NUTS & VOLTS
EVERYTHING FOR ELECTRONICS

ROLL THE DICE!

Low Cost Microcontrollers Enable Electronic "Microdice (µDice)"

Build It:
- Psychedelia II
 A digital upgrade to an already cool analog color organ
- High Power LED Strobe
- Single Chip, 4-Channel Datalogger
Serial-to-Ethernet Converter

Available Now!
New 2008 Lower Pricing

PoE SitePlayer Telnet System
- $99.95
SitePlayer Telnet System
- $79.95
SitePlayer Telnet Modules
- $24.95

Power Over Ethernet

- Configure and upgrade through web browser
- Access micro-controller or other RS232 serial device over The Internet
- Full RS232 handshaking

Power Over Ethernet

- 50 to 11500 baud data rates
- DHCP, Link Local, and static IP Addresses
- TCP/IP and UDP data transfers

siteplayer.com

NetMedia Inc. Tucson AZ 85737 t.520.544.4567 f.520.544.0800 netmedia.com
Monitoring Applications Just Got Easier

Smarter Embedded Design
The RCM4300 RabbitCore® module gives you more processing power and memory for your demanding embedded applications that require web interfaces, graphics or encryption. Data logging applications will also take advantage of the miniSD™ memory cards with up to 1GB of storage. It’s easy to add the RCM4300 - or any RabbitCore module – to your pin-compatible design.

Superior Performance and Mass Storage for:
- Web interfaces and graphics
- Data logging
- Security and encryption

Get Your Development Kit Today for $299
Development kits include everything to start your development, Dynamic C® software, RCM4300 RabbitCore module, 512MB miniSD™ card, development board, programming cables and accessories.

www.rabbitembedded.com

RCM4300 RabbitCore®
- Rabbit® 4000 @ 58.98 MHz
- 10/100Base-T Ethernet
- Up to 1GB of miniSD™
- 8 channel analog input, 12-bit

2900 Spafford Street, Davis, CA 95618 Tel 530.757.8400
NUTS AND VOLTS
JANUARY 2008

PROJECTS and FEATURES

32 BUILD A HIGH-POWER LED STROBE
Shed some new light on your next strobe circuit application.
■ By Fernando Garcia

38 MODIFICATION OF A SIX VOLT LITHONIA EMERGENCY LIGHT
Never be left in the dark again with this reliable circuit.
■ By Clifford Chipman

42 SINGLE CHIP, FOUR CHANNEL DATALOGGER
Use this inexpensive datalogger to sample analog voltages, convert them to digital values, and store the data in non-volatile memory.
■ By Dan Gravatt

46 ROLL THE DICE!
Create an electronic dice board with a low-cost microcontroller.
■ By Marc McComb

52 PSYCHEDELIA II
A digital upgrade to an already cool analog color organ.
■ By Craig A. Lindley

60 BASIC ANALOG POWER SUPPLY DESIGN
Part 2: Examine the regulation aspect and concentrate on basic three-terminal regulators that are both cheap and easy to obtain.
■ By Gerard Fonte

COLUMNS

10 TECHKNOWLEDGEY 2008
Events, advances, and news from the electronics world.

14 STAMP APPLICATIONS
The power of networking.

24 Q&A
Mailbox timer, dimming thermostat, batteries in the woods, more.

67 GETTING STARTED WITH PICs
PICKIT 2 command-line option.

70 PERSONAL ROBOTICS
Robo Spin Art — retro art meets the joystick generation.

82 THE DESIGN CYCLE
Managing the real world.

90 NEAR SPACE
Using the PICAXE microcontroller — Part 2.

104 IN THE SPOTLIGHT
Jaycar Electronics.

DEPARTMENTS

06 DEVELOPING PERSPECTIVES

08 READER FEEDBACK

28 NEW PRODUCTS

31 SHOWCASE

66 ELECTRO-NET

96 CLASSIFIEDS

98 NV WEBSTORE

101 TECH FORUM

105 AD INDEX
Digital Oscilloscopes

- 2 Channels
- 500 MSa/s single shot rate
- 1Mpt sample memory
- Small and Portable
- USB 2.0
- FFT Spectrum Analyzer

DSO-8202 (200MSa, 128K) $799
DSO-8502 (500MSa, 1Mpt) $899

Use code CC12 for an additional $25 off*

Logic Analyzers

- 32 channels
- 400 MSa/s
- 2Msamples/ch
- SPI monitor and generator
- I2C monitor and generator
- Portable (3.2” x 3” x 0.65”)
- USB 2.0 powered

IO-3208A 200 MSa/s $750
IO-3232A 200 MSa/s $899
IO-3232B 400 MSa/s $1399

Use code CC12 for an additional $25 off*

www.Link-instruments.com
(973) 808-8990

*Offer valid until 12/31/2007
Code valid on orders over $500
Limit one code per order
A fundamental application of electronics is transformation—from power supplies that transform AC to DC to microprocessors that transform binary code to text, graphics, and sound. While transformations at many levels may be critical to the function of a device or application, it’s the high-level sensory transformations that hold the greatest potential to change the world. I’m talking about the high-level transformation of sensory experiences, illustrated at one level by Craig Lindley’s article on a digital color organ in this issue.

Transforming sensory data from one form to another has both entertainment and pragmatic value. For example, a color organ that transforms sound amplitude and/or frequency to colors can serve as an entertainment device and as an aid to configuring the graphic equalizer front-end of a stereo system. More significantly, sensory transformation may be used to augment normal senses and to supplement damaged sense organs.

Consider the matrix of potential sensory transformation in Table 1 as an aid to exploring how sensory transformation can be applied to correct a sensory deficient or to augment a person’s normal abilities. The matrix is an over-simplification to the extent that each sense may take on several variables or may be modulated. For example, hearing may involve the perception of pitch, amplitude, and direction, and vision can encompass color, intensity, movement, and size.

A prominent feature of the transformation matrix is that it is sparse—with a few prominent exceptions, sensory transformation is largely unexploited. There is the familiar light organ that transforms sound to either fluctuations in LED bar graphs or dynamic displays in Apple iTunes or Microsoft Media Player. Computer-controlled haptics interfaces provide virtual screen objects with realistic mass, elasticity, and momentum. Flight attitude indicators supplement a pilot’s vestibular system by showing attitude and an artificial horizon. As suggested by the matrix, useful transformations can be performed within a given sense, such as augmenting hearing by transforming high frequency audio signals into signals within the normal range of human hearing, or transforming infrared light to visible light.

One reason for the relatively few sensory transformations in everyday use is the lack of appropriate sensors and transducers. My latest focus in esoteric sensors is on the various light sensors from Texas Advanced Opto-Electronic Solutions (TAOS, www.taosinc.com) and Texas Instruments (www.ti.com), including light-to-voltage and light-to-frequency chips and a variety of color sensors. Light-to-frequency chips convert light intensity to a microcontroller-compatible pulse train with a frequency proportional to light intensity. With a microprocessor on the sensor output, light intensity can be easily converted to sound, color shift, smell, or pressure, given an appropriate transducer.

Another reason for the lack of sensory transformations is the difficulty in determining what is practical and useful in everyday life. One area of active research and development is medicine. Consider a diabetic with the inability to detect pain in his feet because of the loss of sensation (diabetic neuropathy). Because of this loss of sensation, diabetics often neglect sores, cuts, and bruises on their feet, resulting in infections and, in some cases, gangrene. However, pressure sensors in the shoes or shoe inserts of a diabetic could transform a sudden pressure gradient—ordinarily perceived as pain—into a prick or modest electric shock on the leg, an audible alarm, a flashing light, or even an odor.

Study the matrix in Table 1, devise your own applications, and then dive in with the appropriate sensors, transducers, and microcontrollers. And don’t be constrained by the matrix—many useful assistive devices add new senses. For example, a talking compass or GPS provides direction and location information that a normal person can’t determine from his innate senses.

If you’d like a ready source of inspiration, google “synesthesia.” People with this condition experience sensations seemingly unrelated to the initial stimulus. For example, a particular sound may evoke the visualization of a color—akin to a built-in light organ.
The NetBurner Eclipse Ethernet Development Kit

Only $99

Featuring NetBurner’s Eclipse IDE!
One Click Compile and Load | Intelligent Code Completion | Integrated Debugger

The Complete Hardware and Software Solution
Includes NetBurner MOD5270 Ethernet Core Module
Performance and Memory | 32-Bit CPU | Freescale ColdFire MCF5270 147Mhz | 512K Flash Memory | 2MB SDRAM
Device Connectivity | 10/100 Ethernet | 3 UARTs | I2C | SPI | 47 Digital I/O | SD/MMC Flash Card Support

Communication Software
| TCP/IP Stack | HTTP Web Server | FTP | E-Mail | PPP | Flash File System
Development Software
| NB Eclipse IDE | Graphical Debugger | Deployment Tools | Examples
System Software
| μC/OS RTOS | ANSI C/C++ Compiler and Linker

Product No. | NNDK-MOD5270LC-KIT
Information and Sales | sales@netburner.com
Telephone | 1-800-695-6828
MIM's THE WORD

Paul Verhage’s Near Space column on an “LED Based Photometer” is a very interesting balloon-based project. As Paul explained in his column, LEDs can function as wavelength-selective photodiodes. They exhibit far less drift than silicon photodiodes that employ optical interference filters to provide wavelength tuning. A limitation of using LEDs, however, is that they are generally much more temperature sensitive than silicon photodiodes, as Paul discovered during one of his near space missions.

It’s possible to devise a correction function for an LED photometer that relies on a thermistor or other temperature sensor installed very close to the LED. While there are ways to do this electronically, I prefer a straightforward algorithm and a spreadsheet.

As for wavelength sensitivity of LEDs, blue LEDs I’ve tested tend to respond best to a narrow spike at or near 376 nm and a wide shoulder extending out to perhaps 450 nm. Typical green LEDs respond at about 525 nm and typical red LEDs at 620 nm. The spectral bandpass of green and red LEDs is around 20-25 nm at the half power points. All these numbers are closely related to the device chemistry.

I edit The Citizen Scientist (www.sas.org/itsc) for the Society for Amateur Scientists, and I just checked and found that we have mentioned Nuts & Volts — my favorite electronics magazine — only seven times in recent years. Based on Paul’s columns and various other science projects, it appears that we need to do a better job of informing our readers about the latest science-related Nuts & Volts projects.

Forrest M. Mims III

NEW LIGHT ON COMMUNICATIONS

I was delighted to see the Near Space article by Paul Verhage on the LED based photometer. It not only was a neat solution to a problem that can be costly to solve, but brought back memories and connections with several items, and a famous innovator, from years ago. As a former student in the early 1970s at Drexel University, I was pleased to see the school mentioned as a place to go for a sensing system design. That Forest Mims suggested it reminded me of another connection with this application, to wit: I began experimenting with LEDs in the very early 1970s.

At that time, I was an evening division student at Drexel and in the daytime experiment with using lenses and the new optical fiber from G.E. that Poly Paks sold. I wanted to send audio from my radio to another part of the house to where I could listen without disturbing my sisters sleep with laughter while listening to late night comedy. I eventually tried using an LED as a receiver after getting poor results with sending audio modulation to a photo-transistor. The circuit worked but the cord could pick up light signals from various sources (bare fiber). I decided to try using FM modulation of an RF source and the LED as a transmitter. The generator was of the NE560 family and the receiver an NE561. I had tried for AM and short wave. The low cost detectors didn’t have the bandwidth to handle the signal I wanted to use (455 kHz), but I knew from the LED spec sheets they could easily do this. I tried it and it worked, but I was not able to use it. Oddly enough, I heard later that Mr. Mims and Bell Labs had a patent fight over the use of LEDs as receivers in optical systems of some kind.

