebar for more details about the game).

The Hardware

I have used the PIC16F870 in previous projects and find it extremely versatile and well behaved. A different PIC could have been used in the project (for example, a 16F84A), but since I had several 16F870s on hand from previous projects, I decided to use it.

The program presented here can easily be modified to use almost any PIC that has at least 11 general-purpose I/O lines to control the LCD and accommodate the push button switches. This project uses a standard four data bit LCD display with the Hitachi HD44780 controller. However, any other LCD using the HD44780 controller could also be used. Add a few push-button switches, some resistors, a few capacitors, and presto! You have BINGO on a PIC. The schematic is shown in Figure 1.

The Programming

The heart of this project is in the programming. To me, PIC programming is a very interesting subject, and there are many PC-based software programs to choose from. Many purists will tell you the best way to write programs for PICs (but not the easiest) is using the 35 assembly
language instructions outlined in all the PIC data sheets. After trying that and having a hard time doing all the intricate manipulation of bits and bytes and the associated “housekeeping,” I needed an easier solution.

I finally decided on microEngineering Labs’ PICBASIC PRO software with the additional Microcode Studio Plus GUI software (both are available at www.melabs.com). You could use the PICBASIC software with this project, but it does not have all the commands available with PICBASIC PRO.

The commands and instructions in the software are intuitive and easy to follow; the programs are easy to construct and work with little or no tweaking. The actual PICBASIC PRO *.bas file needed is included in the BINGO.zip file on the Nuts & Volts website (www.nutsvolts.com), along with all the other necessary files. The *.asm file and associated files necessary to use the MPLAB IDE program (free from www.microchip.com) to modify or change the BINGO program and re-compile it are also provided. The MPLAB IDE program produces a *.hex file which can be used to program the PIC16F870.

As we go through the following steps, please refer to Figures 2 and 3 of the BINGO program block diagram.

1) The program begins by setting up the necessary ports to control the LCD display.

'LCD Defines
DEFINE LCD_DATA PORTB 'Set LCD Data Port
DEFINE LCD_DBIT 4 'Set Start Bit
DEFINE LCD_E PORTC 'Set LCD Enable Port
etc.

2) Timer0 is then set up to run from the PIC clock divided by 256. After trying several different prescaler values, I found it gave the most random selection of Bingo numbers. Timer0 runs constantly and cannot be stopped and started.

PICBASIC PRO makes it easy to set up Timer0. The purpose of each bit in the control word for the Option Register (which controls Timer0) is outlined in the PIC 16F870/871 data sheet (available on the Nuts & Volts website). A command in the program simply equates the OPTION_REG to the necessary control word on Line 49 of the program:

OPTION_REG = $10000111 'TMRO = 1:256

3) The next step is to set the PIC “fuses.” In PIC language, these are actual configuration parameters of the PIC and must be done using an assembly language command

FIGURE 2

FIGURE 3
because there are no corresponding PICBASIC PRO commands. To be exact, the following parameters are set by the assembly language command in Line 52:

@ config RC_OSC & WDT_OFF & PWRT_ON & LVP_OFF & CP_OFF

A) config instructs the PIC the items in the line will be configuration commands.

B) RC_OSC tells the PIC a resistor-capacitor combination will be used to run the PIC clock. (If desired, a crystal can be used for PIC oscillators to reduce cost.)

C) WDT_OFF tells the PIC to turn off the watchdog timer. The watchdog is used to “wake up” the PIC after a sleep command has been received and the timer has expired. It is not used in this program.

D) PWRT_ON tells the PIC to turn on the power-up timer. This timer keeps the PIC in reset mode for 72 milliseconds after power is applied so the program won’t begin to run until the power is stable.

E) LVP_OFF tells the PIC to turn off the low voltage programming option. It is not used in this program, but could be.

F) CP_OFF tells the PIC to disable the code protection in the device. If this feature is turned on, new code cannot be programmed into the PIC nor can anyone read the code that is in the PIC. Obviously, this feature is not used in this program.

4) The next step is to define all the variables in the program. The most important one is the BINGO array. This is the main part of the program. An array in PIC language is simply a number of variables with the same name, but different sequential locations in the program. The PIC is limited to the number of variables that may be used, and that limitation is in direct correlation with the number of bits each of those variables use. For example, the PIC we’re using allows up to 256 variables with one bit; 96 variables with one nibble (four bits); and only 48 variables with one byte. For BINGO, the numbers we need (1 to 75) cannot be accommodated by the above variable limitation of the PIC. However, if we use the variable ADDRESS as the BINGO number, then 74 times one bit variables may easily be defined and used. As an added bonus, the bit in each variable may be used to determine if that variable has been used or not. That gives us a way to both insure BINGO numbers are not “called” twice and verify which numbers were displayed. The remaining variables are INDEX, POINTER, VERIFY, and PICKED. Please refer to lines 55 through 62 for their use.

5) The next piece of the program clears the LCD display, puts the cursor at the first position of the first line, and then displays “Picked” on the first line and “Verify” on the second line. This is done in lines 65 through 68.

6) All the variables are set to 0.

7) All of the bits in all the BINGO variables (there are 75 of them addressed from 0 to 74) are set to 1. This gives a starting point where none of the numbers have been picked (as their values are 1).

![FIGURE 4](Irwin.qxd 9/6/2007 10:24 AM Page 54)
8) Lines 82 and 83 of the program limit the Timer0 value between 0 and 74 and make the “pointer” variable equal to whatever value Timer0 is at that point. The pointer plus 1 will be our BINGO number.

```
IF TMR0 => 75 THEN TMR0 = 0
pointer = TMR0
```

9) The next actions of the program depend solely on which buttons are pushed.

A) If the Pick button is pushed, the value of the pointer is used to reference that location of the BINGO array. If the value of that variable is 0, that means the number has already been used and the program loops back to step 7 discussed previously. If the value is 1, that means the number has not been picked and the program displays the number on the LCD with the correct BINGO letter in front of it (Lines 93 through 99 of the program). The program then goes back to the Pick location (Line 81).

B) If the Reset Verify pushbutton is selected, the verify number is reset to 0 and the BINGO number displayed is 01. In addition, the program checks this array location and displays a YES if the location contains 0 or a NO if the location contains 1 (Lines 120 through 131). After this, the program goes back to the Pick location (Line 81).

C) If the Increase Verify by 1 button is pushed, the verify number is increased by 1 and this number plus 1 is displayed as the verified BINGO number. Now the program jumps back to the YES and NO checking routine and then returns to the Pick location (Line 81).

D) If Increase Verify by 10 button is pushed, the verify number is increased by 10 and this number plus 1 is displayed as the verified BINGO number. Again, the program jumps back to the YES and NO checking routine and returns to Line 81.

When the Bingo unit is first turned on, the display appears as follows:

Picked Verify

When the first number is picked, the display then shows:

Picked N44 Verify

When one of the Verify buttons is pushed, the display appears as one of the following options:

Picked N44 Picked N44
Verify 44 YES or Verify 01 NO

The use of the unit is really quite simple. The caller pushes the Pick button every time he needs to call a new number. When someone yells out BINGO, the caller first pushes the Reset Verify Number button and then can increase that number by either 1 or 10. A YES verifies the number; a NO means that number has not been picked, so the caller can go back to Picking numbers until the next BINGO is called. Since the Verify number cannot be decreased, a bit of manipulation is required to go back to a lower number than the one last verified. A Verify Number reset is required; increments of 1 or 10 to get to the next number will enable the verification.

BINGO Cards

The final requirement to play BINGO is having the proper playing cards for the game. I found a solution for this by using a Microsoft Excel spreadsheet. Figure 4 is a graphical representation of this. (The actual Excel spreadsheet is included with the files on the Nuts & Volts website.) As you can see, there are six cards on the spreadsheet which may

<table>
<thead>
<tr>
<th>PARTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qty Item Description Part #</td>
</tr>
<tr>
<td>Semiconductors</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>10 Turn Trimpot</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Capacitors</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

All part numbers listed are from Mouser Electronics (www.mouser.com) with the exception of U3.
easily be cut out and used as separate cards. The spreadsheet gets its numbers from an Excel command — RANDBETWEEN(X,Y) — which fills that cell with a random number between the two values, X and Y. You can make the spreadsheet recalculate all the cells and fill them in with new numbers by pressing F9.

The only drawback to the program is it produces duplicate numbers within the columns; i.e., the “B” column could contain any number between 1 and 15, but there is nothing to prevent duplicate numbers in that range. It may be possible to solve this problem using Visual Basic, unfortunately, I am not familiar with this program. I imagine there are Nuts & Volts readers who are. To solve the immediate problem, I manually go to any cell with a duplicate number and put in a different one. Not a great solution, but it works.

Construction

Although I have provided a printed circuit board layout with the other project files, I constructed my PCB manually using fingernail polish as an etch resist medium. It works quite well, and it is easy to correct any mistakes prior to etching the PCB. The layout and wiring are not critical, and the project could easily be done on a proto board using point-to-point wiring. Figures 5 and 6 show the completed project. I built my BINGO player inside a Tupperware-type container. It was easy to fabricate and the unit looks quite novel. It runs on a standard nine-volt battery and draws about nine milliamps. The power is routed through an LCD so it is easy to see when the unit is turned on. To start a new game, simply turn the unit off, then on again.

Suggested Improvements

This project could be improved by using a larger LED display that would make its visual presentation much more striking. The programming would have to change to accom-
modate this. Additional circuitry
could be installed to add audio.

If anyone is interested, I am
willing to modify the program for
different types of LCD displays and
will email the hex file associated
with the new program to you. Email
me at chuckirwin43@gmail.com.

I hope this article will encour-
age readers to find new ways to
use microcontrollers. Using PICs
and getting them to do what you
want is extremely satisfying when
the end goal is achieved. NV

THE BASICS OF BINGO

The game of BINGO has been around
for many years, and I am quite sure that
everyone knows how to play it. With the
advent of the National Bingo show on TV,
the game is gaining a new popularity.

All of the players have at least one (or
several) card arranged as shown in Figure
A. The numbers are arranged in random
order, but not repeated. The “B” column
contains five numbers in the range from
1 to 15. The “I” column contains five
numbers in the range from 16 to 30. The
“N” column contains five numbers in the
range from 31 to 45. The “G” column
contains five numbers in the range from 46 to 60.
Finally, the “O” column contains five numbers
in the range from 61 to 75.

The person “calling” the game randomly
selects a number between 1 and 75, which he cannot
see until he has picked it. He then calls out the
number for the players. That number is
removed from play and put on a “played
list.” It cannot be called again during the
same game. Once all of the numbers in
any horizontal, vertical, or diagonal row
on a player’s card have been covered,
that person then yells out BINGO, and
the numbers are then verified by the
caller. If everything is correct, the player
wins. As each number is called it is
eliminated or “covered” on a large sheet
used by the caller. That makes it easy to
verify the numbers of a winning player.

The game is completely governed
by chance. The numbers on the playing
cards are random, and the manner
in which the numbers are picked is
also random. Variations on winning
patterns can be used to
make the games more
challenging. For example,
a winning game may
be defined as all the
numbers being called
must form a square
on the outside rows/
columns of the card.

FIGURE A

<table>
<thead>
<tr>
<th>B</th>
<th>I</th>
<th>N</th>
<th>G</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>16</td>
<td>31</td>
<td>55</td>
<td>61</td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>40</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>FREE</td>
<td>57</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>39</td>
<td>46</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>45</td>
<td>50</td>
<td>65</td>
</tr>
</tbody>
</table>
For some electronics hobbyists, the discrete Fourier transform, or DFT, is a feared and mysterious entity that is best left to the “experts” or those who practice in the field of digital signal processing (DSP) on a daily basis. The truth is, however, that with a little explanation and only a dash of simple math, anyone who can use a spreadsheet or program a microcontroller can understand and put this powerful signal processing technique to work in no time at all.

For those who have never heard of the DFT before, here’s a little background. Every signal can be viewed in at least two ways. The most common way is in the time domain. Whenever we look at a signal on an oscilloscope, we’re seeing it in the time domain (the x-axis is time). However, we can also view a signal in the frequency domain, so that as we move along the x-axis in the positive direction, we’re looking at increasing frequency. The y-axis represents the amplitude of the frequencies. It should be noted that these two domains are like opposite sides of the same coin. One cannot exist without the other, and both are equally valid.

Why bother with the frequency domain? Without going into the mathematics, let’s just say that some problems are more easily solved by converting a signal to the frequency domain first, doing some math, and then converting the solution back to the time domain. Examples are readily found in communications where signals are often mixed (heterodyned) and modulated in different ways. Multiplication of sines and cosines can be quite cumbersome in the time domain, but more easily managed in the frequency domain.
Let's look at a sample signal in both domains. If we were to add a 200 Hz sine wave (amplitude 1), a 600 Hz sine wave (amplitude 1/3), and a 1,000 Hz sine wave (amplitude 1/3), we would get the signal in Figure 1a. To most people, it would not be obvious that these three frequencies are present in the figure. However, decomposing the signal in Figure 1a into its frequency components clearly shows which frequencies are present and at what amplitude (Figure 1b).

This example hints at another very important concept: All (reasonably continuous) signals can be made up of a combination of sines and/or cosines. This is Fourier's theorem. You can experiment with this idea using the “Synthesis” tab in the “dft.xls” spreadsheet available on the Nuts & Volts website (www.nutsvolts.com).

Here's a question for you: If we're given a signal in the time domain, is it possible to represent this signal in the frequency domain? In other words, can we go from something that resembles Figure 1a and determine the same kind of information that's presented in Figure 1b? This answer is — of course — yes. One method of doing this is to use a discrete Fourier transform.

Let's break down this exotic sounding phrase into its basic parts. First of all, a transform is just a word that has to do with taking information in one form and looking at it in another. A simple example is taking Eastern Standard Time and subtracting three hours. If I do this, I've just performed a transform from EST to PST. Fourier (pronounced FOUR-ee-ay) is the name of the French mathematician who contributed greatly to his field. Discrete (as opposed to discreet) means separate. So, instead of working on an analog (or continuous) signal, we're only working with specific (digital or discrete) values of a signal taken at evenly-spaced intervals of time. If we're going to use a...
As you read through this article, be aware that this is not a leisurely read. If this is your first time experimenting with the DFT, you will need to have your sleeves rolled up and your brain focused. Our discussion will be about DFT theory and the Excel spreadsheets that you will be using to experiment with these concepts.

Also keep in mind that my purpose here is to provide only a general introduction to the DFT and to provide the boilerplate tools necessary to launch into an independent detailed study or microcontroller implementation (see suggestions for further reading).

Procedure

First, we'll discuss correlation — the basic building block of the DFT. Then we'll extend correlation to sampled signals, which is necessary for microcontroller and computer applications. Next, a functional DFT program will be demonstrated in Excel with a simple application. Finally, I'll wrap up with a quick overview of aliasing, a nasty phenomenon you'll want to avoid.

Correlation

Loosely speaking, this is a number that represents how well two signals are matched. The higher the correlation (or greater the value), the better they match. Correlation is found by multiplying the respective elements of two sampled signals together and adding each product together. To make this clearer, see Figure sets 2a and 2b.

Figures 2a3 and 2b3 are the products of the other two related signals. They contain points both above and below zero. So in summing the correlation, some points will be added and others subtracted. In Figure set 2b, the input and correlation signals are the same (2a1 and 2a2), so all of the
points in the product signal \((2a3)\) are greater than zero (remember, a negative multiplied times a negative is a positive).

These plots were produced from the “Correlation 1” tab in the Excel spreadsheet. If anything up to this point is unclear, you may want to take a moment and experiment with this worksheet. You can see the cell formulas and change parameters of the test signals. The important concept here is that the closer two signals are to being “the same,” the higher the correlation.

Sampled Signals and Basis Functions

Figure 3 shows a signal that is identical to the signal in Figure 2b3. There is one very subtle and important difference in this graph, however. The units for the x-axis are not seconds but rather samples. When a computer or microcontroller takes A/D samples for the DFT, these values will be stored in an array for future processing. In the “Sampled Correlation” tab, there is an added column for sample numbers on the far left. Also in the worksheet is a parameter called “Basis Function.” This is a common name for the correlation signal.

The basis number is just the number of cycles of a sine (or cosine) wave that will fit in our sample size. The best way to see this is to put a few different numbers into the basis function cell and see the resulting signal. Figures 4a and 4b show a few examples. While it’s possible to put non-integer values into the spreadsheet, the DFT program we will use only uses integer values.

Performing the DFT

Here is where the fun begins (and may get a little complicated, so be patient). In the “DFT” tab, you can modify the test parameters to create a signal with a frequency, amplitude, and (DC) offset of your choosing. Once you’ve created a signal, press the “Perform Correlation
by DFT” command button. This will execute a program written in VBA (Visual Basic for Applications) which you can view by going into design mode (this is done by pressing the “design mode” button in the control toolbar as shown in Figure 5 and then double clicking on the command button). Executing the VBA code will result in two graphs being produced: the “raw” DFT, and the DFT corrected for sample frequency. Figures 6a, 6b, and 6c show an example with a test signal of 1,000 Hz.

Let’s take a moment and talk about what is going on in this short program. After initialization of variables and constants, the sample signal is read into the array “Sample.” Note that this is a 128 element array running from 0 to 127. So, our sample size is 128. Next we initialize two 65 element arrays to zero. The purpose of these arrays is to hold the values of the sines and cosines that make up the test signal (see Figure 7). (For reasons we won’t go into here, cosines are referred to as the “real” part of the DFT while sines are the “imaginary” parts.)

Next, the test signal is correlated with sine and cosine basis functions. The correlation value with each basis function (remember, this is how “similar” two signals are to one another) is what gets stored in each element of the sine and cosine array. Finally, I merge the sine and cosine for each basis function into a root mean square value. This step is not really necessary, but I like to look at one final graph rather than two. If you prefer splitting sines and cosines apart, feel free to make two graphs.

We’re not quite out of the woods yet, but we’re close. All that remains is to convert those 65 basis functions in each array into meaningful frequencies that we can understand.
Remember, a processor is just crunching numbers in this DFT algorithm. It only sees samples, not voltages or frequencies. In order to convert to frequency, we multiply the sampling rate times the sample number and divide by the total number of samples.

Again, if any of this is unclear, look at the different Excel worksheets carefully. The cell formulas can be helpful. The “DTMF” worksheet demonstrates a useful application of the DFT. Instead of analyzing one signal, two can be broken down into their component frequencies and decisions can be made based on what is found.

Before wrapping up, there are a couple of items worth mentioning about the DFT.

Aliasing

You can only (reliably) sample signals with frequencies up to half the sampling frequency (called the Nyquist theorem). Sampling signals with higher frequencies will result in something referred to as aliasing. All this means is that the system is not sampling quickly enough to recognize the signal for what it is. In fact, the signal might be mistaken for something else.

Suggested Reading

Oppenheim, Alan V. et al., *Discrete-Time Signal Processing*, 1999. This is a classic text on DSP. Heavy on the math and probably not appropriate for a hobbyist, but very thorough.

smooth curve may help bring out
the original sine wave a little better.
Finally, Figure 8d is the signal
sampled at 500 Hz, which is below
the Nyquist rate. Not only is the 400
Hz sine wave no longer discernable,
but connecting the dots actually
suggests a sine wave of a lower
frequency!

You can experiment with aliasing
by going to the “DFT” tab and
entering in a test signal frequency
that is higher than half the sampling
frequency to get the same effect.
You can also check out the
“Aliasing” tab in the spreadsheet to
see how I got these graphs.

DC Offset

There is one basis function that
may not be obvious. Namely, a basis
function with a frequency of zero. Not
to worry, the DFT doesn’t miss this.
The 0th element in each of the sine
and cosine arrays contains the DC
offset of the signal. Go to the “DFT”
tab and try changing the test signal’s
offset and see how that affects array
element 0.

64 NUTSVOLTS October 2007
Full Page.qxd 9/5/2007 10:07 AM Page 65

2 Channel USB Oscilloscope
QC-1930 $149.50 + post & packing
Using Plug ‘n Play USB technology and providing full optical isolation from the computer, this oscilloscope is easy to setup and use, as well as providing protection for the computer. The software is a fully featured chart recorder, function generator, logic generator, logic analyzer, and spectrum analyser all in one easy to use package. See website for specifications.

Autoranging DMM
QM-1535 $15.00 + post & packing
An excellent, accurate meter that is Cat II rated. It features diode, frequency and capacitance test, duty cycle, continuity, relative measurement and includes battery, probes and holster.

We stock an extensive range of Digital Multimeters!

Visit us at www.jaycar.com/catalog and obtain your free copy of our 430+ page, full color catalog. We have an extensive range of electronics kits and the best in innovative gadgets.

POST AND PACKING CHARGES:

<table>
<thead>
<tr>
<th>Order Value</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25 - $49.99</td>
<td>$7.50</td>
</tr>
<tr>
<td>$50 - $99.99</td>
<td>$20</td>
</tr>
<tr>
<td>$100 - $199.99</td>
<td>$40</td>
</tr>
<tr>
<td>$200 - $499.99</td>
<td>$60</td>
</tr>
<tr>
<td>$500+</td>
<td>$75</td>
</tr>
</tbody>
</table>

Note: Products are dispatched from Australia, local customs duty and taxes may apply.

How to order:
Phone: Call Australian Eastern Standard Time Mon-Fri on 1800 784 0263
Email: techstore@jaycar.com
Post: PO BOX 6424, Silverwater NSW 1811, Australia
Expect 10-14 Days For Air parcel delivery

50MHz Frequency Meter MKII Kit
KC-5440 $40.75 + post & packing
This compact, low cost 50MHz Frequency Meter is invaluable for servicing and diagnostics. This upgraded version features an automatic indication of units (Hz, kHz, MHz or GHz) and prescaler. Kit includes PCB with overlay, enclosure, LCD and all electronic components.
• 8 digit reading (LCD)
• Prescaler switch
• 3 resolution modes
• Powered by 5 x AAA batteries or DC plugpack

Jacob's Ladder High Voltage Display Kit
KC-5445 $23.25 + post & packing
With this kit and the purchase of a 12V ignition coil (available from auto stores and parts recyclers), create an awesome rising ladder of noisy sparks that emits the distinct smell of ozone. This improved circuit is suited to modern high power ignition coils and will deliver a spectacular visual display. Kit includes PCB, pre-cut wire/ladder and all electronic components.
• 12V car battery or >5 amp DC power supply required

Log on to www.jaycar.com/catalog for your FREE catalog!
1-800-784-0263
(Monday - Friday 09.00 to 17.30 GMT + 10 hours only)
For those who want to write: 100 Silverwater Rd
Silverwater NSW 2128 SYDNEY AUSTRALIA

www.jaycar.com
Adapt 9S12C
www.technologicalarts.com

Plug in the power of 9S12!
Adapt to new technology

Standard Features:
- CAN, SPI, SCI
- RS232
- 10-bit A-to-D
- 32K or 128K Flash
- PWM
- Input Captures
- Output Compares
- 3V/5V Operation

www.nutsvolts.com
click Electro-Net

AM/FM Broadcasters • Hobby Kits
Learning Kits • Test Equipment
...AND LOTS OF NEAT STUFF!

www.futurlec.com

www.HobbyEngineering.com

www.PCB-POOL.com
2 Days: $ 90 8 Days: $ 22.5

USB
Add USB to your next project—
It’s easier than you might think!
• USB-FIFO • USB-UART • USB/Microcontroller boards
• RFID Reader/Writer • ZigBee Ready Transceivers

www.technologicalarts.com

ZigBee™/802.15.4 Kit
For low-cost and
low-power wireless
control networks
regularly $399
limited offer

www.rabbit4wireless.com

www.technologicalarts.com

Get Aliens on your Phone!

www.hobbyengineering.com

www.POLOLU.com
1-877-7-POLOLU

www.PCAIA.com
Electronic Music Kits and More

www.nutsandvolts.com
click Electro-Net

www.bitnewswire.com

www.bitnewswire.com
Give the gift that lasts all year!

Go to www.nutsvolts.com to enter your gift order!

Be sure to use promotion code Y7WXMS when ordering.

U.S. Prices
1 Yr – $24.95
2 Yr – $45.95
3 Yr – $65.95

Subscribe online at:
www.nutsvolts.com

or call:
877-525-2539 (toll free)
818-487-4545 (outside US)
A Logic Analyzer Tutorial

PART 2

Part 1 gave you an overview of logic analyzer basics. Now, let’s concentrate on actually using this instrument. We’ll examine some of its limitations and its numerous, powerful features that make it so useful in the lab, production line, academic and research environments, as well as in development and maintenance applications.

by Vaughn D. Martin

During hardware and software debug (system integration), it’s helpful to have correlated state and timing information. You may initially detect a problem as an invalid state on the bus. Setup and hold timing violations may cause this. If the logic analyzer cannot capture both timing and state data simultaneously, isolating the problem becomes difficult and time-consuming. Some logic analyzers require connecting a separate timing probe to acquire the timing information and use separate acquisition hardware.

These instruments require you to connect two types of probes to the SUT (system under test) at once (see Figure 1). One probe connects the SUT to a timing module, while a second probe connects the same test points to a state module. This “double probing” arrangement can compromise your signal’s impedance environment. Two probes will load down the signal, degrading the SUT’s rise and fall times, amplitude, and noise performance. Figure 1 is a simplified illustration showing only a few representative connections. In an actual measurement, there might be four, eight, or more multi-conductor cables attached.

The Confusion of Double Probing

It is best to acquire timing and state data simultaneously through the

FIGURE 1. An illustration of how double probing requires two separate probes on each test point, which decreases the quality of the measured parameters sought.

FIGURE 2. An illustration of how simultaneous probing provides state and timing acquisition through the same probe, which is a much “cleaner” measurement environment.
same probe at the same time (see Figure 2). One connection, one setup, and one acquisition provide both timing and state data. This simplified mechanical connection reduces problems. Simultaneous timing and state acquisition allows your logic analyzer to capture all needed information to support both timing and state analysis.

There is less chance of errors and mechanical damage that can occur with double probing. The single probe’s effect on the circuit is lower, ensuring more accurate measurements and less impact on your circuit’s operation. The higher the timing resolution, the more details you can see and trigger on in your design. This increases your chance of finding problems.

Real-time Acquisition Memory

The logic analyzer’s probing, triggering, and clocking systems deliver data to the real-time acquisition memory — the heart of the instrument. This is the destination for all of the sampled data from the SUT and the source for all of the instrument’s analysis and display. The logic analyzer memory stores data at the instrument’s sample rate. Think of this as a matrix having channel width and memory depth (see Figure 3). The instrument accumulates a record of all signal activity until a trigger event or the user tells it to stop. The result is an acquisition — essentially a multi-channel waveform display that lets you view the interaction of all the signals you’ve acquired, with very precise timing.

For a given memory capacity, the total acquisition time decreases as the sample rate increases. For example, the stored data in a 1M memory spans one second of time when your sample rate is 1 μs. The same 1M memory spans only 10 ms of time for an acquisition clock period of 10 ns. Acquiring more samples (time) increases your chance of capturing both an error, and the fault that caused the error (see Figure 2 again). This illustrates how simultaneous probing provides state and timing acquisition through the same probe, for a simpler, cleaner measurement environment.

Logic analyzers continuously sample data, filling up the real-time acquisition memory, and discarding the overflow on a first-in, first-out (FIFO) basis until a trigger event occurs. The placement of the trigger in the memory is flexible, allowing you to capture and examine events that occurred before, after, and around the trigger event. This is a valuable troubleshooting feature. If you trigger on a symptom — usually an error of some kind — you can set up the logic analyzer to store data preceding the trigger (pre-trigger data) and capture the fault that caused the symptom. You can also set the logic analyzer to store a certain amount of data after the trigger (post-trigger data) to see what subsequent effects the error might have had.

Other combinations of trigger placement are available (see Figures 5 and 6). With probing, clocking, and triggering set up, the logic analyzer is ready to run. The result will be a real-time acquisition of data around the trigger. Data to the left of the trigger point is “pre-trigger” data, while data to the right is “post-trigger” data. You can position the trigger from 0% to 100% of memory.

FIGURE 3. An illustration of how a logic analyzer can store acquisition data in a deep memory with one full-depth channel supporting each digital input.

FIGURE 4. An illustration of how a logic analyzer can capture and then discard data on a first-in, first-out (FIFO) basis until a trigger event occurs.

FIGURE 5. An illustration of how a logic analyzer can capture data that occurs a specific number of cycles later than the trigger.

FIGURE 6. An illustration of how a logic analyzer can capture data around the trigger. Data to the left of the trigger point is “pre-trigger” data, while data to the right is “post-trigger” data. You can position the trigger from 0% to 100% of memory.
acquisition memory full of data that can be used to analyze the behavior of your SUT in several different ways.

Analysis and Display

The data stored in the real-time acquisition memory can be used in a variety of display and analysis modes. Once the information is stored within the system, it can be viewed in formats ranging from timing waveforms (Figure 7) to instruction mnemonics correlated to source code.

In newer systems with faster clock edges and data rates, this is no longer the case. As design margins decrease, analog characteristics of digital signals increasingly affect the integrity of your digital system. A time-correlated analog-digital display using a logic analyzer with an oscilloscope gives you the ability to see the analog characteristics of digital signals in relation to complex digital events in the circuit, so you can more easily find the source of anomalies (see Figure 8.)