Depending on your application, this shift in how a part is used can be the best solution to a problem. I have used LEDs as narrow band sensors for some time, from “mid” infra red through blue-violet, but only occasionally for communications. I should point out that at least one company makes devices as narrow band detectors in the near infrared to match their emitters via using the same semiconductors. This requires very good process control in practice.

Thank you for the excellent article(s).

Earl Bennett

Response: Thanks for the reply, I appreciate it when readers comment.

Continued on page 97
If you think your iPod nano is compact, consider a radio recently developed at the University of California, Berkeley (www.berkeley.edu). Said to be the smallest radio ever built, the nanoradio, which presently operates as a receiver but could work as a transmitter as well, is a single carbon nanotube that operates as a combined antenna, tuner, amplifier, and AM/FM demodulator. (A nanotube, by the way, is a rolled sheet of interlocked carbon atoms that form a tube that is extremely strong and also exhibits some peculiar electronic properties. This one is about 10 nm in diameter and less than 1 m long, making it about 1/10,000 as thick as a human hair.)

The operation is fairly straightforward. When radio waves strike the nanotube, it begins to vibrate. You then apply an electric field, which forces electrons to be emitted from its tip. This current is used to detect the vibrations and thus turn the radio waves back into sound.

In one of the early experiments, team leader Alex Zettl, UC Berkeley professor of physics, and his team successfully transmitted such works as “Layla” (Derek & the Dominos), “Good Vibrations” (Beach Boys), and “Largo” (from the Handel opera “Xerxes”) across a room.

To see and hear for yourself, drop into the Zettl group page at socrates.berkeley.edu/~argon/nanoradio/radio.html. According to the prof, the nanoradio may prove useful in a variety of applications “from cell phones to microscopic devices that sense the environment and relay information via radio signals ... The nanotube radio may lead to radical new applications, such as radio-controlled devices small enough to exist in a human’s bloodstream.”

NANOGENERATOR DEMONSTRATED

The UC Berkeley device described above is powered by a battery, but perhaps its developers should take note of the nanogenerator recently revealed by researchers at the University of Illinois (www.uillinois.edu). Because even the smallest batteries are impractically large for driving micro and nanoscale devices, Prof. Min-Feng Yu has been working on ways of harvesting power from nanoscale mechanical energy.

Toward that end, he and some grad students have created a nanowire that generates a voltage when mechanically deformed. The nanowire is a single crystal of barium titanate (a piezoelectric material used in ceramic capacitors, microphones, and other transducers), approximately 280 nm in diameter and 15 m long.

The wire was placed across a 3 m gap on a test rig and exposed to induced mechanical vibrations. The result was an electrical energy output of 0.3 attojoules (less than a quintillionth of a joule) per vibrational cycle, which is very interesting. However, just for perspective, to run a 100W lightbulb for an hour, you would need about 3.6 x 10²³ of them, so we’re not talking hydroelectric dams here. But with further development, something useful may emerge.

FUEL CELL BREAKTHROUGH

On a more immediately practical level is a breakthrough in fuel cell technology at the University of Houston (www.uh.edu). One of the biggest hurdles in building economical fuel cells to drive electric cars of the
future has been the cost of the catalyst that facilitates the reaction of hydrogen and oxygen. The most common one is platinum, which in November hit a high of about $1,500 per ounce. At that level, powering a small (100 kW) vehicle would run between $2,300 and $3,700 for just the catalyst.

However, Professor Peter Strasser, of UH’s Cullen College of Engineering, has reportedly developed a low platinum alloy that produces four to six times more reaction for the amount of platinum alloy that produces four to six times more reaction for the amount of platinum it contains, thereby bringing the cost down to a level that the auto industry might find more palatable.

The biggest question now is how durable the alloy will prove to be in comparison to the unadulterated metal. According to Strasser, “The initial results show that durability is improved over pure platinum, but only longer-term testing can tell.”

COMPUTERS AND NETWORKING

3D MODELS FROM INTERNET SNAPSHOTs

If you are one of the 10 million members, you already know that Flickr (www.flickr.com) is a photo management and sharing site where users post their favorite snapshots and show them to the rest of the world. Reportedly, it now holds more than a billion images that you can explore by keyword, location, and other parameters, and you can find plenty of anything. For example a search on the keyword “warthog” returned 11,327 results as of this writing.

Now a group at the University of Washington (www.washington.edu) is making novel use of this resource to create virtual 3D models of the world’s famous landmarks, e.g., Notre Dame Cathedral and the Statue of Liberty.

The first step is to download as many as 60,000 photos with a common tag, in this case “Statue of Liberty.” A computer scans through them, keeping images that are deemed useful and dumping those that have obstructions or are of low quality. A UW-developed tool called Photo Tourism then calculates where the photographer was standing, interprets the different views, and creates a 3D reconstruction of the landmark.

The process takes a while; a reconstruction of St. Peter’s Basilica, using 151 photos taken by 50 different photographers, took something less than two hours. But the resulting renderings — although not quite architecturally perfect — are pretty impressive.

Perhaps even more impressive is the ultimate goal, as stated by Steve Seitz, a UW associate professor: “The long-term vision is to be able to reconstruct the detailed geometry of all the structures on the surface of the Earth.”

To make sure all appropriate architectural treasures are included, I’ll be uploading all my snapshots of the Wot-a-Dog restaurant in New Carlisle, OH, which so far has been ignored.

STREAM PROCESSOR INTRODUCED

The news on the hardware side is the FireStream 9170 stream processor and its accompanying software developer kit from Advanced Micro Devices (www.amd.com). The chip, which should be available about the time you read this, is designed to apply the parallel processing power of graphics processing units (GPUs) to the high-performance computing (HPC) market.

The 9170 is billed as the world’s first stream GPU with double-precision floating point capabilities, which gears it up for scientific and engineering calculations. It offers up to 500 GFLOPS of computing power, putting it in the low-end supercomputer category, and yet it consumes less than 150W.

The MSRP is set at $1,999, which should put machines that employ it within the reach of anyone who needs one. Watch for the 9170, coming to a desktop near you.

THINKING ABOUT WORKSTATIONS

On the system level, Lenovo (www.lenovo.com) has introduced its first new Think brand in five years, consisting of the ThinkStation S10 (single processor) and D10 (dual). These are designed for improved performance and reliability in demanding data and graphics-intense environments such as CAD/CAE, oil and gas exploration, design automation, and other fields.

They are based on the Quad-Core Intel® Xeon® processor 5400 series and Intel® Core™2 Extreme processors, built on a new 45 nm technology that offers nearly double the transistor density to boost efficiency and performance.

Lenovo is offering a variety of storage, graphics adapters, memory, and rail kits for the workstations, which also come with a range of ThinkVantage technologies including Rescue and Recovery, Client Security System, and Image Ultra Builder. The machines are base priced at $1,199 and $1,799.

CIRCUITS AND DEVICES

INNOVATIVE DC MOTORS

For electromechanical designs where miniaturization is a critical...
feature, Portescap (www.portescap.com) has introduced the nuvoDisc™ family of flat, brushless DC motors. The footprint is only 32 mm dia. by 11.7 mm length (or 11.8, if the diagram is correct), making them particularly well suited for tight spaces such as in portable respirators and barcode scanners. The high-speed, slotless version is said to reduce vibration and eliminate cogging for smoother operation and better accuracy.

A slotted design is also available for applications requiring detent torque. With speeds of up to 50,000 rpm and mechanical power output of up to 30W (10 Nm of maximum continuous output torque), nuvoDisc claims to deliver the highest efficiency among all miniature DC motors. Prototypes are now available from regional sales offices or the company website.

WIRELESS STEREO HEADSET FOR MUSIC, PHONE

A new offering for people who are concerned about “keeping your sense of style and class — everywhere you go” is the Iqua BHS-702 Bluetooth® Pendant wireless stereo headset from Finland’s Iqua Ltd. (www.iqua.com). Established in 2004 largely by former Nokia employees, its stated mission is to “create state-of-the-art design products that improve the quality of life, enjoyment, and user satisfaction.”

The BHS-702 features A2DP (Advanced Audio Distribution Profile) technology for wireless stereo listening, and it fades the music when a cell call comes in and gives the wearer the option of answering the call or ignoring it via a single pushbutton. A two-hour charge will give you nine hours of talk, seven hours of music, and 150 hours standby time. Early reviews were generally positive, although it has been noted that the pendant configuration puts the microphone too far from your mouth and increases noise as the device scrapes across your clothing. But it is trendy and colorful, so not everyone will care. You can pick one up from the Iqua website for 79 Euros (about $116 at present).
FLIGHT OPERATIONS FACILITY
(PALMDALE, CA)
• A&P Specialists
• Avionics/Electronics Technicians
• Flight Operations Manager
• Ground Training Supervisors
• Aircraft Maintenance Coordinator
• Payload Operator
• Operations Leader (Aircrew Supervisor)
• Standardization/Evaluations Supervisor
• Training Coordinator
• UAV Pilots

R&D FACILITY (ADELANTO, CA)
• Composite Technicians
• Mechanical Engineers
• Project Engineers
• Stress Engineers
• Stress Engineering Supervisors

AIRCRAFT SYSTEMS GROUP
(SAN DIEGO, CA)
• Aerodynamics & Performance Engineers
• Composite Technicians (Assembly)
 (1st & 2nd Shift)
• Composite Technicians (Lamination)
 (1st & 2nd Shift)
• Composite Toolmakers
• Configuration Management Specialists
• Contract Administrators
• Designers (Electrical)
• Drafter/Designers
• Engineering Designers (General)
• Engineering Designers (Propulsion)
• Engineering Designers (Structural Design)
• Engineers (Electrical Test)
• Field Engineer Leads
• Flight Control Engineers
• Flight Technologies Department Heads
• Human Factors Engineers
• Manufacturing Engineers (1st & 2nd Shift)
• Mechanical Engineers
• Payload Integration Engineers
• Production Assembly Supervisors
• Program Managers
• Project Engineers
• Project Managers (Production Control)
• Reliability Engineers
• Software Configuration Engineers
• Software Developers
• Structural Design Engineers
• Systems Engineers
• Technical Writers
• Machinists
• Fabricators

RECONNAISSANCE SYSTEMS
GROUP (SAN DIEGO, CA)
• Quality Engineers
• Electrical Engineers
• Hardware Engineering Manager
• Planners

For full job descriptions for these and other positions available, please visit our website at www.ga-asi.com. U.S. Citizenship or Permanent Residence status required. Positions may be subject to a Government security investigation and must meet eligibility requirements for access to classified information.

Fax resume to: GA-ASI
San Diego Facilities Fax: (858) 525-6585
Palmdale Facility Fax: (661) 789-5686
Adelanto Facility Fax: (760) 530-2501
REFERENCE LOCATION AND JOB TITLE ON YOUR RESUME.

General Atomics Aeronautical Systems, Inc. the world leader in developing and producing remotely piloted aircraft, including the combat proven Predator series for the U.S. Military and Department of Homeland Security, and producer of tactical reconnaissance radar systems, is in search of exceptional candidates in the engineering, program management, manufacturing and flight operations disciplines, for positions available in Palmdale, Adelanto & San Diego.
About three or four times a month, Peter and I meet at one of our favorite restaurants in downtown Burbank, CA, just a stone’s throw from the Warner Brothers and Disney lots. The food is great, the service is great, and they never seem to mind that we will stay at the table long past the pasta, mostly talking about electronics. We usually have a little show-and-tell for each other, sharing current projects and exchanging ideas. The meetings are always educational and, for me, it’s the best way to “do lunch” in Hollywood.