The listing display provides state information in user-selectable alphanumeric form. The data values in the listing are developed from samples captured from an entire bus and can be represented in hexadecimal or other formats. Imagine taking a vertical “slice” through all the waveforms on a bus (see Figure 9). The slice through the four-bit bus represents a sample that is stored in the real-time acquisition memory. Figure 9 shows the numbers in the shaded slice are what the logic analyzer would display, typically in hexadecimal form.

The intent of the listing display is to show the state of the SUT. The listing display in Figure 10 lets you see the information flow exactly as the SUT sees it as a stream of data words. State data is displayed in several formats. The real-time instruction trace disassembles every bus transaction and determines exactly which instructions were read across the bus. It places the appropriate instruction mnemonic, along with its associated address, on the logic analyzer display.

Figure 11 is an example of a real-time instruction trace display. An additional display — the source code debug display — makes your debug work more efficient by correlating the source code to the instruction trace history. It provides instant visibility of what’s actually going on when an instruction executes. Figure 12 is a source code display correlated to the Figure 11 real-time instruction trace.

With the aid of processor-specific support packages, you can display

Table: Sample Counter and Timestamp

<table>
<thead>
<tr>
<th>Sample</th>
<th>Counter</th>
<th>Counter</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0111</td>
<td>7</td>
<td>0 ps</td>
</tr>
<tr>
<td>1</td>
<td>1111</td>
<td>F</td>
<td>114,000 ns</td>
</tr>
<tr>
<td>2</td>
<td>0000</td>
<td>0</td>
<td>228,000 ns</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>8</td>
<td>342,000 ns</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
<td>457,000 ns</td>
</tr>
<tr>
<td>5</td>
<td>1100</td>
<td>C</td>
<td>570,500 ns</td>
</tr>
<tr>
<td>6</td>
<td>0010</td>
<td>2</td>
<td>685,000 ns</td>
</tr>
<tr>
<td>7</td>
<td>1010</td>
<td>A</td>
<td>799,000 ns</td>
</tr>
</tbody>
</table>
state analysis data in mnemonic form. This makes it easier to debug software problems in the SUT. Armed with this knowledge, you can go to a lower-level state display (such as a hexadecimal display) or to a timing diagram display to track down the error’s origin.

State analysis applications include:

- Parametric and margin analysis (e.g., setup and hold values).
- Detect setup and hold timing violations.
- Hardware/software integration and debug.
- State machine system optimization: line 31 in Figure 12 is correlated with sample 158 in the instruction trace display of Figure 9.
- Capture and analyze real-time system operation in order to debug, verify, optimize, and validate the design.

This trend — the virtual substitution of the logic analyzer for the traditional microprocessor emulation tool (in-circuit emulator or ICE) — continues today. The result, therefore, is that those who need the principal function of a logic analyzer — the selective acquisition of digital data and its display as a pattern of waveforms — have a tool that has a different emphasis and high cost.

Monitoring microprocessor CPUs is easier with states translated into assembly code, so this type of capability was available as a logic analyzer option for each common μP IC family. However, integrated hardware and software control was not generally possible with logic analyzers. This labor-intensive process usually involved writing the software, then compiling/assembling it, translating it into a downloadable format, and then downloading it into the system. The logic analyzer then monitored the new software version.

An In-Circuit Emulator

This is a collection of hardware and software. The hardware consists of a host computer system (typically

FIGURE 11. A real-time instruction trace display.

significantly more powerful than the CPU of the system being emulated) and an interface to the target processor’s socket. The interface consists of logic and a cable which plugs into the socket intended for the target processor. The hardware and software work together to allow the target system to debug it under your control. The cable takes the place of the microprocessor IC, or connects to the μP IC and disables the μP IC to allow host system control.

Newer systems allow the same sort of debug capability with a simpler hardware interface. Debug and test hardware is built into a microcontroller, which is a microprocessor-based system on a chip. The system includes many peripheral standards such as serial interfaces, parallel interfaces, timers, priority interrupt controllers, clock management circuits, a simple high-speed serial interface, possibly USB port hardware, and — most importantly — a four-wire test interface that IEEE 1149 specifies and Joint Test Architecture Group (also known as JTAG) manages.

This JTAG interface came into existence to support the boundary scan test of ICs, but is so versatile you can use it to populate nonvolatile system memory and program logic devices such as CPLDs in place. The JTAG is a serial bus which you can daisy chain that allows you to test and/or program many devices.

System designers program PALs, PLAs, and more recently CPLDs. The configuration is unknown until you decide the programming, so the manufacturer cannot completely test the parts. Unless you select pins for test points, making them generally unavailable for functional use.

There is no internal circuit access for use with a logic analyzer. Therefore, programmable logic support software must include a simulator to allow you to conceptually test the simpler designs and ultimately generate test vectors to verify the correct programming of these parts. The device programmer uses the test vectors for simpler devices, such as PALs and PLAs.

Use of the JTAG port on newer, more complex devices allows testing of the devices you have programmed and placed in the circuit. JTAG-equipped devices require only a four-pin penalty to support this flexibility.

You can use simpler logic analyzers to test the remaining circuits on a system with microcontrollers and dense programmable parts like CPLDs. Cards which you can implement as a PC peripheral board need to have simple state measurement and trigger capabilities which you can control and expand by the PC. Logic analyzers are therefore useful for tracing down glitches in the "glue" logic. **NV**

Acknowledgements

I wish to thank Matt Litfin of Tektronix for both supplying artwork, as well as reading the finished manuscript, ensuring its technical accuracy, and John Stabler, my boss, for information related to in-circuit emulators and the JTAG.
February 17, 2009 — a date that may not live in infamy, but nevertheless will witness a monumental change in the US television broadcasting landscape. On that date, all high power analog TV transmissions will cease, marking the end of nearly 80 years of almost continuous operation across the country. While some LPTV (low power TV) and repeater stations may continue to operate, suffice it to say that most American TV watchers will be affected in one way or another by this change.

by Jeff Mazur

For the majority of us who receive our TV signals via cable, telcos, or DBS (direct broadcast satellite), this event should pass with hardly a blip on our screen. There may be a slight interruption while broadcasters change transmitters and set-top boxes are reprogrammed from the head end to receive many stations on their new frequencies.

Cable networks (Lifetime, CNN, etc.) — including premium channels (e.g., HBO and Showtime), as well as PPV (Pay-Per-View) and VOD (Video-On-Demand) services — will not be affected. Current plans even have some cable companies supplying analog signals (converted from the new digital transmissions) so that any TVs connected directly to the cable (i.e., without a set-top box) will continue to function.

It is likely, however, that prior to the 2009 shutdown, the number of existing analog channels on the cable will be trimmed to a minimum. Of course, your DVD and VCR will still work but don’t plan on recording any shows off air unless the recorder has a digital tuner.

HISTORY OF US TV

The analog TV system still in use today was designed in the early 1930s for monochrome (black and white) broadcasting. This system was later revised in 1953 by the National Television System Committee (NTSC) to accommodate color. At that time, it was an important goal to devise a scheme to add color information in a way that was compatible with the existing monochrome signal. This was indeed accomplished (although not before a brief fling with a field sequential color wheel system devised by CBS) and it is a testament to those engineers that the system has remained viable all of these years with virtually no enhancements.

When an improved High Definition TV (HDTV) system first began to be considered, it was assumed that a higher bandwidth analog signal would be required. A few schemes were developed which placed the extra picture resolution on additional subcarriers. This would have resulted in a system that could offer compatibility with the existing NTSC signal. Unfortunately, the extra bandwidth this required made these systems impractical. Digital systems were in their infancy and compression technology practically did not exist at that time.

In other countries, most notably Japan, the push towards HDTV seemed inevitable and a few standards began to appear. In the US, there was a strong political pressure to create a new system that was better than anything else already in use. To this end, in 1987 the FCC (Federal Communications Commission) created the Advisory Committee on Advanced Television Services (ACATS) and empowered it to research all existing technologies. With help from the Advanced Television System Committee (ATSC), an open call was put out for Advanced Television (ATV) system designs and 23 competing analog systems were submitted.

After a long review process however, it became apparent that a digital system would be much more desirable, despite the fact that this would mean rolling out a completely new system that would not be compatible with the existing NTSC standard. By 1993, there were four digital systems being considered.

In the end, the ACATS could not pick a single system as clearly better than the rest. With time running out, the four remaining participants agreed to combine their best efforts into a single system and thus formed the HDTV Grand Alliance (GA). At the last minute, the computer industry decided to weigh in and several minor changes were made.

By 1996, the GA system was brought to the FCC for approval and in April 1997 the FCC prepared to
start issuing licenses for the new broadcasts. Despite the protest of some who felt that the new licenses should be auctioned off (with the proceeds going to reduce the national debt), the FCC decided to give all existing TV stations a second channel for Digital TV (DTV) broadcasting if they so desired. This was deemed necessary considering the million-dollar-plus cost that each station would incur to make the transition to digital.

Money was not the only stumbling block facing a nationwide implementation of DTV. A great deal of effort went into the assignment of new channels (mostly in the UHF spectrum) to avoid interference between the new stations, as well as to reduce interference with — and from — the existing NTSC stations which would remain on the air for many years during the transition.

The exact date for the NTSC stations to go dark has been changed several times, mostly due to the huge task of installing new antennae and transmitters for over 1,700 existing commercial TV stations. But the latest legislation (DEFICIT REDUCTION ACT OF 2005, Title III — Digital Television Transition and Public Safety Act) firmly calls for the end of most NTSC broadcasting on February 17, 2009.

Why call it the “Digital Television Transition and Public Safety Act?” One of the reasons for the transition to DTV is to free up a portion of the UHF band, which will be given to Homeland Security for first responders. When analog broadcasts cease in the 700 MHz spectrum (current Channels 52-69), those frequencies will be used to improve communications between police, firefighters, etc. Any revenue generated from the sale of this spectrum will be used to offset federal deficit spending.

WHAT DOES IT ALL MEAN?

With the demise of analog transmissions, TVs and other off-air recording devices will require a digital (a.k.a., ATSC) tuner to receive them free, over the air terrestrial broadcasts. All televisions sold since March of this year have been required to have such tuners built in (technically, the law only requires this of sets shipped in interstate commerce or imported into the United States). This, of course, is in addition to the standard NTSC tuner that is still needed to receive analog signals until 2009.

Older sets will require a converter box between the antenna and TV to translate the digital signals into an analog signal that the TV can receive. Starting in 2008, a federal program will commence to provide $40 vouchers towards the purchase of up to two converters per household. More on this later.

So does this mean that all TVs with a digital tuner or converter box will display HDTV? Unfortunately, the answer is NO! Every digital broadcast can carry one or more programs, each of which can be in one of 18 different formats (see Table 1).

Each station broadcasts a 19.39 Mbit/s (million bits per second) data stream which can be divided into any number of different signals or services. Most video streams will be either Standard Definition TV (SDTV) or HDTV; many Extended Definition TV (EDTV) formats are defined but none are currently in common use.

DTV pictures are clearer due to several factors: no NTSC artifacts (moire and chroma crawl), less interference (static and impulse noise), and no multipath distortions (ghosts and airplane flutter). Audio quality is also vastly superior, with 5.1 surround sound channels widely used.

HDTV

Probably the most exciting part of the DTV standard is the inclusion of two basic HDTV formats that allow much higher resolution images. Both 720p60 and 1080i30 formats are in widespread use by the major networks. The other major difference with HDTV is the wider aspect ratio of the screen — 16:9 vs. the old 4:3. This widescreen aspect gives a more “movie theater like” experience and allows most films to be broadcast

<table>
<thead>
<tr>
<th>Vertical Lines</th>
<th>Horizontal Pixels</th>
<th>Aspect Ratio</th>
<th>Frame Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDTV</td>
<td>1080</td>
<td>1920</td>
<td>16:9 sq</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>1280</td>
<td>16:9 sq</td>
</tr>
<tr>
<td>EDTV</td>
<td>480</td>
<td>704</td>
<td>16:9 ns</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>704</td>
<td>4:3 sq</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>640</td>
<td>4:3 sq</td>
</tr>
<tr>
<td>SDTV</td>
<td>480</td>
<td>640</td>
<td>4:3 sq</td>
</tr>
<tr>
<td>NTSC</td>
<td>486</td>
<td>720</td>
<td>4:3 ns</td>
</tr>
</tbody>
</table>

Vertical lines = number of active lines in the picture
Horizontal pixels = number of active pixels (picture elements) per line
Aspect ratio = ratio of picture width to picture height/pixel aspect ratio
 - sq = square pixels; ns = non-square pixels
Frame rate = number of frames (p) or fields (i) per second
 - p = progressive scanning; i = interlaced scanning
Rates may be based on either 60 Hz or 59.94 Hz
 - * = based on ITU-R BT.601 specification

1080-line video is actually encoded with 1920x1088 pixel frames, but the last eight lines are discarded prior to display. This is due to a restriction of the MPEG-2 video format, which requires the number of pixels to be evenly divisible by 16.

Table 1: Digital Television Transition and Public Safety Act
Progressive vs. Interlaced

All analog TV systems use interlaced scanning which breaks each frame of video into two fields. One field displays every other line of the picture from top to bottom; then on the next field, the previously skipped lines are displayed. Interlaced scanning was developed as a way to keep the display rate high enough to avoid flicker while keeping the bandwidth requirements for the TV signal to a minimum.

While it does meet these goals, it adds further complexity by representing two distinct samples in time. That is, every other line represents not only different spatial information but also different temporal information. This can result in a jagged appearance when both fields are viewed together. Progressive scanning, as used by all computer displays, does not have this problem.

Since most TVs sold today (LCD, DLP, plasma) display progressive images natively, this seems a logical choice for any new TV standard.

Progressive images are also much easier to compress digitally. Only CRT based displays still offer interlaced scanning and it's becoming almost impossible to find consumer CRT based products.

To deliver a clear picture of interlaced material on a progressive display, digital processing is used to perform de-interlacing and line doubling. Material shot at 24 fps (frames per second) — whether film or video — usually undergoes a process known as 3:2 pull-down to convert it to 60 fields per second video, thus introducing interlace.

Digital processing can also be used to recognize such material and reverse this process to recover the clean progressive frames. Some of the latest TV sets being sold now offer a 1080p60 display capability. Although no material is being broadcast in this format, the new HD-DVD and Blu-ray players, as well as some video game consoles, can provide images in this format with exceptional results.

INTERLACED SCANNING (NTSC)

- Field 1
- Field 2
- VERTICAL BLANKING
- HORIZONTAL BLANKING
- ACTIVE PICTURE AREA

without resorting to the letterbox or pan-and-scan techniques used in the past.