Peter has been incredibly generous with his knowledge, particularly on a subject that I’ve been slow to approach: microcontroller networking. Sure, I’ve done very simple stuff, but having spent that last two Halloweens at Peter’s home watching (with hundreds of others) his incredible animatronics display, I am pushing myself to jump in and give “real” microcontroller networking a go. Lucky for me, I have the benefit of Peter’s experience on this topic, as he’s spent the last several years developing and improving his networked animatronics control system.

Several years back, Peter set out to design a very flexible, fully modular animatronics control system that he could manage from a simple PC. Well, having seen it in action, I can tell you that he succeeded, and you can see for yourself by visiting his website at www.socalhalloween.com. His system runs on an RS-485 network with several types of network nodes; the most sophisticated being the animation controller that is able to receive an animation frame while playing another (the servo control output of the animation controller uses an SX28).

My goals are somewhat less sophisticated than Peter’s, though I’ve had them for quite some time. While I was living in Texas, I read about a man who built an enormous custom home; its size was somewhere on the order of 20,000 square feet. When he consulted the utilities companies, they estimated that his monthly heating and air conditioning expenses would be around $4,000. He figured for that much money he could create a custom home management system and when he did, his energy bills were reduced to under $400 per month. Along the way, he discovered that a lot of “energy efficient” appliances were not performing to their stated specifications and he forced some manufacturers to restate their specs or fix the products.

Today, the concept of “going green” is very popular, and it should be — a penny saved is a penny earned, especially when it’s precious energy. So my system is going to be very straightforward with the ultimate goal to monitor and control my home from a simple PC; making it “smart” and, if I do it well, energy efficient.

As this is the beginning of what I expect to be a long journey, I’m borrowing another one of Peter’s good ideas: I’m creating a prototyping system for an SX-based network node. What this means is that my generic network node...
PCB will have a processor and the RS-485 interface, and a small breadboarding area to add custom circuitry as needed for a given node. Let’s have a look at the hardware.

Figure 1 shows the SX28 processor and RS-485 interface (MAX489 or equivalent). As you can see, it is, in fact, very generic. The design uses port RA for communications and ports RB and RC for I/O that is specific to the node. For the purposes of the rest of this article, my node is going to be a 10-segment LED display. I’m starting with simple hardware so that I can get my head around the requirements of managing network messages.

The node has dedicated RX and TX pins for the RS-485 link, so we can tie the MAX489 Receive Enable (/RE) pin to ground; that way, the SX will always be “listening.” On the other side, however, we will want to selectively activate the Data Enable (DE) pin so that RS-485 output from the node is active only when transmitting.

Figure 2 shows the power supply and RS-485 connections. Using RJ-45 jacks allows us to transmit full-duplex data on inexpensive CAT-5 cables. We can even put power on the cable to handle low-current nodes. When taking power from the CAT-5 cable, jumpers JP1 and JP2 should be installed. Otherwise, they should be removed. If using local power, you must remove JP1 – please be careful with this.

Jumpers JP3 and JP4 enable the line terminators. If a node is the last on the “receive” end, then JP3 should be installed, otherwise removed. If the node is the first on the “transmitting” end, that is, this node is the “master,” then JP4 should be installed. I’m using a PC as my master node but there’s no reason we can’t have a network of SX-only nodes, with one being assigned as the master controller.

Okay, the hardware is very simple, and that’s by design as this is a prototyping system. One problem I did run into is the hole-count limitation when using ExpressPCB’s mini board service. After getting my components laid out, I just filled as much [logical] space as possible with standard pads. As I went to order boards, I got a dialog that informed me I had too many holes for a mini board — so keep this in mind when you’re prototyping with ExpressPCB.

Since most of my projects involve the SX, I’ve become very comfortable with “virtual peripherals” and have created several code modules that I plug in as needed. A couple modules that get a lot of use in what I do are the buffered receive and transmit UARTs; these modules allow us to receive and transmit serial data in “the background” while our foreground code is doing other things. The receive UART for this project is a buffered version of what we used in the lighting controller we did last November. This project uses the complimentary transmit UART that has a little addition to manage the MAX489 DE pin. Let’s look at the modifications for controlling the MAX489.
One of the great aspects of SX/B is the ability to easily fold assembly code segments into a BASIC program—what I did here; the UART code is really a modification of that found in Günther Daubachs’ excellent book, *Programming the SX Microcontroller*. I modified the buffering to work within the same RAM bank as the other transmit variables and, for this project, included control of the MAX489.

In the section at **TX_Buffer**, the DE pin (called TxEnable in the program) is taken high with *SETB* when a byte is about to be moved from the transmit ring buffer into the transmitter output (txHi). Since this byte won’t start going out until the next interrupt, there is plenty of time for the DE pin to stabilize. The DE pin will stay high until the transmit buffer is empty (txBufCnt is 0) and there are no more bits to be transmitted (txCount is 0).

Okay, now that we can receive and transmit bytes in the background, it’s time to talk protocol. The neat part about this is we get to make it up, which, in fact, turns out to be the tough part too; sometimes it’s just easier to work from an established specification. In my case, I borrowed quite a lot from Peter’s protocol, making a few changes that simplify the system and tie into my long-term goals.

The protocol is, essentially, peer-to-peer, so any node can talk to any other node. This opens the door to all kinds of interesting possibilities. The “sender” node will transmit a four-byte header that is followed by a data packet if required for the specific message. The entire transmission is configured as follows:

Receiver
- Receiver node (1 to 127) + $80
 - to designate start of header

Sender
- Node sending the packet (1 to 127)

Message
- Request or Command Message

Packet Size
- Number of bytes in data packet (0 to n)

Data Bytes
- Data used by Message (optional)

The minimum transmission size will be four bytes (the header): the receiver, the sender, the message, and a zero when there are no data bytes. The receiver address will have BIT7 set to designate the start of a new header—the MIDI protocol uses this strategy and we’re going to borrow from it.

The node we’re going to create will be a simple I/O slave that will respond to (valid) commands and requests from another node. We’ll use a VB program to send the messages from a PC. Since the node is a slave, it waits for bytes to show up in the receive buffer and then processes them accordingly. The first part handles the basic message header.

```
Main:
  rxNode = RX_BYTE
  IF rxNode.7 = 0 THEN Main

Validate_Start:
  rxNode.7 = 0
  IF rxNode = GLOBAL_NODE THEN Get_Sender_Node
  IF rxNode <> MY_NODE THEN Main

Get_Sender_Node:
  txNode = RX_BYTE
  IF txNode.7 = 1 THEN
    rxNode = txNode
    GOTO Validate_Start
  ENDIF

Validate_Global_Sender:
  IF rxNode = GLOBAL_NODE THEN
    IF txNode <> MASTER_NODE THEN Main
  ENDIF

Get_Message:
  msgNum = RX_BYTE
  IF msgNum.7 = 1 THEN
    rxNode = msgNum
    GOTO Validate_Start
  ENDIF

Get_Packet_Length:
  packLen = RX_BYTE
  IF packLen.7 = 1 THEN
    rxNode = packLen
    GOTO Validate_Start
  ENDIF
```

When a byte comes in, we need to check to see if BIT7 is set as this indicates the start of the header. When we get such a byte, BIT7 is cleared and we pull the next byte from
the input buffer — this is the sender node. If the receive node was designated as global (address 0), the program ensures that the sender was the master; in my system only the master node is allowed to send global commands. Finally, the message number and packet length bytes are pulled from the stream.

Since it is possible for a transmission to be interrupted and then restarted, we must test every byte that comes in for BIT7 being set. By doing this check, we can always re-sync the node with the start of a new header.

If the command or request includes data, the packet length byte will be one or greater. I don't expect to have long packets in my home control system so the buffers are fairly small. Here's how we receive any data bytes.

```
RX_Raw_Packet:
idx = 0
DO WHILE idx < packLen
  tmpB1 = RX_BYTE
  IF tmpB1.7 = 1 THEN
    rxNode = tmpB1
    GOTO Validate_Start
  ELSE
    fifo(idx) = tmpB1
    INC idx
  ENDIF
LOOP
```

As above, each new byte is checked to ensure it's not a header start byte; if not, it gets moved into a temporary array called fifo().

I know what you're thinking: “If we can’t use BIT7, how do we transmit values greater than 127?” We’re going to borrow another strategy from MIDI and use two bytes: The first byte will contain the lower seven bits of the eight-byte value and the second byte will hold BIT7. Remember, we don’t always need all eight bits for a given command, so we only use this scheme when an eight-bit value is required.

After receiving the packet and any data bytes, we will use a simple routing section to process the incoming transmission. By doing this, we end up simplifying the message handlers.

```
Route_Message:
  IF msgNum = QRY_REQ THEN Unit_Acknowledge
  IF msgNum = DEV_RST THEN Device_Reset
  IF msgNum = SET_BIT THEN Set_One_Bit
  IF msgNum = GET_BIT THEN Get_One_Bit
  IF msgNum = WR_PORT THEN Write_Port
  IF msgNum = RD_PORT THEN Read_Port
  ' if we get here, message is not used by this node
Bad_Message:
  msgNum = MSG_NAK
  packLen = 0
  GOTO Unit_Reply
```

No mystery here: If the message is known to be used by this node, then the program is routed to the appropriate handler, otherwise the response MSG_NAK is returned to the sender. Since we're now dealing with messages, let's have a look at what's defined and explain the logic behind them.

<table>
<thead>
<tr>
<th>Message</th>
<th>Command</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRY_REQ</td>
<td>CON</td>
<td>$01</td>
</tr>
<tr>
<td>QRY_ACK</td>
<td>CON</td>
<td>$02</td>
</tr>
<tr>
<td>MSG_ACK</td>
<td>CON</td>
<td>$03</td>
</tr>
<tr>
<td>MSG_NAK</td>
<td>CON</td>
<td>$04</td>
</tr>
<tr>
<td>MSG_FAIL</td>
<td>CON</td>
<td>$05</td>
</tr>
<tr>
<td>DEV_RST</td>
<td>CON</td>
<td>$0F</td>
</tr>
<tr>
<td>SET_BIT</td>
<td>CON</td>
<td>$10</td>
</tr>
<tr>
<td>GET_BIT</td>
<td>CON</td>
<td>$11</td>
</tr>
<tr>
<td>GET_BIT_ACK</td>
<td>CON</td>
<td>$12</td>
</tr>
<tr>
<td>WR_PORT</td>
<td>CON</td>
<td>$20</td>
</tr>
<tr>
<td>RD_PORT</td>
<td>CON</td>
<td>$21</td>
</tr>
<tr>
<td>RD_PORT_ACK</td>
<td>CON</td>
<td>$22</td>
</tr>
<tr>
<td>WR_CHAN</td>
<td>CON</td>
<td>$30</td>
</tr>
<tr>
<td>RD_CHAN</td>
<td>CON</td>
<td>$31</td>
</tr>
<tr>
<td>RD_CHAN_ACK</td>
<td>CON</td>
<td>$32</td>
</tr>
</tbody>
</table>

The first message, QRY_REQ, is used by the sender to “ping” the receiver; if the receiver is present then it responds with QRY_ACK. The next four messages are used to respond to commands or requests for data from the receiver. If a node is able to complete a request and there is no data to be returned, then it will respond with MSG_ACK. If the message sent isn’t used by the node, then the response is MSG_NAK. If a valid message is sent with bad data (e.g., a bad port number), then the response will be MSG_FAIL. The final message in this lower group, DEV_RST, will usually be issued by the master to tell a node to reset itself.

For a simple I/O node, I’ve defined three sets of commands: one for bit-level control, one for port-level control, and a third for setting values (called channels) within the program space. The set and write commands will respond with MSG_ACK, MSG_NAK, or MSG_FAIL as appropriate. The get and read commands have dedicated responses for the return data; the logic being this aids the “sender” side of the exchange when a lot of packets are flying around.

Let’s have a look at a few of the handlers.

```
Unit_Acknowledge:
  msgNum = QRY_ACK
  packLen = 0
  GOTO Unit_Reply
```

The Unit_Acknowledge handler is the simplest: it sets the message to QRY_ACK, the return packet length to zero, and then sends the reply. The reason for this process is to allow a master to poll all the expected slave devices to ensure that they’re actually online; there is no reason for sending command messages to a node that is not connected.

Now for something a little more interesting. We’ll accept a level for one of the I/O pins on the node. I happened to find a 10-segment bar-graph LED in my junk drawer so I soldered that onto the PCB. With just 10 LEDs on the node, the handler will only accept bit numbers between 0 (on RB.0) and 9 (on RC.1) — if you use more outputs, be sure to adjust the code accordingly.
The `Set_One_Bit` function pulls the bit number and bit level from the `fifo()` array. This message doesn’t use “stuffed” data bytes as the 127 limit exceeds the pin count on the SX48. Now, if you want to add shift-registers so that there are more than 128 discrete outputs on the node, then you’ll need to modify this handler to accommodate the expansion.

The first test is of the bit number. Assuming it’s valid for the node, the program determines which I/O port (RB or RC) holds that bit. A mask is created and if BIT0 of the specified level is one, the mask is ORed with the control port which makes the I/O pin go high. If BIT0 of the specified level is zero, the mask is inverted and then ANDed with the control port which makes the I/O pin go low. The node will return MSG_ACK after the bit is manipulated — unless the bit number was bad — then it will return MSG_FAIL.

The `Write_Port` message requires three data bytes: the port number and two (seven-bit) bytes that make up the eight-bit value for the specified port. The first check, of course, is the port number. On my little I/O node RB is defined as port 0 and RC as port 1. If the specified port number is greater than one, then we will abort with a MSG_FAIL response.

When the port number is valid, then we’ll use `fifo(1)` and `fifo(2)` to reconstruct the eight-bit value with `PACKW_TO_VAL`. This function expects two seven-bit values passed LSB, then MSB, and will return a properly reconstructed word. In our program, we’ll only be using he low byte of the returned word, but you can reuse this code in a MIDI application as it will properly handle 14-bit values.

```
FUNC PACKW_TO_VAL
    tmpW1 = __WPARAM12
    tmpW1_LSB = tmpW1_LSB << 1
    tmpW1 = tmpW1 >> 1
    RETURN tmpW1
ENDFUNC
```

Reconstructing a clean, 14-bit value from two seven-bit values is pretty easy. We move the bytes into `tmpW1` and then shift the lower byte left by one to close the gap at BIT7. Now we can shift the entire word right by one to re-align everything to BIT0. That’s it; the 14-bit value is reconstructed and can be returned to the caller.

The `Write_Port` handler will route the reconstructed byte to the appropriate port based on the contents of `fifo(0)`. Since I’m only using two bits on RC, the value is masked before it’s written to that port.

The `Read_Port` handler allows us to read the state of a port on the SX. The sender will pass the port number and expects to get three data bytes back: the port number and two seven-bit bytes that will be reconstructed into a single eight-bit port value.

```
FUNC VAL_TO_PACKW
    tmpW1_LSB = __WPARAM12
    tmpW1_MSB = tmpW1_MSB << 1
    tmpW1 = tmpW1 >> 1
    RETURN tmpW1
ENDFUNC
```

This routine uses the `VAL_TO_PACKW` function to split the byte value into two seven-bit containers. To keep things
simple, we’ll use a word variable to receive the return value from VAL_TO_PACKW.

```
FUNCT VAL_TO_PACKW
  IF __PARAMCNT = 1 THEN
    tmpW1 = __PARAM1
  ELSE
    tmpW1 = __WPARAM12
  ENDIF
  
  tmpW1 = tmpW1 << 1
  tmpW1_LSB = tmpW1_LSB >> 1
  tmpW1_MSB = tmpW1_MSB & $7F
  RETURN tmpW1
ENDFUNC
```

This function is set up to accommodate bytes or words so that we can also use it in future MIDI applications. The value to split is moved into tmpW1 and then shifted left. This moves BIT7 of the lower byte into BIT0 of the upper. The next step is to shift the lower byte right by one to realign its BIT0; BIT7 of the low byte will now be 0 as required by the protocol. The final step is to ensure that BIT7 of the high byte is clear before returning the new value.

We will move the low byte of the return value to fifo(1) and the high byte to fifo(2) – fifo(0) already holds the port number so we don’t have to change that. The message is set to RD_PORT_ACK, the packet length to three, and then we send the response.

While chatting with Peter about networking, he told me – and he was – that designing these kinds of projects can turn into a bit of a chicken-and-egg dilemma. Testing a node requires another node, and writing the code for that requires specifications on both ends. Case in point is when I was sending a bad port number from my PC node; the slave node originally sent a MSG_FAIL packet (just four bytes), but my PC node was expecting success and waiting for seven.

To keep things easy — and easy is usually best — the slave node will always have a three-byte packet for RD_PORT, even if the return message is MSG_FAIL. The port number is maintained so the master node can deal with it, and the incoming transmission processing is simplified by assigning an expected return message length to each command.

You’ve probably noticed that all message handlers jump to a routine called Unit_Replay. Here it is:

```
Unit_Replay:
  IF rxNode = MY_NODE THEN
    rxNode = txNode | $80
    TX_BYTE rxNode
    TX_BYTE MY_NODE
    TX_BYTE msgNum
    TX_BYTE packLen
    idx = 0
    DO WHILE idx < packLen
      TX_BYTE fifo(idx)
      INC idx
    LOOP
  ENDIF
  GOTO Main
```

The only time a node will send a response is when the node is individually addressed. A node could, for example, send a message to the global address of 0 that all nodes react to; in this case, there will be no responses from the nodes as they would likely end up stomping on each other and the messages would be trashed. You can see that Unit_Replay takes the sender node address and turns it into the header start byte by setting BIT7.

Okay, now we have the makings of a reasonably sophisticated control network using the SX, and can do all kinds of cool things with it. Figure 3 shows my first prototype node along with a port-powered RS-485 interface, and Figure 4 shows the VB test node for experimenting with messages (the compiled program and source code is included in the download files for the article). In the Query frame, you can see four primary values; these comprise the message header. The middle row of inputs allows for uncompressed data. The lower row of [red] boxes shows the actual packet bytes transmitted to the receiver node. The Response frame is similarly constructed, except that the middle line holds seven-bit “packed” values and the lower
THE BIG SQUEEZE

At some point, you will probably want to create a node that requires more than one eight-bit value for a message and you don’t want to use two bytes for each. Peter came up with a neat compression solution for his network and I've created it so I can use it. Have a look at Figure 5 to see how Peter compresses several eight-bit values into seven-bit containers.

Since we will typically manipulate blocks of values, I created a subroutine called UNSQUEEZE that will take two bytes from an input buffer and move them into a single byte of an output buffer. To use this routine, we will pass a pointer to the start of the input buffer, an offset for the desired value, and a pointer to the start of the output buffer.

```
SUB UNSQUEEZE
    src = __PARAM1
    offset = __PARAM2
    dest = __PARAM3

    src = src + offset
    dest = dest + offset

    dByte = __RAM(src)
    dByte = dByte >> offset
    INC src

    dbMSB = __RAM(src)
    offset = 7 - offset
    dbMSB = dbMSB << offset
    dByte = dByte | dbMSB

    __RAM(dest) = dByte
ENDSUB
```

With UNSQUEEZE, the eight-bit value will be split based on its position in the output array, with the lower half ORed into the output array so that any previous values there are not disturbed. Let me suggest that the FILL subroutine be used to clear the output array before looping through the input array in order to create the compressed packet. It’s a little bit of code, but now we can send seven full bytes using eight instead of 14, and this can be important if we have a lot of network traffic.

Okay, I think we should probably wrap it up right here. Order your boards, build a simple node, and start experimenting. I’d love to hear your ideas on home control, especially those ideas that allow us to conserve energy.

Until next time, Happy Networking with the SX! NV

JON WILLIAMS
jwilliams@efx-tek.com
PARALLAX, INC.
www.parallax.com

[green] boxes hold the reconstructed bytes.

PARTS LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>47 μF</td>
<td>647-UVR1V470MDD</td>
</tr>
<tr>
<td>C3, C4</td>
<td>0.1 μF</td>
<td>80-C315C104MSU</td>
</tr>
<tr>
<td>D1</td>
<td>LED</td>
<td>859-LTL-4222N</td>
</tr>
<tr>
<td>J1</td>
<td>2.1 mm barrel</td>
<td>806-KLDX-0202-A</td>
</tr>
<tr>
<td>J2-J3</td>
<td>RJ-45 R/A</td>
<td>571-5202514</td>
</tr>
<tr>
<td>J4</td>
<td>Machine pin</td>
<td>506-S10-A91D</td>
</tr>
<tr>
<td>JP1-JP4</td>
<td>Pin strip header</td>
<td>517-611T</td>
</tr>
<tr>
<td>Jumper</td>
<td>0.1” shunt</td>
<td>538-15-29-1024</td>
</tr>
<tr>
<td>PB1</td>
<td>N.O. button</td>
<td>612-TL59F160Q</td>
</tr>
<tr>
<td>PCB</td>
<td>ExpressPCB.com</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>1K</td>
<td>299-1K-RC</td>
</tr>
<tr>
<td>R2-R4</td>
<td>10K</td>
<td>299-10K-RC</td>
</tr>
<tr>
<td>R5</td>
<td>100 1/2W</td>
<td>293-100-RC</td>
</tr>
<tr>
<td>R6-R7</td>
<td>120Ω</td>
<td>291-120-RC</td>
</tr>
<tr>
<td>RES1</td>
<td>20 MHz</td>
<td>Parallax 250-02060</td>
</tr>
<tr>
<td>S1</td>
<td>28-pin DIP</td>
<td>571-1-390261-9</td>
</tr>
<tr>
<td>S2</td>
<td>14-pin DIP</td>
<td>571-1-390261-3</td>
</tr>
<tr>
<td>SW1</td>
<td>Slide switch</td>
<td>506-SSA12</td>
</tr>
<tr>
<td>U1</td>
<td>SX28AC/DP</td>
<td>Parallax SX28AC/DP</td>
</tr>
<tr>
<td>U2</td>
<td>MAX489</td>
<td>837-ISL8489IP</td>
</tr>
<tr>
<td>VR1</td>
<td>LF50CP</td>
<td>511-LF50CP</td>
</tr>
<tr>
<td>X1</td>
<td>R/A header</td>
<td>517-511T</td>
</tr>
</tbody>
</table>

Note: All part numbers are from Mouser unless otherwise noted.

FIGURE 5. Byte packing.
Renesas Technology
No.1* supplier of microcontrollers in the world

introduces R8C/Tiny Series of microcontrollers for low-end motor control applications. Advanced motor-tuned timers coupled with R8C/Tiny’s powerful 16-bit CPU provide the performance demanded by applications ranging from electronic toothbrushes to networked motor arrays in industrial automation.