On the other hand, when standard 4:3 material is displayed on a widescreen TV, there will now be unused picture area on the sides (pillar box) unless the image is zoomed or stretched to fill the screen.

While it is possible for any broadcaster to transmit any format in Table 1 at any time, most have settled on a single HDTV format. ABC, ESPN, and FOX have chosen 720p. All other networks are using 1080i.

The pros and cons of these two HD formats have been the subject of much debate. In general, 1080i offers greater spatial resolution using the same frame rate and interlace structure of the current SD signal. The progressive 720p format eliminates all of the artifacts and production issues associated with interlaced scanning and doubles the frame rate, as well. This increases the temporal resolution and allows much smoother motion for fast moving scenes like sporting events. But it does this at the expense of less spatial resolution (less pixels). (See the sidebar Progressive vs. Interlaced)

Another debate is how the Kell Factor affects interlaced scanning. All sampled, scanning systems suffer from this effect which is due to picture information that does not fall exactly on the samples (e.g., details that are between the scan lines). Since interlaced scanning has much greater spacing between each scan line of a given field, the net effect is to reduce its resolution to about 70% of the actual number of scan lines. Thus, one might argue that the 1080i format really only gives slightly more spatial resolution than 720p.

As if these two HD formats weren’t enough, almost all high-end production is now being done at 1080p24. This offers the advantages of both high resolution and progressive scanning, but trades this for an even slower frame rate. This rate matches that of film production, so it offers a reasonable compromise and can easily be converted to either 720p or 1080i. Newer production gear is
just starting to appear which portends a possible move towards 1080p60; this would be an ideal format but requires higher bandwidth, more storage, etc. It currently cannot be broadcast.

All of these HDTV standards require much higher bandwidth to carry the uncompressed signal. For example, in broadcast studios an SD signal is carried digitally by a 270 Mbit/s signal, while HD requires 1.5 Gbps (3 Gbps for the 1080p60 signal). Therefore, to carry this signal along with audio and other data on the 19.39 Mbit/s ATSC data stream requires a great deal of compression. At roughly 100-to-1, this video compression is not hard to see if you look closely at an HDTV screen. These video artifacts mostly show up as a blockiness or chunky appearance easily seen on small text or graphics. At proper viewing distance however, the picture does live up to its promise of high definition compared to SDTV.

DIGITAL TRANSMISSION FORMAT

For transport, ATSC uses the MPEG (Moving Picture Experts Group) specification known as a transport stream to encapsulate data. First, the video is encoded using a VBR (Variable Bit Rate) MPEG-2 codec. Audio is encoded using Dolby Digital AC-3 which allows for the transport of up to five channels of sound with a sixth channel for low-frequency effects (commonly referred to as 5.1 audio).

Once the video and audio signals have been compressed, additional Program and System Information Protocol (PSIP) and Forward Error Correction (FEC) data is added. By the way, it is the PSIP data that tells a digital tuner what channel to call this stream, regardless of the actual RF channel used for transmission. This is how a digital TV can marry channels 7.1, 7.2, etc., carried on a UHF channel with the analog channel 7 carried on the actual VHF channel.

In addition to audio and video, data services such as captioning for the hearing impaired and/or a video description audio channel for the visually impaired can also be included. Multiple video, audio, and data streams are then fed into a statistical multiplexer (a.k.a., a stat-mux) which combines these signals into the transport stream. The stat-mux can prioritize the various signals so that the main channel carrying an HD signal will be given enough data bits to provide a clear picture, if necessary at the expense of the secondary SD or lower channels.

The transport stream is then used to modulate an RF carrier using eight-level vestigial sideband (8-VSB) creating a signal that occupies the same 6 MHz channel as used by today’s analog system. Cable TV systems have a higher signal-to-noise ratio and can use 16-VSB or 256-QAM (Quadrature Amplitude Modulation) to achieve a throughput of 38.78 Mbit/s, within the same 6 MHz bandwidth. Most digital cable systems also use QAM to squeeze up to 10 SD channels into the same space formerly used by one analog channel.

Almost as soon as the ATSC standard was approved, there was dissent from some who felt that the 8-VSB modulation scheme was inadequate for mobile or handheld use. Coded Orthogonal Frequency-Division Multiplexing (COFDM) is widely known to offer much better performance in these situations (thus their adoption by both DVB and ISDB, discussed next).

One organization did extensive testing and even tried unsuccessfully to get the FCC to change this part of the standard. The 8-VSB scheme does have certain advantages, though, especially in rural markets where a single transmitter needs to serve a wide area.

It requires only about 10% of the transmitter power levels currently being used by analog broadcasts. Unfortunately, indoor reception (a la “rabbit ears”) may not be possible in many locations. Thus, we may see a resurgence in the number of outdoor antennae populating our rooftops.

While the fact remains that the current VSB transmission makes mobile use nearly impossible, there are new methods being investigated to address this need. ATSC-H (handheld) and ATSC-M (mobile) standards are being developed, as well as third party solutions such as MPH (Mobile-Pedestrian-Handheld) and A-VSB (Advanced VSB). These methods add a secondary channel which, when used in conjunction with the main channel and/or better compression methods such as MPEG-4, present a useable picture in the face of lower and varying signal levels plus high degrees of multipath distortion.

By the way, although the ATSC system developed for US broadcasters has been adopted by other countries (e.g., Canada, Mexico, and South Korea), it is not the only digital TV broadcasting system. Most of Europe has chosen to use the DVB (Digital Video Broadcasting) system while Japan and others have opted for Integrated Services Digital Broadcasting (ISDB).

These systems both use COFDM for transmission. The fact that they all are based on MPEG-2 technology
does offer much higher worldwide compatibility than the current NTSC vs. PAL vs. SECAM multi-standard situation.

WHAT'S THE BOTTOM LINE?

According to a recent survey by the Association of Public Television Stations (APTS), the majority of US households that receive their television signals over the air are still unaware of the digital TV transition. That’s an estimated 22 million over-the-air homes that need to make some kind of digital decision by February 17, 2009. Even among those who were aware of the transition — after all, DTV broadcasts have been going on for over nine years and there’s plenty of HDTV hype on air and in electronics stores — over half had no idea when analog transmissions were scheduled to be turned off.

Perhaps even more disturbing is the fact that almost half of those purchasing a new HDTV don’t know they need to or don’t plan on hooking it up to a source of HD signals. Some see the “HDTV where available” icons superimposed at the beginning of HD programs and automatically think they’re seeing it in HD. Granted, for some, the quality of their new TV set is so much better than their previous CRT clunker that, in comparison, they ARE seeing higher definition. But clearly there needs to be more public education on the facts surrounding the DTV and HDTV transition. Congress has even set aside funding for consumer education and we should begin seeing large scale campaigns by the end of this year.

Broadcast stations have their own agenda to complete the transition, as well. They each face one of three scenarios on February 17. Those that have elected to keep their temporary DTV channel assignment after the transition have the easiest job — they just simply turn off their analog transmitter. Thanks to their PSIP, they will continue to be known by their previous channel number despite being physically transmitted on a different “channel.”

Other stations have opted to move back to their original channel or to a completely new channel on February 18. This poses a greater challenge, especially for digital UHF channels that move back to a VHF channel. These stations will have already upgraded their VHF transmitters to newer “digital ready” units or perhaps have split their existing transmitter to allow the conversion to take place in two separate phases. At switchover, they may require a short period of downtime to reconfigure and tune up the transmitter for its new operation.

You can check out the plans of your local stations by going to the FCC link provided in the sidebar.

For viewers (at least those who receive their TV signals over the air), the decision to be made by 2009 is clear: either 1) sign up for cable or other subscription based television delivery service; 2) buy a new digital TV, or 3) purchase a converter box for each analog TV. To help prevent the final DTV holdouts from staring at a blank screen on February 18, a digital-to-analog converter box coupon program will be launched by the Department of Commerce’s National Telecommunications and Information Administration (NTIA).

Between January 1, 2008 and March 31, 2009, all US households will be eligible to request up to two coupons — worth $40 each — to be used toward the purchase of digital-to-analog converter boxes. While not available yet, it is estimated that such boxes will sell for around $50.

Initially, these coupons will be available to everyone; but they may later be restricted only to households with no other means of receiving TV other than off air. Details on how to apply for these coupons will be established later this year. NV
Pick Your Voltage
(not your nose)

AnyVolt Micro — Steps voltage down or Up. Great for solar powered projects.
$20

Negatron — Takes positive voltage and generates an adjustable negative voltage.
$20

DE-SWADJ — Steps voltage down and has adjustable output.
$15

www.dimensionengineering.com

Build Your Own:
THEREMIN

Theremax
The Ultimate Theremin

FREE DOWNLOADABLE DEMO! Save Time. Save Money.
Proteus Starter Kit – $279 • Complete Systems from $549
“This is clearly superior in every respect.”

Proteus Design Suite 7
Make Your Job Easier and Faster!

NEW in Proteus Version 7:
* New User Interface
 - Easy to Use - Conventional Mouse Buttons
 - Context Menus - More Information Available
 - More Information On Screen to Assist User

*New Design Explorer
 - Cross Probing, from Schematic and PCB
 - Spreadsheet like view of the design parts and netlist!
 - Parts list view shows the design by sheets, parts, & pins
 - Drilling Down to Parts Pins and nets

* New Tools
 - New industrial Grade 4 Channel Oscilloscope
 - Logic Analyser Instruments
 - 3D Visualization of PCB Layout. See Below
 - Print 3D View of PCB
 - Add Your Parts in 3D to Lib
 - 3D Output 3ds Format

World's FIRST Schematic Based USB Device Simulation Tool!!!
See website for details
Metal Fabrication

1-2 Day Lead Times Available

Both of these parts were ordered on Tuesday and shipped FedEx on Wednesday

Materials from 0.001” to 6.000” in thickness.
Parts from practically any material.

* Quick
* Affordable
* Precise
* No Minimums

Complete Fabrication Center
Integrated Ideas & Technologies, Inc.
Precision Laser, Waterjet, Plasma, Machining, Forming, and Welding Capabilities

3896 N. Schreiber Way • Coeur d’Alene, ID • 83815-8362 • USA
Ph (208) 665-2166 • Fax (208) 665-5906 • www.iitmetalfab.com
I just finished testing Radiosophy’s new HD100 digital radio and was impressed enough to want to tell you about it. In case you are still in the dark about this radio technology, HD radio is the digital radio service that is available along with your regular AM and FM radio stations. Many — actually, most — radio stations today have elected to supplement their regular analog AM and FM programming with HD digital. Amazingly, AM radio broadcasting has been around since the 1920s while FM broadcasting has been available since the late 1930s. Both are still going strong today and you are probably one of those who use them regularly, even though everything else has gone digital or is linked to the Internet.

If you haven’t tried HD radio yet, you are missing one of the enhancements that should keep AM and FM radio healthy for years to come in an Internet world.

HD FOR BEGINNERS

Digital broadcast radio has been around for years. Not in the US so much, but in Canada, Europe, Japan, and other parts of the world. Called Digital Audio Broadcasting (DAB), it puts the voice and music in digital form and transmits it to special consumer receivers. The Federal Communications Commission (FCC) approved of HD digital radio for the US back in 2002.

The system adopted is one created by iBiquity Digital Corporation of Columbia, MD. It is a very clever system that puts the digital signal right below the existing AM or FM analog signal in the same bandwidth. So the result is that no new spectrum is needed as was the case for DAB in the VHF bands.

AM and FM stations still broadcast their regular analog programming but with HD, a separate signal is added to the output on the same frequency with essentially the same channel. This signal contains one or more digital streams of voice, music, or data. If you have an HD receiver, you can get the digital signals.

To squeeze digital signals into such a narrow bandwidth (10 kHz channels for AM and 150 MHz for FM), some form of digital compression is required. Compression is a technique that takes a digitized audio signal and puts it through a mathematical process that effectively reduces the number of bits needed to represent the information.

For example, MP3 is a music compression technique that allows you to store many digital songs in a Flash memory or small hard drive in an iPod or iPod-like device. The compression standard used by iBiquity is a variation of the AAC+ audio compression standard. It is a very efficient compression as it lets you put high quality audio into fewer bits that results in slower data rates that, in turn, results in less overall bandwidth of the sidebands. Audio compression is also widely used in all cell phones.

There are literally dozens of different methods of compression, some more efficient than others. The big issue is that the process of compression causes some of the original data to be lost or compromised. For that reason, when you decompress the audio for playback, the sound recovered is somewhat different than the original — usually not quite as good.

So the whole issue in digital compression is to find one that does the least amount of damage. And of course, audio quality is not something that is fixed. It is a very subjective human kind of thing. Some will think the audio is great while others will...
think it is worse. So the goal is to test the various methods enough to get one that everyone can live with.

Once the audio is compressed, it is subjected to the modulation process. In this case, orthogonal frequency division multiplexing (OFDM) is used. To create OFDM, you use a mathematical technique called the inverse fast Fourier transform (IFFT). This process effectively creates multiple radio carriers of a very narrow bandwidth that are each modulated by one part of the digital bit stream. The result is that the data is transmitted as many parallel or simultaneous carriers over a wide bandwidth.

The only practical way to do this is to implement the whole IFFT process on a digital signal processor (DSP) chip running the OFDM software. At the receiver, the signal is demodulated and put through a DSP running FFT to recover the original bit stream. The bit stream is then sent to digital-to-analog converters (DACs) and then to the stereo amplifiers.

The whole digital radio process is far more complex than the original analog process. You have to ask, why do this? There are several answers. First, we do it because we can. DSP chips and the related software are as cheap as any analog circuits these days — more complex or not. Second, digital signals have a few really great benefits over analog signals.

For example, digital signals are more immune to noise. While analog FM is generally immune to noise as well, digital is even better. And digital really makes transmissions in the AM band virtually noise free whereas the regular AM signals are always affected by lightning, static, auto ignitions, and any other electromagnetic disturbance that produces some amplitude variation.

Another benefit is that OFDM is very robust in the presence of changing paths of the radio signals. In the VHF FM band, signals are easily reflected and refracted by buildings, water towers, and other things so often the signal takes multiple paths to the receiver resulting in fading and signal cancellation. Just being in a moving vehicle produces multipath effects. The OFDM virtually eliminates the problem. HD radio produces a sound that is more like playing a CD. The audio frequency response on the FM channels is about the same with both analog and digital, but on AM, the response is greater giving music a far better quality.

One of the neat features of HD radio is that because of the great compression techniques used, stations can actually transmit up to three separate digital audio streams in addition to the legacy analog signal. Called multicasting, this means that one digital channel can parrot the analog channel but you can add two others with a different format — news, sports, or talk instead of music or just country instead of jazz, or whatever. It really multiplies the number of different stations and formats available to you.

Perhaps the greatest reason to go HD is that it’s free. This is in contrast to the digital satellite radio services Sirius and XM that require a subscription. Of course, you do have to have an HD-enabled radio. Still a good deal though, because there are about 1,400 stations transmitting HD signals. Most of them are table-top units, but auto radios — both after-market and pre-installed — are now available. For a list of stations in your area and a summary of radios available, go to the iBiquity website at www.ibiquity.com.

THE RADIosophy RADIO

Radiosophy is an HD radio company in South Dakota. (I’m not kidding, South Dakota!) They make the HD100 shown in Figure 1. It is a basic table-top AM/FM radio with clock and full HD functionality. Its bright blue display with white characters shows everything you need to know including frequency, station call letters, and any data that the station transmits (like song title, artist, etc.).

After you have turned the radio on, select AM or FM with the band button, then tune with the Tune+ and Tune- buttons that increment the phase-locked loop frequency synthesizer in increments corresponding to the AM or FM band layout; 10 kHz for AM and 200 kHz for FM. You can also use the Seek button to scan for any station, HD or otherwise. In the FM mode, the red stereo light will come on if you are receiving stereo. If the station is transmitting HD, the blue HD light comes on flashing until the radio syncs with the signal. Then the blue HD light remains on.

The radio works like any other radio in that you have some preset buttons for your favorite stations. On the HD100, you get five each for AM and FM selections. The big knob in the center is the volume control. The clock is set and used just like any other radio clock. It has all the usual alarm/snooze/sleep modes you are used to.

For best performance, the HD100 comes with two antennas. The FM antenna is a telescoping whip mounted on top of the case. The AM antenna is a separate loop that you need to connect to the two terminals on the rear panel. Many AM radios have built-in antennas and often performance is compromised. With a loop, the signal pickup is far better and you can adjust the loop position for maximum signal because of its directivity. The FM antenna also disconnects so you can attach an external outside antenna for even more improved performance. The connector is a coax F-type.

As for performance, it has been
excellent. In my area (Austin, TX), there are many HD FM stations. Most of them have two or three auxiliary or multicast channels. I was really surprised at this. Given all the multicast options, the HD basically doubled the number of stations in my area. Cool!

As for AM, there were only two with HD. I suspect that will be the case in most areas, but you never know. Check it out for yourself. Incidentally, HD on the FM band is 24/7. On the AM band, HD is only available during daylight hours. The FCC prohibits night time HD broadcasts because of the very long range possible because of skip propagation. It is common for one distant AM station to interfere with another on the same frequency at night. You can still hear the AM long distance, of course.

Quality-wise, the sound is very good for a small radio. I could actually tell the difference between the analog and digital signals. Describing how audio sounds is pretty much like trying to describe how a particular wine tastes or whether vacuum tube audio is better than solid-state audio. Subjective to the max. In my case, the analog is more of a softer or muffled sound while the digital, to me, is a bit more crisp. Greater clarity like you get with a CD or MP3 player. If you are used to those, you will find HD radio to your liking.

Technically, the HD100 uses a standard “can-type” AM/FM tuner. The IFs come out at 455 kHz for AM and 10.7 MHz for FM, as has been the case for decades. The IF is then sent to be digitized by an analog-to-digital converter. Several HD radios use a chip made by Texas Instruments. Referred to as the AFEDRI82001, it uses a 12-bit pipelined A-to-D converter sampling at 80 megasamples per second (MSPS). This chip then filters the digital signal with DSP filters and decimates the signal down to a lower data rate. The outputs are the in-phase (I) and quadrature (Q) signals in digital form needed by the DSP chip to do its FFT.

The DSP is Texas Instruments’ TMS320DR1250 digital baseband. It does all the decoding, demodulation, filtering, and other processing stuff that is part of the iBiquity protocol. The digital outputs then go to DACs where the original signals are recovered. The audio power amps — either class AB or class D — drive the two speakers. A separate amplifier is used for the headphone output.

Overall, the HD100 is an excellent buy. I have tested several other HD radios and they are all comparable but I like the sound on this one the best. You can get it directly from Radiosophy at www.radiosophy.com. For a detailed look at more HD radio stuff and a good section on how HD works is available at the iBiquity site mentioned earlier. If you want the real gory details, go to the Texas Instruments website at www.ti.com and click on DSP or search for HD radio. Look for HD radio as an option on new cars in the not-too-distant future. Until then, after market HD car radios are available. NV
The RoboDevelopment Conference & Exposition is the industry’s first event focused on the technical design and development of commercial robotic products. This unique and unprecedented event will draw over 1,000 robotics industry personnel from across the globe and will feature:

- Keynote presentations by **Tandy Trower**, General Manager, Microsoft Robotics Group; **Paolo Pirjanian**, President and CEO, Evolution Robotics; **Lloyd Spencer**, CEO, Coroware; and **Dan Kara**, President, Robotics Trends
- Over 30 technical sessions delivered by leading robotics and development professionals
- Three conference tracks including Design, Development and Standards, Tools and Platforms, and Enabling Technology
- Bonus Microsoft Robotics Studio Development Track
- Robotics Evening Network Reception
- Expo Hall featuring products, tools and technology from around the world

REGISTER TODAY AT
www.robodevelopment.com or call 800-305-0634

SPECIAL EXTENSION: Register by October 5th and Save $200
MUSIC HAS BEEN A BIG PART OF MY LIFE as far back as I can remember. I’ve played music in bands, composed and produced music, and (for a short time in the ’80s) I even made my living playing in a rock band. One of the constants in my experience with live music is that most performances require a PA system of some kind. And, though a big PA system is wonderful to listen to and perform through, it is a nightmare to load, transport, and assemble!

HEAVY METAL

PA systems are HEAVY. Professional speaker cabinets can weigh hundreds of pounds. Amplifiers have wire wound transformers and steel chassis that make them hefty, as well. Add in mixing boards, lighting equipment, floor monitors, mic and light stands, miles of cables, and you end up with a LOT of weight.

When I was younger, I didn’t give a second thought to moving this stuff for each show. Now that I’m a bit older (hopefully wiser?), the idea of schlepping around hundreds of pounds of equipment to perform isn’t quite so appealing.

Though no longer a member of a band, I am a member of The Robot Group, Inc. — a 501(3)(c) non-profit corporation in Austin, TX — that, among other things, participates in various community outreach programs. We regularly spend weekends at museums, schools, libraries, Scout meetings, etc., where we show off our creations and try to encourage people to become more involved in robotics, art, and technology.

Though we bring out different displays and equipment, depending on the audience and venue, we almost always bring along a PA system. We use it for speaking to the crowd, playing sound to go with our video projector, and to allow us to perform music using the Thereping instruments (detailed in the April ’06 issue of Nuts & Volts).

Carting all this stuff to and from these events is not the high point of the day for us. As we were loading up after a fairly big performance (Figure 1), I was daydreaming about creating a PA system that could actually unload and load itself. These daydreams are the seeds that would eventually blossom to become “BoogieBot.”
But first, I needed a platform.

GET YOUR MOTOR RUNNIN’!

I was lucky enough to receive a salvaged power chair from another member of The Robot Group. It was in pretty rough shape (Figure 2) with the chair portion missing, the fiberglass shell pretty banged up, the speed controller blown, and the batteries in need of replacement. But the motors were still good and the tires were fine.

To rehab the chair, I stripped off the old fiberglass, cleaned the chassis, and removed the old speed controller (Figure 3). I mounted two new MC7 speed controllers and an RCIC2_SC dual channel joystick mixer from Diverse Electronics (Figure 4). The RCIC2_SC mixer allows you to do skid-steer with a single joystick from the R/C receiver.

I found replacement batteries right here in town at BatteryWholesale.com that has a store front in Austin so I was able to get the batteries without shipping charges. With new speed controllers, charged batteries, and the Futaba radio in place, I was ready to try out my new mobile platform.

TESTING ... TESTING ... IS THIS THING ON?

I switched on the power for the first time and carefully pushed the joystick forward. The motors made their whirring sounds but the chassis sat stock still. A bit of investigation showed I had not engaged the wheels! Seems this type of power chair has mechanical “free wheeling” levers that need to be placed in the “run” position or the motors don’t engage. With the levers in the run position, I again moved the joystick and the chassis slowly rolled across the floor! Success! I then tried running it a bit faster and was pleasantly surprised to find the MC7s made no buzzing noises when PWM’ing the motors. They do have relays that click when the motor direction is changed, but the controllers are otherwise silent.

I thought the refit was complete until a fellow robot group member discovered that the motors on this chair have electric brakes that need to be energized to release them! Once we rigged up the wires to the electric brake leads on the motors, my battery life and top speed improved dramatically. So, now I had a powerful mobile platform but … what could I do with it?

BREAK IT DOWN!

Because of the diversity in our group membership and the audiences...
we encounter, there’s a surprising amount of gear to be set up and broken down when we do an event (Figure 5). We had a show coming up at the Bob Bullock Texas State History Museum, and I had this new mobile platform ready to go when it hit me (the idea, not the mobile platform). Why not use this new chassis to hold a PA system we could take with us?

I found a suitable piece of wood to use as a base for the speakers and tried it on for size (Figure 6). Now all I needed was an audio amp and some speakers. Since the chassis is powered by dual 12V batteries, I dug out an old 200 watt car audio amp and attached it to the underside of the speed controller board (Figure 7) and then added a small audio preamp kit (Figure 8). I couldn’t find a pair of speakers that would easily fit on the wooden top so — in a hurry — I affixed a couple of portable speakers directly on top of the battery cases. Last, I stole ... er, “borrowed” my son’s iPod and I had a complete mobile music system ready to go (Figure 9).

AND THE BEAT GOES ON ...

BoogieBot was a big hit at the show, running around blasting music, spinning in circles, shimmying to the beat, and dancing with the kids. The great response has encouraged me to take the platform to the next level. I plan to create some large scale speakers to sit atop the platform and put in larger amplifiers and a sub woofer so it can really rock. I’m hoping to use some beefy gearmotors to allow the speaker cabinets to extend/retract Transformers-style and to add more lights and a mirror ball so the BoogieBot can be a mobile dance party.

I’ll keep track of my progress with my camera and share my story as it proceeds. For now, you can see more pictures of BoogieBot at the link in the Resources list or, you can drop me an email at vern@txis.com to see how things are going. NV

RESOURCES
- Diverse Electronics
 www.diverseelectronicservices.com
- Battery Wholesale
 www.batterywholesale.com
- Bob Bullock Texas State History Museum
 www.thestoryoftexas.com
- BoogieBot at Movie Premiere
 www.notepad.org/surfsup
FIRE YOUR IMAGINATION

Vinculum, the new easy to use USB Host / Slave controller family allows you to implement USB Host Controller functionality within your product saving development time and cost by having FTDI’s tried and tested firmware burnt into internal, easily upgradeable Flash memory. Connect USB Flash Drives to MCUs via a UART or parallel FIFO interface or connect Digital Cameras, PDAs and other USB slave peripherals to USB Flash Keys and other USB slave devices in stand-alone mode.

Future Technology Devices International Limited
7235 NW Evergreen Parkway, Suite 600, Hillsboro, OR 97124-5803
Tel: +1 (503) 547-0988 Fax: +1 (503) 547-0987 Email: us.sales@ftdichip.com
If you visit the Microchip website (www.microchip.com) and see both the PICkit 2 Starter Kit (#DV164120) and the PICkit 2 Debug Express (#DV164121), you may notice that they look very similar and they both cost $49.99. They look similar because the programmer/debugger electronics are identical. The hardware is exactly the same with possibly a different firmware level installed. In fact, Microchip makes the firmware free to download, so you can update the firmware version on either package you purchase to the latest identical level. The software to control the PICkit 2 comes in two varieties: a stand-alone application for programming, and Microchip’s MPLAB® Integrated Development Environment (IDE) for programming/debugging. To use it as a programmer or programmer/debugger, choose that through the MPLAB IDE’s programmer or debugger menu option (see Figure 1).

Note that earlier I stated “possibly” different firmware levels. The reason I say this is because the firmware level used by the MPLAB interface and the firmware level used by the stand-alone interface were at different release levels. The stand-alone interface doesn’t offer debugging, so I assumed the PICkit 2 Debug Express only worked with the MPLAB interface. If you took a PICkit 2 and used it with the stand-alone interface and then later switched to the MPLAB IDE interface, MPLAB IDE would automatically update the firmware. This made me think there was a different firmware used for the PICkit 2 Starter Kit and the PICkit 2 Debug Express, but that was not true. They were just different release levels. All of this was corrected with MPLAB version 7.62, which was just released on the Microchip website as I wrote this column.

Both the stand-alone application and the MPLAB IDE will update the PICkit 2 to identical firmware version 2.10. So, this means that both the PICkit 2 Starter Kit and PICkit 2 Debug Express are identical, except for the demo board included, so the choice gets much easier to make.

FIRMWARE

Before I get into the different demo board choices, you may wonder what firmware is. I’m really not sure where the term came from, but firmware is just another term for the software that controls the hardware. The difference is that firmware is written, compiled, and ready to load in the hardware, while software is typically the source code that can be modified or customized for your hardware or application — but then you have to compile it and create the .hex file. In the case of the PICkit 2 Starter Kit and PICkit 2 Debug Express, the hardware is identical and so is the firmware. Updating the operation to
on the top eight pins, so the 20-pin socket accepts all three package sizes for programming. The PICkit 2 Starter Kit also includes a PIC16F690 to get you started.

The PICkit 2 Starter Kit is listed as part number DV164120, and can be ordered directly from www.microchipdirect.com. This is clearly a great choice if you just want to write code and then program. The problem arises when you decide you want to use the MPLAB IDE debugging feature, which allows you to single step through your code, run in animate mode, or run to a breakpoint.

The 20-, 14-, and eight-pin PIC MCUs do not have the debug executive silicon on it, because of the die size limitations. To debug with these parts, you need an adapter (Figure 3) that matches the part you want to debug. The adapter has a custom chip with the debug executive, and the rest of the chip consists of “normal” silicon in a larger package with extra pins for the debugger connection — so you can debug code for these smaller PIC MCUs. This adds more cost, but the adapters are only around $25-$35.

So, this leads us to the PICkit 2 Debug Express. If you really want to debug your code and you are using a PIC MCU with the debug silicon on it (which includes almost every 18-, 28-, 40-pin, and larger PIC MCU), then you might want to consider using the PICkit 2 Debug Express.

PICkit 2 STARTER KIT

So, why are there two different starter packages, if they both come with the same programmer/debugger? Since the PICkit 2 Starter Kit and the PICkit 2 Debug Express use the same interface, Microchip just made it convenient by selling two variations of the demo board — to make it either a programmer or a programmer/debugger, right out of the box. Because of this commonality, it makes sense that some beginners or even experienced users might wonder which unit to purchase. It really depends on what you plan to do with it.