R8C/Tiny Product Lineup

Top Reasons For Selecting R8C/Tiny's Motor Control Solutions

• High-Performance
 - 16-bit CPU core with hardware multiplier
 - Up to three 16-bit timers with 40MHz clock
 - 3.3μs ADC conversion with timer-trigger start option

• Advanced Motor-Tuned Timers
 - Up to 6-ch complementary PWM signals with independent compare registers
 - Programmable Dead-Time Control (16-bit)
 - Selectable buffer operation for fast timer reload
 - PWM signal shut-off using external trigger

• High Component Integration
 - Integrated LIN and CAN modules for networking
 - Watchdog with dedicated On-chip Oscillator
 - Power-on Reset, Voltage Detection Circuits and Data Flash

• Outstanding Development Support
 - Multiple motor control algorithms
 - Demonstration and reference design platforms

*Source: Gartner (March 2007) "2006 Worldwide Microcontroller Vendor Revenue" G007146

Get Started Today -
Go online and register to be eligible for a FREE R8C/Tiny Starter Kit *

www.america.renesas.com/ReachR8C/e

*Only available to customers in North and South America

Renesas Technology Corp.
Did You Know...

The Solution!

Visit www.ramseykits.com
Free Giveaways and ALL the information you ever Needed!

USB Experimenters Kit
Learn how USB works!
Get hands-on experience developing USB interfaces! 5 digital inputs, 8 digital outputs, 2 analog I/O's! Includes diagnostic software and DLL for use with Windows based systems. The mystery is solved with this kit!
K8055 USB Exp. Kit $49.95

High Power LED Strobe
Super bright LED’s!
The fragile glass Xenon tube is gone, replaced with high intensity LED’s Variable flash rate and built-in audio trigger input to sync to your audio. Additional display boards also available. Runs on 12VDC or use our AC125 PS.
L651C LED Strobe Kit $44.95

Personal Guitar Amp
Brand new, popular choice!
The new PGA1 allows you to practice both your regular and bass guitars in peace! Also works as a great DI to feed your home stereo amplifier! CD/MP3 input allows you to play to your favorite music. Includes case shown!
PGA1 Guitar Amp Kit $64.95

ECG Heart Monitor
ECG1C ECG/EKG Kit $44.95

Plasma Generator
IG7 Ion Gen Kit $64.95

HV Ion Generator
High Power LED Strobe

Digital Voice Storage
Multiple message storage!
The Bullshooter-II provides up to 8 minutes of digital voice storage that can be broken down into 8 separate stored messages! Great for announcements, etc. Built-in mic plus external input. Runs on 12VDC or our AC125 PS.
BS2C Bullshooter-II Kit $69.95

Speed Radar Gun
Now YOU can be the cop!
Our famous Speedy radar gun teaches you doppler effect the fun way! Digital readout displays speed in MPH, KPH, or FPS. 1/8th mile range is typical. You supply two coffee cans! Runs on 12VDC or our AC125 PS.
IG7 Speedy Radar Kit $59.95

Doppler Direction Finder
Find that transmitter quick!
Track down jammers and hidden transmitters with ease! 22.5 degree bearing indicator with adjustable damping, phase inversion, scan and more. Includes 5 piece antenna kit. Runs on 12VDC vehicle or battery power.
DDF1 Dir. Finder Kit $169.95

Touch-Tone Reader
Read the number dialed!
The Tone Grabber captures dialed phone numbers, repeater control, code controls, or anything that uses touch-tone signaling. Flash micro stores 640 digits! Phone line and audio inputs. Runs on 12VDC or our AC125 PS.
TG2C Tone Grabber Kit $69.95

Signal Magnet Antenna
Pulls in distant stations!
Super Hi-Q ferrite rod antenna with Faraday shield eliminates noise from power lines, dimmers, static and more! Great results from 500kHz to 15MHz. Super for AM broadcast band! Includes power supply.
SM100 Sig Magnet Kit $89.95

Tickle-Stick
The kit has a pulsing 80 volt tickle output and a mischievous blinking LED. And who can resist a blinking light? Great fun for your desk. "Hey, I told you not to touch!"
Runs on 3-6 VDC
T54 Tickle Stick Kit $12.95

Super Snoop Amplifier
Super sensitive amplifier that will pick up a pin drop at 15 feet! Full 2 watts output. Makes a great "pig ear" microphone. Runs on 6-15 VDC
BN9 Super Snoop Amp Kit $9.95

Dripping Faucet
Produces a very pleasant, but obnoxious, repetitive "plink, plink" sound! Learn how a simple transistor oscillator and a 555 timer can make such a sound! Runs on 4-9 VDC.
EDF1 Dripping Faucet Kit $9.95

Touch Switch
Touch on, touch off, or momentary touch hold, your choice! Uses CMOS technology. Runs on 6-12 VDC and drives any load up to 100 mA.
TS1 Touch Switch Kit $9.95

Voice Switch
Voice activated (VOX) provides a switched output when it hears a sound. Great for a hands free PTT switch, or to turn on a recorder or light! Runs on 6-12 VDC and drives a 100 mA load.
V51 Voice Switch Kit $9.95

LED Blinky
Our #1 Mini-Kit for 31 years! Alternately flashes two jumbo red LED's. Great for signs, name badges, model railroading, and more. Runs on 3-15 VDC.
BL1 LED Blinky Kit $7.95

DTMF Tone Decoder
Decodes DTMF Touch Tones from telephones, radios, etc. 200mA output drives relays, LEDs, digital devices, and more. Decodes 0-9, *, #, A, B, C, D. Runs on SVDC or U9 4.5VDC
TT7 DTMF Decoder Kit $24.95

Stereo Super Ear
The stereo Super Ear features an ultra high gain audio amp with two sensitive microphones! Boosts audio 50 times! Includes volume control. Runs on 3 AAA batteries.
MK136 Stereo Super Ear Kit $9.95

Light Activated Switch
Save electricity and have your devices turn off at dusk, on at dawn! Closes an on-board SPDT relay. Adjustable sensitivity over a wide range. Runs on 12-15VDC.
MK125 Light Activated Switch Kit $8.95

Water Sensor Alarm
The sump pump quits—and what do you do? You don’t live in the basement! This cute little sensor detects water and sounds an alarm to let you know! Simply mount the alarm contacts in the area you want to detect. The sensor section can even be remotely located from the alarm! Runs on a standard 9V battery (not included).
MK108 Water Sensor Alarm Kit $7.95

20W SubMini Audio Amp
20 watts and no heat!
Delivers a super clean 20W output from one 5MT package! Ultra efficient class D design produces no heat. PCB can be snapped into a small circle for special no heat. PCB can be snapped into a small circle for special applications. Runs on a safe 9VDC battery.
ECC1C ECC/EKG Kit $44.95

MK125 Light Activated Switch Kit $8.95

High Power LED Strobe
Super bright LED’s!
The fragile glass Xenon tube is gone, replaced with high intensity LED’s Variable flash rate and built-in audio trigger input to sync to your audio. Additional display boards also available. Runs on 12VDC or use our AC125 PS.
LDDC1 LED Strobe Kit $44.95

Personal Guitar Amp
Brand new, popular choice!
The new PGA1 allows you to practice both your regular and bass guitars in peace! Also works as a great DI to feed your home stereo amplifier! CD/MP3 input allows you to play to your favorite music. Includes case shown!
PGA1 Guitar Amp Kit $64.95

Did You Know...
The Solution!

Visit www.ramseykits.com
Free Giveaways and ALL the information you ever needed!
Learn and build!
Includes SMT training sessions
Build an IC based radio with
Regulated lab power supply
Learn all about AM and FM
Learn SMT soldering the easy way!
130, 200, 300, and 500 in one!
End up with a neat “Decision Maker”!
You're going to have to go there some day, so it might as
well be now! Virtually all electronic designs have gone to Surface
Mount Technology. SMT components are small, at times the size of a
pin head, and require very special skills to assemble and solder. With a
pair of good eyes, a magnifying glass, and a fine tip soldering iron, you
will learn exactly how SMT components are
attached to PC boards, how they work, and how to do it!
SM200K SMT Practical Soldering Course & Kit $22.95
This kit takes you through all that, including soldering, desoldering, removing, and
component placement. When you're done, you have a neat electronic Decision
Maker you can use! Even includes flashing SMT LEDs! Requires a 9V battery.

3-in-1 Multifunction Soldering Lab
RohS compatible soldering station!
Regulated lab power supply
Everything all in one unit!
Anyone who has worked with elec-
tronics knows the hassle of dealing
with various bulky devices needed to get
the job done. This brand new 3-in-1 lab kit gives you the most commonly
required tools in one amazing compact package!
Take a close look! On your left is a multi-function 3½ digit digital multimeter. Its
large backlit LCD display can be seen from anywhere on your bench while you're
working. The DMM also features built-in transistor, diode, and continuity testing,
data hold, and audible alarm.
Next up, the regulated lab DC power supply. Switch selectable ranges of 3V, 4.5V,
6V, 7.5V, 9V, and 12V provide a continuous duty current of 1.5 amps with a 2 amp
peak! Features both overload protection and overload indication.
To the right we have a high quality temperature regulated soldering station. One
would think there's not much to say about a soldering station but are you
wrong there! The 24V low voltage iron features an isolated ceramic 48 watt temperature
controlled element. Front panel control gives you variable tip temperature control
from 150°C to 450°C (300°F to 840°F) and LED indication of power-on and heating-
on. It gets even better...it is designed to maintain the temperature required for lead
free soldering! If you’re looking for the latest and the greatest...this is it! 120VAC
LAB1U 3-in-1 Multifunction Soldering Lab $129.95
FREQUENCY DIVIDER

Q I need a circuit to produce 3250 Hz and 65 Hz at the same time. I don’t know if a CD4040, CD4060, or a PIC will do it; 50% duty cycle would be nice.

— Craig Sellen

A If you want crystal control, the frequency of the oscillator should be above 1 MHz for least cost. You need two dividers to get two arbitrary frequencies, so I will use the CD4040 twice. The oscillator frequency has to be divisible by both numbers, so multiplying 65*3250*6 = 1.267500 MHz. Multiplying by 5 also is above 1 MHz but requires more gates to decode. You could order a custom crystal but I will design using an R-C oscillator. A divide by 2 is needed to get 50% duty cycle, so I will use a CD4013 dual D flip-flop.

In Figure 1, the first divider output is 6,500 Hz. The decoder taps on the divider are found by determining the division ratio (195) and subtracting the largest power of 2 that will fit until the remainder is 1 (195-128-64-2). The taps are at the first, sixth, and seventh flip-flop in the divider. A divide by 2 provides the 3,250 Hz signal which is then divided down to 130 Hz in the CD4040 IC. The division ratio is 25, so 25-16-8-1 and the taps are at the third and fourth flip-flops of the CD4040. A divide by 2 gives the 65 Hz output. A CD4024 seven stage counter could have been used instead of the CD4040.

TRANSFORMER CURRENT

Q Several months prior to his untimely demise, TJ Byers stated in the Q & A column, in answer to a reader’s question about power supplies, that current in a transformer is not a sine wave. Mr. Byers did not elaborate on that subject as he was answering a somewhat different question, but it raised questions in my mind as to what current in a transformer truly is, if not a sine wave. I have been patiently waiting for some other reader to re-raise the question to see if you could tell us what current in a transformer truly is, if not a sine wave.

To me, that makes sense as current and voltage are traded back and forth in a transformer and we calculate that trade-off via the 60 Hz sine wave. How is it that the current is not a sine wave? I don’t quite get that. Could you please elucidate?