If you just want to use the 20-pin, 14-pin, and eight-pin PIC MCUs, then the PICkit 2 Starter Kit for $49.99 is the way to go (see Figure 2). The included PICkit 2 low pin count demo Board has a 20-pin socket and several simple components already soldered to the board — including LEDs, a potentiometer, and a momentary switch. The 20-, 14-, and eight-pin PIC MCUs all share the same programming connections required to the compiler as a good command, but it’s doing something different than what you expect. That type of error can be difficult to find without a debugger helping you to narrow the search. That is really what a debugger does for you. You can set a breakpoint just above the section of code that you know isn’t working properly. Then, after the breakpoint you can single step through the code to see where the operation may be running off track.

Microchip also offers the MPLAB ICD2 debugger, which supports all of the PIC MCU families. However, the MPLAB ICD 2 module (#DV164005) costs $159.99, so the PICkit 2 Debug Express is a lower-cost alternative in a very small package. Figure 4 shows the PICkit 2 Debug Express.

The PICkit 2 in debug mode previously did not support many parts for debugging, but that changes with the release of MPLAB IDE version 7.62. Most of the PIC16F and PIC18F...
MCUs with the debug executive are supported in this version.

One of the limitations of the PICkit 2 Debug Express is the surface-mount design of its included demo board. Because the PIC16F887 is surface-mounted to the demo board, this package is not the best option if you want to program another PIC16F887 by plugging a blank part into a socket. This makes the PICkit 2 Debug Express a little less useful to the hobbyist.

This makes the PICkit 2 Debug Express by plugging a blank part into a socket. If you want to program another PIC16F887 package is not the best option if you face-mounted to the demo board, this board. Because the PIC16F887 is surface-mounted to the demo board, this makes the PICkit 2 Debug Express a little less useful to the hobbyist.

So, if you want a programmer/debugger that comes with a demo board sporting a DIP socket that accepts PIC MCUs that have the debug executive silicon, then I have another option for you.

MY CHOICE

Microchip offers several different PICkit 2 demo boards separately that plug right into the PICkit 2 microcontroller programmer. You can even buy different versions of the demo boards, in addition to the ones included with the starter packages. These extra boards are sold in packs of three, with one of the three populated just like the starter kit board and two more that are completely blank — ready for you to solder onto your own design.

One of the demo boards offered by Microchip has a 28-pin DIP socket and includes a PIC16F886 on the completed board. This PICkit 2 28-pin demo board (#DM164120-3) is actually part of Microchip’s PICkit serial analyzer, which I will save for another article.

The reason I mention this demo board is because it fits the format I described above. The board will accept any 28-pin PIC MCU in a 0.300 wide DIP package, and has the PICkit 2 programming/debugging header for plugging into the PICkit 2 microcontroller programmer. This opens up lots of opportunities.

As you know, I focus on the Basic language for many of this column’s projects because it’s an easy language for the beginner to use. If you want to start with Basic, then my idea is to create your own custom starter package by first buying the stand-alone PICkit 2 microcontroller programmer for $34.99. This saves a little money to purchase the demo board of your choice.

The USB cable comes with the programmer and all of the starter kit software is on the included CD. The PICkit 2 microcontroller programmer alone can be purchased under the part number PG164120.

The PICkit 2 28-pin demo board can be purchased at the same time under the part number DM164120-3 for $24.99. The reason this combination works best for the Basic programmer is because the PICkit 2 28-pin demo board (see Figure 5) can accept a PIC16F876A. Then, you can use the free sample version of microEngineering Labs’ PICBASIC PRO compiler which supports the PIC16F876A to create your code. (You can download the sample version from melabs.com.)

The sample version of the PIC BASIC PRO compiler can also be run in Microchip’s MPLAB IDE, which comes on the PICkit 2 CD or can be downloaded for free from Microchip’s website. More information on how to set this up is at: melabs.com/support/mplab.htm. Using this PICBASIC PRO compiler within the MPLAB IDE provides all of the debugging features, plus the one-touch compile and program features of the MPLAB IDE/PICkit 2 setup.

There is a catch to my custom setup, though. You will have to add a crystal or resonator to the board, since the PIC16F886 doesn’t need an external oscillator but the PIC16F876A does. I suggest that you use a three-pin SIP socket, so you can plug in various crystal/resonator speeds. The development board traces are already designed to accept an external crystal/resonator, so this modification is easy for the beginner to accomplish.

The total cost of this custom setup is $59.98 or about $10 more than the standard starter packages (but you also get two blank PICkit 2 28-pin demo boards for future designs to justify the extra $10).

To use the PIC16F876A in debug mode, you’ll need MPLAB 7.61 or later. Hopefully, this version or later will be on the included CD — but if an earlier version of the MPLAB IDE is included, you can download the latest version of the MPLAB IDE for free from microchip.com/mplab.

To summarize my recommendations, you can use the sample version of the PICBASIC PRO compiler and compile, program, or debug from within the MPLAB IDE — using the PICkit 2 microcontroller programmer in programmer mode or programmer/debugger mode. You can then program more blank 28-pin DIP packaged PIC MCUs as you create more projects with this great starter package. Getting all this for $58.98 (plus tax and shipping) seems like a great deal to me.

MORE OPTIONS

Now, it doesn’t stop there. If you read last month’s column, you also might remember that I mentioned Jack Smith’s book *Programming the PIC Microcontroller with MBasic*, which includes a full working version of Basic Micro’s MBasic Professional compiler — limited to compiling the PIC16F876 or PIC16F876A. MBasic will not run within the MPLAB IDE, but you can still use the PICkit 2 microcontroller programmer with the MBasic Professional compiler by interfacing the stand-alone version of the PICkit 2 PC software for programming PIC MCUs outside of the MPLAB IDE.

You do that by simply importing the .hex file generated by the MBasic Pro compiler from Jack’s book into the PICkit 2 software. This is another low-cost option for the hobbyist to get started with programming PIC MCUs. (For Nuts & Volts subscribers, if you order Jack’s book through the N&V store during the month of October, you’ll get free shipping within the US. Price of the book is $62.95 — which is actually cheaper than a full-featured compiler. Call N&V to order at 1-800-783-4624.)
PICBASIC PRO

If you do choose to use PICBASIC PRO, after you get comfortable with the PICBASIC PRO sample version, you might be ready to shell out the $250 for the full PICBASIC PRO. This will give you the ability to program the other 28-pin PIC MCUs, such as the PIC16F886 or even some of the 28-pin PIC18F parts—which also plug into the 28-pin board.

The full version of PICBASIC PRO supports most of the eight-bit PIC MCUs from the small PIC10F family, up to the high-performance PIC18F family. Later, you can add the 20-pin development board to your collection and program the 20-, 14-, and eight-pin PIC MCUs with PICBASIC PRO, as those are also supported.

You can even prove out your design with a 28-pin part using the debugger and then recompile it for a smaller part using the programmer and the 20-pin board. I’ve successfully done this, but you really have to understand the differences between the two parts to do this properly.

I’m sure new demo boards will be released in the future, because the PICkit 2 microcontroller programmer is handy to use now. I have heard about a few third-party boards that are also in the works for the programmer. If Basic is not your language of choice and you prefer to program in C, the HI-TECH PICC-Lite compiler is also included on the PICkit 2 CD. Unfortunately, the PICC-Lite compiler doesn’t support any 28-pin PIC MCU parts.

It does support several smaller parts that fit the 20-, 14-, or eight-pin packages. The PICC-Lite compiler also supports the PIC16F887, which is the surface-mount development board part. The PICC-Lite compiler can be run inside the MPLAB IDE, so you get a professional style setup for a very low price. CCS’ PCM Midrange C Compiler Demo for the PIC16F887 is also now part of the software included on the PICkit 2 CD to give you another choice.

The sample versions of the various compilers I mentioned don’t support the PIC18F parts, but you’re in luck here, as well. Microchip does offer a student version of their MPLAB C18 compiler, which you can download for free at microchip.com/c18. The only limitation of this free version is that the compiler loses some optimizations after 60 days, but that’s not a big deal for most beginners. Besides, this compiler supports all of the PIC18F MCUs. This is another option for the beginner interested in C programming, and this will work with my makeshift 28-pin starter package idea.

CONCLUSION

I hope this wasn’t too confusing, and that I successfully clarified the differences between the two PICkit 2 starter packages for you. I added a PICkit 2 header to my Ultimate OEM board that has a 28-pin socket to see how well it would work. I was extremely happy with the setup, since I now have a great connection between the MPLAB IDE and my boardroom module’s development setup. This allows me to do just what I described above, without having to buy the PICkit 2 28-pin demo board. It works great.

I recommend that you make your own starter package with a PICkit 2 microcontroller programmer, a PICkit 2 28-pin demo board, a sample version of the PICBASIC PRO compiler, and Microchip’s free MPLAB IDE, to get started in programming PIC MCUs. You’ll also have a tool set that can grow with your programming skills, without breaking the bank account. Programming PIC MCUs just gets better and better, doesn’t it?

This book is available in our store on page 98. Call 800-783-4624.

$62.95
Announcing the 2nd Annual Schmartie Awards

$1000+ Grand Prize

SchmartBoard is looking for the next SchmartModule design. SchmartModules are functional circuit blocks such as RS232 or Power that physically connect to other SchmartBoards’ to make prototyping easier. The winner will get $1000 plus 10% continued commission and the notoriety of having their name on every one of the winning SchmartModules sold worldwide.

2nd Prize - A Link Instruments DSO8502 500Mhz Digital Oscilloscope
3rd Prize - A Weller WD1002 Soldering Station
Honorable Mentions - Three people will win a Parallax Boe-Bot
All Valid Entries - Will receive a free SchmartBoard Prototyping Boards and a SchmartBoard t-shirt

Co-Sponsored By: Servo and Nuts and Volts Magazines, Intellect Lab, RB Technology, Jameco Electronics, Parallax, Cooper Tools, Fry’s Electronics, Link Instruments, Circuit Specialists and Mouser Electronics

Visit www.schmartboard.com for details
are X band but there are some in the K regions also. Even 10 years ago, when I was responsible for the maintenance and repair of the door openers at the hospital where I work, they were all radar. I would also question the reliability of PIR detectors used to scan outside areas as they are affected by factors such as wind and other weather phenomena. On the other hand, the Doppler shift radar detectors work well in this application.

By the way, love your magazine! You have come up with a great balance between the old analog and digital discreet designs and the new PIC projects. I am an old discreet designer/builder who is learning to love the new PICs, especially the PICAXE due to its ease of programming and low cost. Keep up the good work!

Ron Bean

PUT A (HEAT) TAPE ON IT

About thawing frozen pipes ... there is a better way to thaw them and to keep them from freezing again. There is a product available called heat tape. It looks like a roll of 12 ga romex wire except that it’s a heating element with a temperature sensor in it and a plug or direct connect, depending on the model purchased. This wire is wrapped around the exposed piping and then covered with an insulation sleeve and connected to standard power.

When the enclosed sensor detects falling temps in the correct range, it starts heating the pipes to prevent freezing; the insulating sleeve keeps the heat in and helps keep the energy use low. I have used these wraps with great success. It’s a lot less expensive than paying to have the frozen pipes thawed and the burst pipes replaced, not to mention the water damage after the pipes burst. By the way, if you are a renter, when you leave you can take the wire with you; if it’s a plug-in type, it’s not considered a permanent item so you don’t have to leave it if your landlord won’t pay for it.

The following website gives an excellent tutorial on the proper use and installation of pipe heat tape including several safety precautions: www.mygreathome.com/fix-it_guide/heat_tape.htm.

Norm Doty
CLASSIFIED ADVERTISING

$50.00 Per Inch — No extra charge for color.
Classified ads must be paid in full prior to the closing date or the ad will be placed in the following issue, at our discretion. Minimum charge is one inch with half-inch increments. No proofs will be sent. Ads to be typeset by Nuts & Volts must be received by the closing date. Supplied ads must be received by the artwork due date. Call 951-371-8497 or email classad@nutsvolts.com for closing dates, available sizes, and special prepay discount offers.

DESIGN/ENG SERVICES

* Circuit board layouts
* Prototype assemblies
WWW.GSPREYELECTRONICS.COM
Convert your sketch or print into a quality product for a reasonable price. Visit us on the web or call Gsprey Electronics at (209) 684-1035 USA

Looking for robots?
www.servomagazine.com

OSCILLOSCOPES

Bargain LCD Scope!
Portable, benchtop 25MHz 2-ch color LCD Scope. Download waveforms via USB1.1 to PC. 7” x 8” x 6 ½” Color LCD. 3.5lbs. Sampling Rate: 100 MUs. Volt/Time Automatic. Measurement: Peak-to-peak Value, Average, RMS, Frequency and Cycle. FREE 1x/10x probes, USB cables. Compare with expensive LCD scopes! PDS5022S only $325.
Battery-powered PDS5022S-BAT $399.
Saelig Co. Inc. Info@saelig.com
1-888-7SAELIG www.saelig.com

MICRO CONTROLLERS

MicroStamp11 World’s Smallest 68HC11 Microcontroller Module!
- tiny (1 by 1.4 in.), lightweight (0.5 oz.)
- on-board 5V regulator, crystal, & reset chip
- choice of 8K or 32K EEPROM
- or 32K RAM + 32K EEPROM (64K version)
- SCI, SPI, Output Compare and Input Capture channels, timer, pulse accumulator
- all 14 I/O lines and 2 interrupt lines brought out to versatile 20-pin connector
- program in BASIC, assembler, or C
- easy code-loading with Docking Module
- Starter Packages:
 - 8K EEPROM (#MS11SP8K).......$49
 - 32K EEPROM (#MS11SP32K)...$77
 - 32K EE/32K RAM (MS11SP64K) $90

* includes MicroStamp11, manual, PC software (assemblers, SBASIC compiler, MicroLoad utility, and sample programs), serial cable, Docking Module, & accessories.

www.technologicalarts.com

AUDIO/VIDEO

Easy Step’n Portable, benchtop 25MHz 2-ch color LCD Scope. Download waveforms via USB1.1 to PC. 7” x 8” x 6 ½” Color LCD. 3.5lbs. Sampling Rate: 100 MUs. Volt/Time Automatic. Measurement: Peak-to-peak Value, Average, RMS, Frequency and Cycle. FREE 1x/10x probes, USB cables. Compare with expensive LCD scopes! PDS5022S only $325.
Battery-powered PDS5022S-BAT $399.
Saelig Co. Inc. Info@saelig.com
1-888-7SAELIG www.saelig.com

New Product in the Webstore
Recently named as one of the Best Inventions of 2006 by Time Magazine

H-racer & Solar Hydrogen Station
With the H-racer, you can witness the power of new energy technology in the palm of your hand. Horizon has created a unique, patented, miniature fuel-cell car and hydrogen refueling station. The Refueling Station creates hydrogen by electrolysis using water, and once the car’s hydrogen tank is full, the car can run on its own hydrogen fuel-cell system with the simple flip of a switch.
For more information, see page 98.

PUBLICATIONS

CNC Book
Easy CNC
G-code
Bit map draw programs
Bit map image converter
Bit map to G-code
CAD - machine drawings
CAM - DXF to G-code
http://www.cnccomputer.com

SQUARE 1 ELECTRONICS
(208) 664-4115
Hayden, ID USA

Stepper Motor Book
Easy Step’n
Table Of Contents
Ordering Info
On Web Site
http://www.steppeinstuff.com

SQUARE 1 ELECTRONICS
(208) 664-4115
Hayden, ID USA

October 2007 NUTS & VOLTS 95
Check out our new webstore for many more great titles!!

The Nuts & Volts WEBSTORE

CD-ROMS

GREAT ARTICLES – GREAT PROJECTS!

These CD-ROMs are PC and MAC compatible. They require Acrobat Reader Ver. 6 or above. Don’t worry. We have included Acrobat Reader Ver. 7 on each of the discs.

$24.95

$49.95

$89.95

$34.95

$39.95

$39.95

$9.95

$34.95

$39.95

$26.95

$28.95

$89.95

$34.95

$28.95

$9.95

ELECTRONICS

+Practical Electronics for Inventors
by Paul Scherz
This intuitive, applications-driven guide to electronics for hobbyists, engineers, and students doesn’t overload readers with technical detail. Instead, it tells you — and shows you — what basic and advanced electronics parts and components do, and how they work. Chock-full of illustrations, Practical Electronics for Inventors offers over 750 hand-drawn images that provide clear, detailed instructions that can help turn theoretical ideas into real-life inventions and gadgets. $39.95

Troubleshooting and Repairing Major Appliances: 2nd Edition
by Eric Kleinert
Now covering both gas and electric appliances, the updated second edition of Troubleshooting and Repairing Major Appliances offers you a complete guide to the latest tools, techniques, and parts for troubleshooting and repairing any appliance. Packed with over 200 illustrations, the book includes step-by-step procedures for testing and replacing parts, instructions for reading wiring diagrams, charts with troubleshooting solutions, advice on using tools and test meters, safety techniques, and more. $59.95*

Troubleshooting Electronic Equipment
by R. S. Khandpur
From cell phones to medical instruments to digital and microprocessor based equipment, this hands-on, heavily illustrated guide clearly explains how to troubleshoot, maintain, and repair all types of electrical equipment. The author covers all the essentials such as necessary tools, soldering techniques, testing, fundamental procedures, and mechanical and electrical components. $49.95

Electromechanical Devices & Components Illustrated Sourcebook
by Brian Elliott
Master the key elements of electromechanical components. Essential to the design, repair, or operation of your electromechanical devices, this quick-find reference provides illustrations, descriptions, and relevant calculations for 2,000 time-tested electromechanical components. $89.95

Electronic Circuits — Fundamentals & Applications: Third Edition
by Mike Tooley
In Electronic Circuits, Mike Tooley provides all the essential information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies, and oscillators. The third edition now offers an even more extensive range of topics, with extended coverage of practical areas such as circuit construction and fault finding, and new topics including circuit simulation, electronic CAD, and a brand new chapter devoted to the PIC microcontroller. $34.95

Encyclopedia of Electronic Circuits, Volume 7
by Rudolf F. Graf / William Sheets
Publish Date: August 31, 1998
An extensive library of 1,000 circuits from the bestselling, seven-volume Encyclopedia of Electronic Circuits. A virtual treasurehouse. An invaluable reference tool for every hobbyist, technician, student, and design professional. $39.95

Build Your Own Electronics Workshop
By Thomas Petruzzellis
YOUR DREAM ELECTRONICS LAB IS WAITING INSIDE!

This value-packed resource provides everything needed to put together a fully functioning home electronics workshop! From finding space to stocking it with components to putting the shop into action — building, testing, and troubleshooting systems — popular electronics author Tom Petruzzellis’ Build Your Own Electronics Workshop has it all! And the best part is, this book will save you money, big time! $28.95
CALL 1-800-783-4624 today!
Or Order online @ www.nutsvolts.com

Sustainable Energy System Engineering
by Peter Gevorkian
Publish Date: October 10, 2006
Create more efficient energy systems for any building project. Offering nuts-and-bolts direction on a wide variety of project types including residential, roof, and ground-mount systems, solar power farms, and large commercial solar power installations — Sustainable Energy System Engineering delivers the insight you need to produce wiring plans, calculations, and systems integration. $99.95*

Energy Technology and Directions for the Future
by John R. Fanchi
Publish Date: January 26, 2004
This book presents the fundamentals of energy for scientists and engineers. It is a survey of energy sources that will be available for use in the 21st century energy mix. The reader will learn about the history and science of several energy sources, as well as the technology and social significance of energy. Themes in the book include thermodynamics, electricity distribution, geothermal energy, fossil fuels, solar energy, nuclear energy, alternate energy (wind, water, biomass), energy and society, energy and the environment, sustainable development, the hydrogen economy, and energy forecasting. 72.95*

Solar Energy Projects for the Evil Genius
by Gavin D. J. Harper
Publish Date: June 22, 2007
Let the sun shine on your evil side — and have a wicked amount of fun on your way to becoming a solar energy master! In Solar Energy Projects for the Evil Genius, high-tech guru Gavin Harper gives you everything you need to build more than 50 thrilling solar energy projects. You’ll find complete, easy-to-follow plans, with clear diagrams and schematics, so you know exactly what’s involved before you begin. $24.95

Alternative Energy Demystified
by Stan Gibilisco
Publish Date: October 23, 2006
The fast and easy way to get up-to-speed on alternative energy. Because of current events, geopolitics, and natural disasters, the cost of fuel is front and center in our lives. This book provides a concise look at all forms of energy, including fossil fuels, electric, solar, biodiesel, nuclear, hydroelectric, wind, and renewable fuel cells. You will get explanations, definitions, and analysis of each alternative energy source from a technological point-of-view. $19.95

Designing & Building Fuel Cells
by Colleen Spiegel
Designing & Building Fuel Cells equips you with a hands-on guide for the design, modeling, and construction of fuel cells that perform as well or better than some of the best fuel cells on the market today. Filled with over 120 illustrations and schematics of fuel cells and components, this “one-stop” guide covers fuel cell applications, fuels and the hydrogen economy, fuel cell chemistry, thermodynamics and electrochemistry, fuel cell modeling, materials, and system design, fuel types, delivery, processing, and much more. $39.95*

The Complete Idiot’s Guide to Solar Power for Your Home
by Dan Ramsey / David Hughes
Publish Date: May 2007
The perfect source for solar power — fully illustrated. This book helps readers understand the basics of solar power and other renewable energy sources, explore whether solar power makes sense for them, what their options are, and what’s involved with installing various on- and off-grid systems. $18.95

Pocket Ref
by Thomas J. Glover
This great little book is a concise, all-purpose reference featuring hundreds of tables, maps, formulas, constants, and conversions. AND it still fits in your shirt pocket! Goes where you go! $12.95

The Pocket Idiot’s Guide to the iPhone
by Brown, Damon
Publish Date: August 7, 2007
See what this new technology can do for you. The Pocket Idiot’s Guide to the iPhone is a quick reference guide that includes troubleshooting info and helpful tips for the non-geeky iPhone owner. This could be helpful for those on the fence about purchasing, as well. $9.95

Solar Hydrogen Power Generation Set
The Solar Hydrogen Generation Set includes a solar cell, a PEM reversible fuel cell, as well as oxygen and hydrogen gas containers. The set only needs pure water to create hydrogen and produce electricity. Perfect for science labs, classroom use, or demonstration purposes. $97.00

WE ACCEPT VISA, MC, AMEX, and DISCOVER. Prices do not include shipping and may be subject to change.
Attention Subscribers ask about your discount on prices marked with an *

The Nuts & Volts WEBSTORE

MICROCONTROLLERS

Programming the PIC Microcontroller with MBASIC
by Jack Smith
No microcontroller is of any use without software to make it perform useful functions. This comprehensive reference focuses on designing with Microchip's mid-range PIC line using MBASIC, a powerful but easy to learn programming language. It illustrates MBASIC's abilities through a series of design examples, beginning with simple PIC-based projects and proceeding through more advanced designs. $62.95*

Programming and Customizing the PICAXE Microcontroller
by David Lincoln
Here's everything you need to harness the power of PICAXE, the inexpensive yet versatile chip that's taken the electronics community by storm. This beginner-friendly guide from IT pro and PICAXE expert David Lincoln shows you just what Revolution Education's PICAXE can do — and helps you make it do it! Packed with ready-to-build projects for all the flavors of PICAXE, $39.95

PIC Microcontroller Project Book
by John Iovine
The PIC microcontroller is enormously popular both in the US and abroad. The electronics hobbyist market has become more sophisticated. This new edition is fully updated and revised to include detailed directions on using both versions of the microcontroller, with no-nonsense recommendations on which is better served in different situations. $29.95

BACK ROOM

BOOK BLOWOUT SPECIAL
PICmicro Microcontroller Pocket Reference
by Myke Predko
Designed to complement Programming & Customizing the PICMICRO, this book contains a minimum of verbiage and serves as an immediate device, code, and circuit lookup for experienced PICMICRO applications designers.

Sale Price $14.95, Reg. $29.95
Only a Few Copies Left

BACK ROOM

The Official Robosapien Hacker's Guide
by Dave Prochnow
Publish Date: August 17, 2005
The Robosapien robot was one of the most popular hobbyist gifts of the 2004 holiday season. The brief manual accompanying the robot covered only basic movements and maneuvers — the robot's real power and potential remain undiscovered by most owners — until now! This timely book covers all the possible design additions, programming possibilities, and "hacks" not found any place else.

Sale Price $14.95, Reg. $24.95

PROJECTS

H-racer-and-Hydrogen-station
With this kit, you now can see and feel the future of energy generation in your own hands! Recently named as one of the Best Inventions of 2006 by Time Magazine, the H-racer is now the best selling fuel cell product in the world. For more info, go to our online store at www.nutsvolts.com. $115.00*

Magic Box Kit
As seen in our April issue.
We received such great reviews on this magic box kit that we decided to offer it in our store.
This unique DIY construction project blends electronics technology with carefully planned handcraftsmanship. Its delightful innovation will surely amuse you. More importantly though, it bewilders, baffles, and mystifies those observing this subtle magic trick.

Subscriber's Price $39.95 Non-Subscriber's Price $45.95 Both include an article reprint.
Maker Faire
Meet the Makers

AUSTIN October 20 & 21, 2007
TRAVIS COUNTY EXPO CENTER & FAIRGROUNDS

SF BAY AREA May 3 & 4, 2008
SAN MATEO FAIRGROUNDS

FEATURING: MAKE Play Day, Austin Children's Museum, Swap-O-Rama-Rama, and more!

MakerFaire.com
I work in a hot, one man fabrication shop. I have a furnace type squirrel cage fan blowing at my workbench to cool me down. I'd like to have the fan on a turntable and rotate toward me no matter where I go in the shop. I'd have to wear a transmitter or sensor of some sort. I guess there'd be a stepper motor in there somewhere, too. Azimuth tracking comes to mind. Is there anything out there like that?

#10071 Rod Reynolds via email

I am looking for a high brightness LED with a peak wavelength around 680 nm. Is there anything similar to the offerings from Cree, Seoul, Philips, etc.?

#10072 Benjamin Butler Boston, MA

I often drive my motorcycle late at night while traffic is light. There are many traffic signals where the vehicle detection device doesn't see my bike because there is not enough iron in it to trigger the inductive loop. I have to either run the light or turn right on red.

Is there a circuit capable of generating a signal that could trigger the inductive loop detector? It needs to be 12 volts and ideally low powered so that I can wire it directly into the brake light. This will also give me the ability to pulse the circuit if necessary.

Permanent magnets don't work. I even went so far as to put a row of very strong magnets on the kickstand. I then put the kickstand down directly on the grooves in the pavement where the inductive loop was buried. It never detected my 500 pound Honda.

#10073 Joe Schram Baker, LA

I have been using the serial port of my PC and languages such as assembly, C++, Java, and VB to communicate with custom designed circuits. Nowadays, all PCs have replaced the serial port with multiple USB ports. I want to migrate my applications but have found working with USB rather difficult. Could someone please suggest a way to send/receive a simple 1-0 digital signal using any programming language (preferably Java)?

#10074 Sahand N. via email

I have an irrigation system with a HARDY RainDial, six zone controller, by Irritrol. It has only four wires plus a ground going to it and the valve box. It would be impossible to run new or additional wire as the wiring goes under a concrete floor.

Four zones are being used. I recently added a fifth battery-operated zone, but it's a problem as the
batteries tend to wear out. I want to use the controller for timing zone five and would appreciate a circuit that could do this.

The controller outputs 28 VAC as measured at the zone outputs, but by the time it reaches the valve box, it drops by 3V. The ideal solution would be to have an encoder/decoder circuit that would work directly off of the controller. I can then give the fourth and fifth valves different addresses so they could share one line. The draw is about 250 mA at 24-26 VAC for 15 minutes per day.

An alternate approach might be to use the ground as the fifth wire and ground the control box to a copper pipe. However, it is plastic pipe in the ground that goes to the valve box. If I simply drive in a ground rod at the control box for my ground, will this solution work as well?

Note: When a boost regulator is shut down, the input voltage will appear at the output. If this is not desirable, add a switch in series with the battery.

WEBENCH will provide the schematic, bill of materials, and provide circuit and thermal analysis.

You will also be able to get up to five free samples of the LM2586-ADJ, or you can purchase an unassembled custom kit at a reasonable price.

The resistor values can use the standard 5% tolerance, as the voltage requirements are not critical.

\[\begin{align*}
R1 &= 42.2\, \text{K ohm} \\
R2 &= 1.5\, \text{K ohm} \\
Rc &= 2.05\, \text{K ohms} \\
C1 &= 22\, \mu\text{F} \quad 25\, \text{V} \quad \text{ESR} < 1\, \text{ohm} \\
C2 &= 0.1\, \mu\text{F} \quad 50\, \text{V} \\
C5 &= 0.27\, \mu\text{F} \quad 50\, \text{V} \\
C6 &= 100\, \mu\text{F} \quad 50\, \text{V} \quad \text{ESR} < 340\, \text{milliohms} \\
D1 &= 1\, \text{A} \quad 50\, \text{V} \quad \text{Ultrafast Diodes, Inc., B180-13 or equivalent} \\
L1 &= 470\, \mu\text{H} \quad 3.3\, \text{A} \quad \text{DCR} < 0.12\, \text{ohms} \\
\text{IC1} &= \text{LM2586-ADJ} \\
\end{align*} \]

Larry Virgilio
Lake Zurich, IL

The "easiest" way would be to get a very inexpensive 12 VDC to 120 VAC inverter which are available almost everywhere ($20-$25). About the smallest is 50 watts. (You can use it for other things, too.) Then get a 24 VAC transformer and run off it for your camera supply; 24 VAC control transformers can usually be scrounged off old central HVAC units which are also everywhere. Or, if all else fails, RadioShack has them for about $7.