— Charles R. Rhines

A I believe Mr. Byers was speaking of a transformer driving a rectifier in a power supply. Without getting into nit-picking details of transformer nonlinearity and effects of nonlinear loads on the source voltage, the current in the power supply transformer pulses and is not sinusoidal.

Consider the case of a full wave circuit with an output capacitor and DC load as in Figure 2. The upper (blue) line is the output voltage; the lower line is the primary current (scale on the right). The capacitor is slowly discharged by the load; the rectifier replenishes the voltage only at the peak of the waveform. It was common in the old days to put an inductor in series between the rectifiers and the capacitor to make the pulses widen (see Figure 3).

I am as perplexed now as I was then: If current in a transformer is not a sine wave, how does one go about calculating how much current is available when the AC is rectified? Since voltage is very definitely a sine wave and the DC value is markedly different from the AC value, it stands to reason the DC value of the current would follow the same rules.

Note that the output voltage is smoother, takes longer to reach a steady state, and the primary current pulses are wider. In fact, it is possible to make the inductor large enough that the current is sinusoidal, but I have never seen it done.
I have a question that I've been trying to figure out for the past six months. Any advice you might have will be greatly appreciated.

I live in the woods and use 12V batteries for power. I have a bunch of music equipment like pedals and samplers that run off of nine volts (mostly 500 mA) and I would like to make a converter 12V to 9V DC. Do you think it would be fine to just use a resistor? Do you have a simple schematic to recommend?

I found one that uses an ECG184, but I am not sure if it will put out the 1.5 amps that I would require to use three pedals at once.

— Annie
To use a resistor, a known constant load is required. In your case, the load varies so the resistor will not work. The ECG184 is okay, but it does not have a hole to fasten it to a heatsink and it is an NPN. I prefer to use a PNP in this application in order to have negative common. Another solution would be to use a switching regulator, but it would be complicated and no advantage unless the efficiency was better than 75%.

In Figure 4, the PNP transistor dissipates 4.5 watts (3V X 1.5A), so a heatsink is needed. The heatsink in the parts list is rated 32 degrees C rise at six watts, so it will be adequate. The LEDs — D1 and D2 — are green to give the proper voltage drop. Connecting them in parallel is not recommended but in this case, the normal current will not exceed the rating of one LED; the second is just for safety. The resistor, R1, is just to provide a path for the leakage current of the two LEDs.

You can build it on perf board, soldering the leads together.

DIMMING THERMOSTAT

I want to build a dimming thermostat type circuit to control a 50 to 100 watt bulb at 240 VAC. It needs to have a settable range between 70 to 100 degrees F. When the set temperature is reached, the light should dim down to hold the desired temperature. I’ve looked at some simple diac/triac dimmer circuits. Is it possible just to add a thermistor in line with the potentiometer?

This is a very useful type of circuit for many animal/reptile keepers.

Many thanks for any advice you may have.

— Tony Flynn, Ireland

In a triac dimmer, the temperature increases as the resistance is decreased; the thermistor resistance decreases as the temperature increases so it is not suitable to put in series with the potentiometer. I suggest using an LM34 temperature sensor which outputs 10 millivolts per degree F. An LED and cadmium sulfide cell could be used to control the triac, but I think rectifying to DC and using a
MOSFET is just as simple (see Figure 5). Note that there is no capacitor filtering the voltage to the lamp because doing so would increase the average voltage and cause the lamp to burn out sooner. The zener diode and C1 provide 15 volts DC to the regulator circuit. The LM34 output is 10 millivolts per degree F, so 700 millivolts equals 70 degrees. You can use a voltmeter to measure the set temperature at the test point.

The feedback resistor, R6, provides about one degree hysteresis so the lamp does not start flickering. You might want to put the lamp in an opaque jar so the animal is not subjected to the light going on and off. Maplin only stocks the LM35 which is calibrated in degrees C, so you will need a conversion chart if you use that. The values of R2, R3, and R4 should be: 130K, 2K, and 2K.

MAILBOX TIMER

When the mail arrives in my box, it transmits a signal to the house. I need a circuit to stop the signal if the box is left open — maybe to let it ring four or five times at the most and then stop so it doesn’t drain the battery. I am using a six-volt battery #476A for the transmitter. Can you help me?

— Anonymous

The circuit shown in Figure 6 is necessarily connected to the battery as long as the mailbox door is open. The battery is rated 105 mAh and the circuit drain is about 1/4 mA so the battery life is about 16 days with the door open (not counting the transmitter current).

In Figure 6, when the door is opened, the switch closes. The charging of C2 turns on Q1 which pulls the trigger low and starts the 555 timer. The output goes high which turns on Q3, which then turns on Q2 and applies power to the transmitter. When C1 charges to 2/3rds of the battery voltage, the timer resets, turning Q2 off. It stays in that state until the door is closed and opened again. C3 is just an RF bypass for the transmitter power.
RESISTANCE SOLDERING SYSTEMS

Heavy-duty resistance soldering systems for soldering tasks where the solder joint quality must be exceptional have been introduced by American Beauty Soldering Tools of Clawson, MI.

American Beauty Ultra High Heat Plier-Style Resistance Soldering Systems provide instantaneous, localized heat from cold to >1,000°F in less than one second, depending on the application. Featuring plier-style hand-pieces, the heat is concentrated directly at the solder joint and these footswitch-actuated systems allow “cold fixture” setup before soldering.

Ideal for soldering large single wire terminations up to 0 AWG into terminal lugs, electrical splices, and multi-pin connectors, American Beauty Ultra High Heat Plier-Style Resistance Soldering Systems avoid heat damage to the wire’s insulation. Hand-pieces are lighter than conventional irons and are offered in a variety of sizes for confined spaces and special applications.

The Resistance Soldering Systems are priced according to the power supply wattage and hand-piece design. Literature and pricing are available upon request.

For more information contact:

For more information, contact:
American Beauty Soldering Tools
1177 West Maple Rd.
Clawson, MI 48017-1059
Tel: 800-550-2510
Fax: 248-280-2878
Email: es@americanbeautytools.com
Web: www.americanbeautytools.com

TEEN DRIVING SAFETY TOOL

TrackStickII is a new, second-generation, gumpack-sized passive GPS logger that keeps a watchful eye on shipments, vehicles, personnel, or anything else that moves, displaying routes and speeds when inserted into a PC’s USB slot. If placed in a teen’s car, this can be a great deterrent for speeding or going places not approved by the car owner.

Synchronizing with up to 12 GPS satellites, TrackStickII will work anywhere it has a “sky view.” Using the latest in GPS systems mapping technologies, TrackStickII’s exact location can be shown on graphical maps and 3D satellite images. TrackStickII is the only personal GPS product that is totally integrated with GoogleEarth. TrackStickII will run on two AAA batteries for up to a full week. With accuracy increased from 15 meters to 2.5 meters over its predecessor, TrackStickII features a weatherproof case and a detachable belt clip for added versatility.

Using the latest in low power GPS receiver technology, TrackStickII records date, time, location, speed, heading, and altitude at pre-set intervals configured from PC setup. Housed in a rugged ABS 4 1/2” x 1-1/4” x 3/4” case, this state-of-the-art logger is a perfect solution for logging the movement of an item or person (but note it is illegal to monitor a person’s movement without their permission).

A low cost alternative to real-time tracking devices with monthly airtime fees, fee-free TrackStickII data is displayed on a PC map when inserted in a USB port. See and print out the location and speed of the vehicle’s movement. Detailed mapping and 3D satellite imaging reveal exactly where TrackStickII has been for the last seven days. Applications include: personal GPS location recorder, vehicle location and route histories, package/container shipment history, employee and vehicle monitoring, mileage recording and verification, public safety, law enforcement, family safety (e.g., teenager driving compliance), etc. TrackStickII has been successfully used by search organizations in tracking where searches have been performed.
Lightweight at 1.5 oz with over 1 Mb of memory, TrackStickII can store lots of travel information at 1-15 minute intervals, which stop logging when stationary. Recorded position history can be output to any PC’s USB port in .rtf, .xls, .html, or .kml formats. TrackStickII is available now from stock at $175 each from Saelig Co., Inc.

For more information, contact:
Saelig Co., Inc.
Pittsford, NY
Email: info@saelig.com
Web: www.saelig.com

EMI FILTERED AUDIO CONNECTORS MEET MIL-DTL-55116

Spectrum Control, Inc., has modified the standard MIL-DTL-55116 connectors that are used in 60 volt audio frequency circuits with 0.5 amps of current to provide effective EMI filtering. Spectrum’s connectors are waterproof and polarized, five or six pin electrical plugs/receptacles, and can be designed for special and selectively loaded EMI filtering. These custom filtered connectors are ideal for communication applications where harsh conditions are present.

Spectrum’s custom EMI filtered audio connectors have a capacitance value range of 10 pF–1 mF and are available in C and Pi circuit configurations. These custom filtered audio connectors meet all the requirements of MIL-STD-810F including sand and dust, salt, fog, high altitude operation, fungus resistance, and immersion to 20 meters.

Spectrum Control’s custom EMI filtered audio connectors have pricing ranging from $20 to $150, depending on configuration and quantities required.

For more information, contact:
Spectrum Control, Inc.
8061 Avonia Rd.
Fairview, PA 16415
Tel: 814-474-0325
Fax: 814-474-3110
Email: lopes@spectrumcontrol.com
Web: www.specemc.com

SHOW US WHAT YOU’VE GOT!

Is your product innovative, less expensive, more functional, or just plain cool? If you have a new product that you would like us to run in our New Products section, please email a short description (300-500 words) and a photo of your product to:

newproducts@nutsvolts.com

$51 For 3

FREE Layout Software!
FREE Schematic Software!

01 DOWNLOAD our free CAD software
02 DESIGN your two or four layer PC board
03 SEND us your design with just a click
04 RECEIVE top quality boards in just days

expresspcb.com
Jameco Offers More Major Brands of Semiconductors Than Anyone — Almost Twice as Many as These Catalog Distributors.

It's another Jameco advantage.

Other Jameco Advantages:
- More major passive, interconnect and electromechanical brands than other distributors.
- 99% of catalog products ship the same day.
- Lowest prices guaranteed, or we pay 10%.
- Major brand names and generic equivalents for even greater cost savings.

Order 24 hours a day, 7 days a week

www.jameco.com

Or call 800-831-4242 anytime
Customer Design
Front Panels

We work with your CAD program
Expert in Quality
Expert in Service
Expert in Material
Expert in Price

Please contact us:
info@cam-expert.com
www.cam-expert.com

8mm White water clear
LED 3.5V
10,000 mcd
(AB287)
$0.56

The Velleman Personal Scope
is a complete 10MS/s portable
oscilloscope. (HPS10) $146.

Electronics123.com
Tel: 1-888-549-3749
102 E. Park Ave, Columbian OH 44408

PRINTED CIRCUIT BOARDS

- Aluminum Backed PCB
- Single & Double sided
- SMBOCH/RoHS
- LPI mask
- Through hole or SMT
- Nickel & Gold Plating
- Routing or scoring
- Electrical Testing
- Artwork or CAD data
- Fast quotes
- Flex Circuits

We will beat any competitor’s prices!!!
www.pulsar-inc.com • sales@pulsar-inc.com

ActiveWire® USB
Simple USB Interface!

- Works with Mac OS® X, Windows® ME/2000/XP
- Serial (CP/M) with USB
- Firmware downloadable via USB
- 16 bit parallel output
- Easy web site for add-on boards
- All drivers, manuals, demos are on our web site for immediate download

ActiveWire, Inc.
www.activewinces.com
ph +1.650.485.4000 fax +1.209.391.5650

$59
plus shipping

The Power SchmartModule™
will power up your circuits with
your choice of -9, -12, +2.5, +3.3, +5, +9 and +12 volts.
$15
Very Schmart!

www.schmartboard.com

USB Oscilloscope for $169.50
* 8-8 digital - 2 analog channels
Oscilloscope - Generator - Logic Analyzer
with UART, SPI, I2C and 1-Wire interfaces
Great for PIC and AVR projects!

www.HobbyLab.us

MODEL KE-USB108
Eulate a USB:
• Keyboard
• Mouse
• Joystick

NEW!
-10 individual programmable switch inputs
-Produce long pulses from a single input
-Send keystrokes, mouse or joystick actions
-Ideal for building of toy games
-2 Rotary Encoder inputs
-Potentiometer inputs for joystick I.V.5

888-690-9080
www.magnstromelectronics.com
11 Packard, Green, Lansing NY 14435

Very Schmart!
www.schmartboard.com

ActiveWire® USB
Function Generator
2 MHz

Brand New!
$299.95

call 1-888-580-4 KITS or order online at QKITS.com
CREDIT CARDS, FREE SHIPPING ON KITS

SHOWCASE

SHOWCASE

SHOWCASE
High-power LEDs have received much attention as of late, and jumped in the last few years from a laboratory curiosity into mainstream applications. We all have seen LED flashlights (with their bright bluish white light) and its LEDs incorporated into some luxury auto brands.

The reason for this rise in popularity is very simple: as light sources measured in lumens per watt, they are extremely efficient. These devices easily surpass incandescent lights, even halogen-filled ones. They also seriously challenge fluorescent and high-intensity discharge lighting (which themselves have undergone extensive efficiency improvements). LEDs offer a few extra features: low voltage operation, small size, and solid-state ruggedness. These qualities make them very attractive for portable and automotive environments.

This doesn’t mean that high power LEDs are not without problems. Unlike their lower rated brethrens — which max out at 20 or 30 mA — these monsters start at 300 mA, with 700 and 1,500 mA devices available, and even higher rated devices in the pipeline.

With so much power concentrated into such a small volume, heat becomes a major concern. With the LED itself being a semiconductor, heat substantially reduces both the operating life and the efficiency of the device. Thus, thermal management is paramount in a successful application.

LEDs have an additional advantage that none of the light sources discussed above can match: the ability to be turned on and off almost instantaneously. Only Xenon flash tubes have better response times, but their high voltage has precluded them from being used in applications such as cell phone cameras, where high power white LEDs have become ubiquitous. As I needed to build a strobe circuit, I decided I should give them a try.

The Challenges are in the Details

Starting a new project is similar to hiking an unknown trail the first time. One quickly finds unexpected challenges, some of which are tough to solve. But solving those challenges make it all worthwhile, and hopefully, make you a little wiser. This project did not disappoint.

I had originally attempted to build a strobe employing the conventional high-voltage capacitor and Xenon-tube combination — circuits which have been around for a long time — and rapidly noticed the drawbacks. For one thing, it is very easy to exceed the tube’s maximum power dissipation at higher repetition rates, causing it to crack. For another, the simple inverter circuits that convert from the battery level voltage to the required high voltage simply do not have enough energy to recharge the flash capacitor in 1/100 second or less. These units are designed for non-repetitive applications, with typical recharge times of two or three seconds — maybe longer — and are two orders of magnitude too weak.

As I pondered how to design the required high power converter, a thought came to mind: This was a perfectly good example for a radical new solution. In this case, employ the newer, high power white LEDs.
The first challenge was to remove the excessive localized heating which causes a loss of luminous efficiency (shown in Figure 1) and may even set off thermal runaway. Additionally, LEDs are diode junctions, and require their current to be regulated. This is simple, trivial resistor stuff when only a few milliamps are required. Not so trivial — and quite wasteful — when dealing with high currents.

A possible solution would be a current regulated switchmode power supply. However, switchmode supplies do not tolerate excessive current swings, especially when going from zero to full blast and again back to zero in a millisecond. (Hmmm ... who said this would be a simple project?)

To top it all off, these LEDs have a Lambertian light distribution; “Lambertian” being a fancy word meaning “all over the place.” Some sort of lens or reflector would be required to form a useful beam.

First things first ... which LED source should I employ? After reading countless datasheets, I settled for Luxeon’s K2 in a “star” configuration. As shown in Figure 2, the LED die is attached to an aluminum star-shaped plate, which itself is to be mounted to the heatsink. This plate also provides the necessary solder pads to attach the wires.

I quickly determined that an all-aluminum box would both house the project and serve as a heatsink. I could then use hardware (similar to what is used to mount TO-3 transistors) to attach it to the aluminum box. But this hardware caused an interference with the optical lenses. As discussed above, the LEDs require lenses to focus the light, and as shown in Figure 3, these are attached to the LED assembly with an adhesive pad.

A possible solution would be to employ an adhesive thermal compound, but I wanted something that is widely available to hobbyists. A workable solution was found: Apply a tiny bead of silicon thermal compound in the center of the star (on the flat side that will attach to the aluminum box) and push the star firmly against the aluminum box’s face.

If done correctly, the bead will spread out evenly and NOT smear out. This is important, and it make take a couple of trials to get it right. Then, cyanoacrylate superglue is employed on the star’s periphery to perform the actual bonding. Done correctly, this provides a good thermal interface and fairly secure attachment.

Electrical Considerations

Having solved the thermal, optical, and mechanical aspects of the assembly, then came the fun part. How to drive these LEDs? There are literally dozens of high output, constant current switchmode LED drivers available from different IC vendors. However, they either are in nightmarishly-tiny SMT packages, or optimized for steady state output and/or a single light shot such as a flash.
As mentioned previously, switchmode supplies respond sluggishly to sudden load changes, which would be the norm for this project. Severe overshoot and ringing usually occur as the control loop attempts to stabilize, which could (in the worst case) cause permanent damage to the unit. There is a control scheme however, known as the hysteretic — or ripple — regulator, which responds the fastest for sudden load changes.

As its name implies, it self-oscillates between two user-set ripple boundaries. Using this search string plus the LED driver, I found a very exciting device from Supertex, Inc. The HV9930 feature set not only satisfied the hysteretic current control scheme, but it also employs the Cuk (buck-boost) powertrain topology, meaning that the output voltage may be higher or lower than the input voltage for increased versatility. It also drives an external MOSFET, and thus its output drive may be as large as required, depending on the external device ratings.

The device is available in both eight pin thru hole and SMT packages. It is available through Mouser — important since all the wonderful specs are meaningless to a hobbyist, if the device is only sold through a distributor network which caters to small orders.

Better still, the device has an available plug-and-play evaluation board (HV9930DB2), which is a major plus if one doesn’t have the time or inclination to design a switchmode supply from scratch. The board has a quick responding enable input which can be used for either PWM dimming, or in this case, for pulsing.

One last consideration when employing this module is that it has a minimum eight volts DC input requirement, with 12 volts DC preferred. This is okay, since the high power requirements
demand much more juice than what four AA cells can realistically provide.

The evaluation board is preset to 750 mA, which dictates that 700 mA grade stars be used. I would have liked to use 1,500 mA stars, but that means substantial EV board modifications, which are beyond the scope of this article.

Control Circuit Description

I had some goals for the control circuit: It should be capable of driving the HV9930 evaluation board from three different trigger sources: component video to synchronize with a camera; an external open collector or TTL level signal; and an internal variable frequency oscillator. It must also have calibrated power levels achieved by precisely controlling the light pulse’s output width. The schematic is shown in Figure 4.

A +12 volt DC external source is fed via J1 to both the evaluation board EV1 and a five volt regulator U5 that feeds the control circuit. Capacitor C9 should be located very close to EV1, to smooth out the demand for high current pulses.

An external NTSC/PAL video component signal is applied to J3, with resistor R1 providing the proper termination impedance, and is fed via C1 to sync separator U4. This IC has many functions, but we are using only two: The composite sync output is employed to turn on MOSFET Q5, which discharges capacitor C4. This low voltage applied to NAND gate U3a allows it to oscillate when a valid video signal has been connected. Another of U4’s functions – the Odd/Even field output – is employed.

A little explanation is required here. Individual TV images — or frames — are comprised by two interlaced fields, which each include the odd and even scan lines. Modern video sensors capture the entire frame simultaneously, but to comply with this legacy TV standard, the signal is processed and interlaced before sending it to the video output. For the purposes of this project, this would create double light pulsing while the frame is acquired, causing a double exposure. The Odd/Even output effectively chooses a single field, synchronized to the video capture. Since the CCD’s actual frame capture timing (with respect to this signal) is unknown, we must delay its phase such as both coincide. This is achieved by monostable U2b, which is triggered on O/E’s falling edge.

The phase delay is set via C10, R6, and potentiometer R7. By adjusting the latter, the light pulse can be made to coincide with the actual video capture. This can easily be accomplished empirically: One turns R7 fully to one end, and then start backing up slowly until the image on the camera’s viewfinder becomes the brightest.

Both the composite sync and O/E outputs become a logic low when a video signal is absent. This has two effects; first, U2b is no longer triggered and no further pulses occur. Second, Q5 is no longer turned on, and C4 charges through R3. When a logic high is reached, U3a is allowed to oscillate via positive feedback via R4 and R5, and in conjunction with C5, sets the frequency. This is coupled to U3c which is no longer receiving pulses from U2b, which serves to select which pulse (video or free run) passes through.

In essence, all this circuitry selects a free running pulse when no video is available, and a field synchronized pulse when a valid video signal is present. U3d only buffers the signal to drive a small red LED, which indicates oscillator activity. The selected signal goes to the normally closed contact of “external trigger” jack J2. When no plug is connected, the signal will continue to U3b and then to the next monostable U2a. The reason for employing U3b is to provide a Schmitt-Trigger action for the external signal, which provides noise immunity and the fast trigger edge required by U2a. This monostable is wired in a non-retriggerable configuration, to prevent pulsing stretching due to noise.

The external trigger may be either a TTL-compatible square wave, a switch, or a transistor closure to ground. In this last instance, R11 serves as a pull-up.

The pulse width is selected by switch SW1 and associated components C12, R9, and R10. This will provide an output pulse duration of either 1/250 or 1/500 second for high or low power mode. This pulse is now applied to LED driver evaluation board EV1 which, in turn, drives the four series-connected Luxeon LEDs.

A jumper wire must be installed to select an operating mode: Connecting EV1’s pins 1 and 2 together will turn on the LEDs continuously, regardless of any other conditions, and is useful for testing. Connecting EV1’s pin 1 to U2a pin 6 reverts the circuit to normal operational mode.

Assembling the Circuit

As shown in Figure 5, the whole project is assembled in a small aluminum box. Prior to any electronic assembly, all the holes must be drilled and deburred. Afterwards using a pencil, mark the location of the LED stars, noting the orientation of the plus and minus signs to allow them to be connected in series. Attach them using the thermal compound and adhesive.
superglue techniques described previously. Let them set, but do not install the lenses on the LEDs yet, as they have to be wired in series, carefully observing the polarity.

Now that the LEDs are attached and heat-sunk, wire them to the evaluation board EV1 and power them up. Prepare yourself to be awed at the huge light output, but DO NOT leave them powered longer than a few moments at a time, since the aluminum chassis is insufficient to remove all the heat generated in continuous mode.

Now that you are satisfied with the circuit operation, attach the lenses to the LEDs. They should sit flat for the adhesive pad to make proper contact. You may find that the soldered wires interfere a little with the placement; use an X-acto knife to remove any small section that gets in the way.