Rod Hogg
REVCOM Electronics
Scott City, KS

October 2007 NUTS AND VOLTS 101
program in compatibility mode for.” Finally, select Windows 98 out of the drop-down box, and click OK.

Matthias Kersten
Bull Valley, IL

[#7077 - July 2007]
I need info on where to buy or how to build a cheap mono preamp for my banjo. I need more drive into my amp.

#1 Velleman offers a kit-form preamp, Model K1803; 40 db gain with level pot.

One source is MCM Electronics (www.mcmelectronics.com). You will need about 12V/10 mA to run it. I have used several; works good.

Rod Hogg
Scott City, KS

[#7075 - July 2007]
Can someone recommend a 12-14 volt circuit which will give a three second duration “high” output of around 5-6 volts (not critical) after 12-14 volts power has been applied to the input for 15 minutes? The “high” output will last three seconds (to activate a very small relay or transistor) and then go back low for 15 minutes over and over.

#1 The illustrious 555 timer comes to the rescue! This circuit (Figure 1) will give a “high” output (connecting it to Vcc) for three seconds. If you'd rather have a “low” output (to ground), just remove the diode and flip the resistors around.

I built this circuit and got about 17 minutes off and three seconds on using 5% tolerance resistors and a 20% capacitor. The value of the components was easily achieved using free software from www.schematica.com. Better accuracy can be found by adding a trimpot in series with the resistor you are aiming to adjust. (Raising the R1 value will increase the high time, and increasing the R2 value will increase the low time.)

You may not need a relay or transistor on the output as the 555 can deliver 200 mA in either direction. The 555 timer can easily be powered by your 12-14V requirement. The datasheet for the National Semi part says she can take 4.5-16V.

Brian German
Thief River Falls, MN

#2 You have not indicated how accurate or how stable you need the timing. The easy solution is to find two relay timers and have them trigger each other. Plug-in timers can be found in the surplus market and require the least amount of construction to use. These are often found in older traffic lights and industrial controls, but may not work from 12 VDC. Try eBay or here: www.electronicsurplus.com/ccc2080-time-delay-relays.htm.

Another solution would be to construct two timers using a timer chip such as the LM555 (or the dual LM556), again setting each to trigger from the other and form an oscillator with 15 minutes delay from one and a three second delay from the other. Google “555 timer” — there’s literally more than one million hits!

A better (more reliable, accurate, repeatable) solution is to digitally count down an oscillator that marks sub-times of your desired delays. Fifteen minutes is 900 seconds, so a one second clock followed by a divide-by-900 counter chain would work. An easier solution is to count to 1024 (10 binary stages) of 1024/900 (or 1.138Hz) followed by three more stages to give 3.4 seconds for the output pulse to drive your relay.

The CD4060 IC is a combination oscillator and 14 stage counter that can be operated at a 1.14 Hz clock with a 10 µF cap and 51K resistor (expect a 10% or worse tolerance with garden variety caps; a tantalum cap would be better). The resulting 900 second pulse from the tenth stage could be capacitor differentiated (to get a three second pulse) and drive a transistor switch that, in turn, drives your relay. For a more accurate output pulse, use a second digital counter (CD4013, for example) that counts three periods of the same clock (3.4 seconds duration). The second IC would also feed the transistor driving the relay, both CMOS logic parts and the transistor stage can be operated directly from 12V DC, simplifying the project.

Peter J Stonard
Campbell, CA
good clean stereo amp capable of driving a good set of headphones or feed into an amp. Just cut the wires off that go to the cassette playback head and install a connector of your choice to the PC board at the same location. Hook the inputs together if you want mono. I have used 1/4 inch female guitar plug connectors and they work fine. Use shielded cable and epoxy the connector to the case. I found these things cheap and fun to play around with. I even thought of using a bunch of them to make a tape loop sound effects device. Maybe someday.

Anonymous

#3 Try www.apoqueekits.com/guitar_preamp.htm.

Peter J Stonard
Campbell, CA
This month’s spotlight is on Electronics 123 whose headquarters is in Columbiana—a town of about 6,000 population located 78 miles southeast of Cleveland on the eastern edge of Ohio. President and CEO, Johan Smit, founded this privately owned, Internet-based company in 1997. He first worked as a chartered accountant in South Africa, which is the equivalent of a CPA in America. He then started a mail order business in South Africa in 1993 that he ran with his family until he moved to the USA with his American wife in 1996. He started his present business in the basement of his home. He became an American citizen in 2004 and now has three children ages one, three, and six.

Johan says that there is nothing easy about starting a business in America. Nevertheless, he believes that there are virtually unlimited possibilities for an entrepreneur. It is such a huge market compared to where he started in South Africa. However, the competition is fierce and requires one to be on his toes every moment.

Marvin: Johan, how large is your facility and how many employees do you have? Johan: The company moved into a 3,000 square foot storefront at the end of 2004, but the business is growing fast and will need to take up more of the building by the end of this year. We presently have four employees.

MM: What is your principal business? JS: My company is a distributor of more than 2,000 line items including components, kits, tools, books, and oscilloscopes.

MM: What are your most popular products? Who are your customers for these items?
JS: We sell many camera modules with digital outputs that are used in robotic applications. Our 20-second voice recorder/play back modules sell well. These often end up in museum displays. Our low cost PIR modules are also very popular. Small manufacturers of Halloween props use many of these. We also have a range of low-cost microcontroller programmers that are popular with hobbyists. We’ve added numerous products from Velleman in the past two years such as Velleman soldering stations, oscilloscopes, multimeters, kits, tools, etc.

MM: Is there a newly developed product ready for release?
JS: We are introducing a range of digital video recorders (DVRs) customized for different applications such as door phone cams, taxi cams, vehicle black boxes, and slow motion capture, etc.

MM: Finally, please describe the day-to-day operation of your business.
JS: The business has grown steadily through a combination of hard work, perseverance, technological innovation, and great customer service. We receive many positive comments on our sophisticated website featuring real-time inventory stock levels. We feature a customer center that shows order status, tracking info, can reprint invoices and sales orders, and show order history and can submit trouble tickets. We are proud of the fact that in-stock items are shipped the same day if the order is submitted by 3pm EST. There is also no shipping charge when the back ordered part of an order ships.

The business runs very efficiently, using all of the latest technologies for business processes and back-end systems. The company uses a fully integrated computer system to process, fulfill, and ship orders. The business also ships a substantial number of international orders.
Our Premium All in One Repairing System

• All in One system. Combines the function of a Hot Air Gun, a Soldering Iron and a Desoldering Gun.
• Microprocessor controlled ESD safe unit. All digital display of hot air temperature, soldering iron temperature, desoldering gun temperature and air pressure with touch type panel controls.
• The desoldering tool comes with zero crossing circuitry preventing electrical surges and is equipped with an air cylinder type strong suction vacuum pump.
• The 24V soldering iron is compatible with the compound tip design by connecting the ceramic heater, sensor, control unit and tip as one. Designed for efficiency. Replacement of tips with easy slip in/out method.
• Compatible with various type of air nozzles.
• Use with lead-free or standard solder.

Item# CSI-9000 Only $249.00

Programmable DC Power Supplies

The CSI 3600 Series Programmable DC Power Supplies are equipped with a back-lit LCD display, number keypad and a rotary code switch for ease of use & quick programming. Voltage, Current & Power can all be displayed on the LCD or computer screen (with optional RS-232 interface module). It can be operated at constant current mode, constant voltage mode & constant power mode. It also can be set with maximum limits for current & power output. Ideal instruments for scientific research, educational labs or any application requiring a sophisticated DC-power source.

<table>
<thead>
<tr>
<th>Model</th>
<th>CSI3644A</th>
<th>CSI3645A</th>
<th>CSI3646A</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>0-18V</td>
<td>0-36V</td>
<td>0-72V</td>
</tr>
<tr>
<td>DC Current</td>
<td>5A</td>
<td>3A</td>
<td>1.5A</td>
</tr>
<tr>
<td>Power</td>
<td>90W</td>
<td>108W</td>
<td>108W</td>
</tr>
</tbody>
</table>

Details at Web Site > Test Equipment > Power Supplies

Only $199.00 Each!

Circuit Specialists Soldering Station

• Replaceable iron/easy disconnect
• All 3 Models have a *All 3 Models have a

Parameters Displayed: Value, Deviation, %Deviation
• Measurement Modes: Auto, R+Q, L+Q, C+D, C+R
• Equivalent Circuit: Series or Parallel
• Basic Accuracy of 0.05%
• Bin Number.

Item# CSI-STATION1A

SMD Hot Tweezer

Adaptor Fits CSI Stations 1A & 2A and CSI906

$49.95

Item# CSI-STATION2A

Also Available w/Digital Display & MicroProcessor Controller

$29.00

Details at Web Site > Soldering Equipment & Supplies

In Business Since 1974

Digital LCR Meter w/GPIB Interface

• Measurement Rate: Slow, Medium, Fast: 2,10 or 20
• Basic Accuracy of 0.05%
• Stores up to 9 setups in memory
• Equivalent Circuit: Series or Parallel
• Measurement Modes: Auto, R+Q, L+Q, C+D, C+R
• Remote over RS-232C & GPIB/Handler Interface
• Parameters Displayed: Value, Deviation, %Deviation or Bin Number.
• Test Frequencies: 100Hz, 120Hz, 1kHz, 10kHz, 100kHz

$149.00!

Details at Web Site > Test Equipment > Specialty Test Equipment

NEW!

Oscilloscope w/Component Tester

• 2 channels 2 traces
• 20MHz Bandwidth
• Z axis (intensity modulation)
• TV video sync filter
• Component test function
• Vertical Deflection Operating Mode: CH A, CH B, DUAL, ADD
• Sensitivity: 5mV/20mV/div
• Bandwidth: DC-20MHz / AC: 10Hz-20MHz
• Horizontal Deflection Sweep Mode: AUTO, NORM
• Sweep Time: 0.2us-0.5s/div

Details at Web Site > Test Equipment > Oscilloscopes/Oscilloscopes

NEW!

ESD Safe CPU Controlled SMD Hot Air Rework Station

The heater and air control system are built-in and adjusted by the simple touch of the front keypad for precise settings. Temperature range is from 100°C to 480°C / 212°F to 896°F, and the entire unit will enter a temperature drop state after 15 minutes of non-use for safety and eliminate excessive wear.

• CPU Controlled
• Built-in Vacuum System
• Temperature Range:100°C to 480°C / 212°F to 896°F
• 15-Minute Stand-By temperature “sleep” mode
• Power:110/120 VAC, 320 W maximum

$359.00!

Details at Web Site > Soldering Equipment & Supplies

NEW!

Triple Output Bench Power Supplies

High stability digital read-out bench power supplies featuring constant voltage and current outputs. Short-circuit and current limiting protection is provided. SMT PC boards and a built-in cooling fan help ensure reliable performance and long life.

• Source Effect: 5x10⁻⁶ mV
• Load Effect: 5x10⁻⁶ mV
• Ripple Coefficient: <250µV
• Stepped Current: 30mA +/- 1mA

All 3 Models have a 1A/SVDC Fixed Output on the rear panel

CS13003X: 0-30V/0-3amp 1-4: $105.95 5+: $99.50
CS15003X: 0-50V/0-3amp 1-4: $114.95 5+: $109.00
CS13005X: 0-30V/0-5amp 1-4: $119.00 5+: $114.00

Details at Web Site > Test Equipment > Power Supplies

As Low As $99.50!

NEW!

Test Equipment > Power Supplies

Circuit Specialists, Inc. 220 S. Country Club Dr., Mesa, AZ 85210
800-528-1417 / 480-464-2485 / FAX: 480-464-5824

Only $249.00!
Circuit Specialists, Inc.

2 & 4 Channel GDS-2000 Series Digital Storage Oscilloscopes w/ TFT Color Displays

- **New!**
- **Price Breakthrough**
- **Details at Web Site**

Stepper Motors

- **Stepper Motor Controllers:** 2 Phase Microstepping
- **Stepper Motor Driver (Bi-polar & Unipolar Motors)**
 - **Price Breaks**
 - **Details at Website!**

Digital Storage Oscilloscope Module

- **Convert any PC with USB interface to a high performance Digital Storage Oscilloscope.**
- **This is a sophisticated PC based oscilloscope adapter providing performance comparable to mid/high level stand alone products costing much more!**
- **Comes with two probes)**
- **Details & Software Download at Web Site**

Stepper Motor Driver (Bi-polar & Unipolar Motors)

- **New Lower Price**
- **Details at Website!**

Focused Infrared Soldering System

- **The CSI-IR1 is a modular and flexible infrared technology soldering system for effective high yield work in the advanced packages of even the most advanced packages, as well as being suitable for lead or lead-free solder. It supports sophisticated network systems to the simplicity of a handheld and can be used easily for rework BGA, micro-BGA, QFPs, PLCCs, SOICs and SMD.**
- **Details at Web Site**
- **Soldering Equipment & Supplies**

Soldering Station w/Iron & SMD Hot Tweezers

- **Eldoradito Replacement Iron Tips**
- **Details at Website!**

Jumbo LCD 9V Independent Ground Panel Meter

- **Price Breaks**
- **Details at Web Site**

3-1/2 Digit LCD Panel Meter (enhanced version)

- **Easy to use!**
- **Price from $34.95!**

Digital Panel Meters

- **2 & 4 Channel GDS-2000 Series Digital Storage Oscilloscopes w/ TFT Color Displays**
- **Price Breaks**
- **Details at Web Site**

Other Products

- **Soldering Stations**
- **Soldering Irons**
- **Electronic Components**
- **Focusing Tools**
- **Welding Tools**
- **Wire Stripper/Crimpers**
- **Anti-Static Products**
- **Microscopes**
- **Gloves**
- **Test Equipment**
- **Scissors**
- **Lab Test Equipment**
- **Safety & Health Products**
Plug in your Peripherals with the Propeller Chip

Order the Propeller Starter Kit (#32300; $149.95) at www.parallax.com/propeller or call our Sales Department toll-free at 888-352-1291 (Mon-Fri, 7am-5pm, PDT).

Parallax, Propeller and the Parallax logo are trademarks of Parallax Inc.

www.parallax.com