Besides the pre-assembled evaluation board, one must build the control circuit in a separate board. It is simple enough to be built using point-to-point wiring techniques in a small perf board. The boards may be assembled and wired as shown in the prototype photo of Figure 6.

It proved to be a tight and somewhat difficult fit, and I would recommend a larger enclosure for an easier and neater assembly. The recommended enclosure in the parts list is larger than the one in the photo. An extra bonus is the additional heatsinking capabilities.

Using the Circuit

Strobe lights have long been used by mechanical engineers to study vibrating or rotating elements. By adjusting the frequency fed from a signal from an external oscillator, one can “freeze” the rotational or vibrating movement. Since the oscillator frequency can be measured very accurately, the mechanical frequency may be accurately established, too.

The strobe typically may be triggered upwards of 100 Hz or up to 200 Hz in low power mode, making measurements of 12,000 RPM possible. Be aware of the increased heat generation and a current draw close to 0.5 amps at 12 volts at higher frequencies, both of which decrease linearly.

PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following are available through Mouser.</td>
<td></td>
</tr>
<tr>
<td>Resistors (all resistors 1/4 W, 5%, unless noted)</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>75 ohm</td>
</tr>
<tr>
<td>R2</td>
<td>680K</td>
</tr>
<tr>
<td>R3</td>
<td>39K</td>
</tr>
<tr>
<td>R4, R11</td>
<td>470K</td>
</tr>
<tr>
<td>R5, R7</td>
<td>500K linear pot</td>
</tr>
<tr>
<td>R6</td>
<td>39K</td>
</tr>
<tr>
<td>R8</td>
<td>1K</td>
</tr>
<tr>
<td>R9, R10</td>
<td>20K 1%</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>C1, C3, C4, C10, C12</td>
<td>0.1 μF, 50V, 10% poly</td>
</tr>
<tr>
<td>C2, C6, C7, C11</td>
<td>0.1 μF, 50V, X7R ceramic</td>
</tr>
<tr>
<td>C5</td>
<td>0.01 μF, 50V, 10% poly</td>
</tr>
<tr>
<td>C8</td>
<td>10 μF, electrolytic</td>
</tr>
<tr>
<td>C9</td>
<td>4,700 μF, 16V, low-Z electrolytic</td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>2N7000 MOSFET</td>
</tr>
<tr>
<td>U2</td>
<td>7805 voltage regulator</td>
</tr>
<tr>
<td>U3</td>
<td>CD4538 CMOS monostable</td>
</tr>
<tr>
<td>U4</td>
<td>CD4093 Schmitt NAND CMOS gate</td>
</tr>
<tr>
<td>U5</td>
<td>LM1881 TV sync separator</td>
</tr>
<tr>
<td>LED1</td>
<td>miniature red LED</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>Power jack</td>
</tr>
<tr>
<td>J2</td>
<td>Mini phono jack</td>
</tr>
<tr>
<td>J3</td>
<td>RCA jack</td>
</tr>
<tr>
<td>SW1</td>
<td>Mini toggle SPST switch</td>
</tr>
<tr>
<td>EV1</td>
<td>HV9930DB2 white LED driver board</td>
</tr>
<tr>
<td>All aluminum box 4.0”x 2.2”x 3.0”: Hammond 1411FU</td>
<td></td>
</tr>
<tr>
<td>Perfboard, wire, pot knobs, silicon thermal compound, Krazy glue™</td>
<td></td>
</tr>
<tr>
<td>The following are available from LuxeonStar LEDs (www.luxeonstar.com):</td>
<td></td>
</tr>
<tr>
<td>LED2-LED6</td>
<td>Luxeon K2 Star, 5027PW12</td>
</tr>
<tr>
<td>L2 spot base 3° lens for LEDs, OPK2-1-003</td>
<td></td>
</tr>
<tr>
<td>L2 spot diffuser 12° sub lens, OPK2-1-012S</td>
<td></td>
</tr>
</tbody>
</table>
with operating frequency.

Although the light output is necessarily low power — because of its repetitive nature — compared to a one shot Xenon flash, the circuit may still be used for some photography tricks. In this instance, the video input comes in handy.

Connecting the composite video signal from a camera will synchronize the flash to the actual frame capture. As described previously, you may need to adjust the “Phase Delay” control to obtain maximum brightness, as observed in the viewfinder.

The water drop sequence in Figure 7 and the bouncing marble in Figure 8 were obtained employing this technique.

You may find that the LED lenses produce a beam that is perhaps too narrow (± 3 degrees) for practical photography usage. Fortunately, the sub lens shown in Figure 9 (that attaches to the top of the main lens) will widen the beam to ±12 degrees.

Finally, the project may be used in the free run mode, much like the disco strobe lights so popular in the ‘70s. So, load your favorite funky music CDs and enjoy! NV
MODIFICATION OF A SIX VOLT LITHONIA EMERGENCY LIGHT

For Night Use Only

Shortly after Ernesto blew through, I obtained an emergency light (see Figures 1 and 2). I mounted it on the wall in my kitchen and plugged it into a nearby power outlet. This arrangement allows one lamp to illuminate the stovetop and the other lamp to shine out into the living room; problem solved, or so I thought ...

A Mid-afternoon Power Failure

I was reading a book by the sunlight shining through the windows on March 14, 2007 when I experienced the next power failure. The lights, television, scanner, and computer were already off, so I had no way of knowing the power had gone out — except the emergency light shining in my face unnecessarily. Four thoughts flashed through my head as the light struck my eyes:

- I didn’t know why the power had gone off, or how long it would be off.
- Lithonia designed this device to provide light for no more than 1-1/2 hours.
- Sunset was 4-1/2 hours away!
- I had to do something — and soon — or the battery would be dead at sunset if the power was still out.

I quickly rigged an extension cord to the emergency light from the small 12-volt inverter I keep in my truck. I wanted to maintain the charge on the emergency light’s battery, and I wanted to provide power to my scanner so I could find out what had caused the outage by tuning in to EMS and the power company’s radio communications. The power company restored power after only 20 minutes, but I had already concluded that I needed to add a
circuit to the emergency light that disabled the lamps and prevented the battery from discharging during the day.

Circuit Analysis

Lithonia 6V Emergency Light (EMEPD00114 Rev.A)

A “Portalac” 6V, 4.5 AH, sealed valve regulated lead acid battery is the emergency light’s primary power source. A 120/277 VAC power supply maintains the battery’s charge. A parallel RC network in series with the bridge rectifier drops the line voltage to 15.65 VAC. A 470 μF 35V electrolytic capacitor filters the output from the rectifier, and an LM317T adjustable voltage regulator in a TO-220 package regulates the filtered DC voltage (see Figure 3).

A custom integrated circuit packaged in a 14-pin DIP performs multiple functions. The chip’s onboard battery charger monitors the battery voltage when AC power is available and adjusts the output voltage of the LM317 for optimum charging based on the battery’s state of charge. A low-voltage disconnect circuit monitors the battery voltage during a power failure and shuts off the lamps to prevent damage to the battery from excessive sulfation of the plates. A power failure detection circuit monitors the presence of AC power and switches the lamps on and off.

My search for the “light switch” turned up a TIP41 NPN bipolar transistor in a TO-220 package that the signal from pin 7 of the IC controls. It is in a series circuit with the lamps and the battery. The lights switch on when the output of pin 7 is 6 volts, and they switch off when the signal from pin 7 falls to 0 volts. I needed to tap into this signal for my brainchild to work, and this would involve minor “bypass surgery” on my part.

First, I cut the circuit board trace between the base of the light switch transistor and pin 7 of the control chip with a 1/16” drill bit (see Figure 4). Next, I scraped the light green insulating film from the copper circuit board traces and soldered a four-conductor ribbon cable from the freshly exposed traces, the 6V trace, and the ground trace to the daughterboard I would construct (see Figure 5).

Electric Eye

The schematic for the Electric Eye option is shown in Figure 6. The cadmium-sulfide photosensor voltage divider provides an analog signal of the ambient light level to the non-inverting input of the 741 operational amplifier. The value of the fixed resistor that forms the other

FIGURE 3

FIGURE 4

FIGURE 5
The 741 functions as a voltage comparator in this application. When the voltage across the photoresistor falls below the voltage set at the inverting input of the op-amp by the 10K ohm potentiometer, the output voltage of the op-amp switches from six volts to two volts. The output voltage of the op-amp switches from two volts to six volts when the voltage across the photoresistor rises above the voltage at the inverting input of the op-amp.

Consequently, the output voltage of the op-amp is +2 volts when the room is too bright to need the emergency lights, such as when sunlight is filling the room or the AC lighting is on. The output voltage is +6 volts when the room is dark enough to justify using the light, such as nighttime or the AC lighting is off.

A green LED serves two purposes. It provides an obvious indication of the light triggering level, and it interfaces the op-amp to the digital logic circuit described next. The LED conducts when the output voltage of the op-amp rises above the LED’s forward voltage. This allows enough base current to turn on transistor “A” in the inverter (logical NOT gate) circuit.

Digital Logic Circuits
Digital logic circuits receive signals that represent the two binary digits 0 (NO/OFF) and 1 (YES/ON). A voltage of six volts represents a YES signal, and a voltage less than two volts represents a NO signal. Here’s how the individual components work. Think of the emitter and collector terminals of a transistor as the terminals of a pushbutton switch and the base terminal as the switch’s button. A YES signal presses the button by allowing current to flow through the transistor’s base-emitter junction. This causes the transistor to conduct electricity through the emitter and collector terminals. A NO signal releases the button and the transistor returns to a non-conducting state. This is a highly simplistic version of how a transistor operates, but a more accurate explanation that delves into the physics of semiconductors is beyond the scope of this article.

Input transistor A receives a signal from the op-amp to answer the question, “Is it dark?” Input transistor B receives a signal from the Lithonia IC to answer the question, “Has the AC power failed?” If the answers to question A and question B are YES, then the logic circuit’s output X responds with a YES and turns on the light switch transistor (Q1) on the emergency light’s main circuit board. A logical AND gate circuit fulfills the requirements of this application.

Diode-Transistor-Logic
The diode-transistor-logic (DTL) circuit in Figure 6 functions as an AND gate, but the actual logic circuit I used is defined as a NOTed
NOR gate. Transistors A and B function as logical NOT gates for each input. The two 1N4448 diodes function as the two-input OR gate, and transistor X functions as the logical NOT gate on the output. By inverting the inputs of the NOR gate, we effectively end up with an AND gate.

I will walk you through all four possible scenarios that the AND gate will encounter. In the first three scenarios, the answer to “Is it dark?” is NO or the answer to “Has the AC power failed” is NO. Base-emitter current will not flow through the transistors if their inputs are NO. This keeps the voltages at their respective collectors high enough to allow current to flow through one or both diodes and the base-emitter junction of transistor X. The collector voltage of transistor X stays close to 0 volts and keeps the light switch transistor (Q1) off.

In the final scenario, the answer to both questions is YES. Both transistor A and transistor B are conducting, both collector voltages are close to 0 volts, and base-emitter current from transistor X cannot flow. The collector voltage of transistor X is high enough to allow base-emitter current to flow from the light switch transistor (Q1) on the main board and switch on the lights.

Mounting the Daughterboard

Always disconnect the AC power before working on this project because the emergency light lacks a power isolation transformer. Therefore, mounting the daughterboard inside the plastic cabinet of the emergency light is preferable to mounting it on the outside of the cabinet.

However, I chose to mount it on the outside of the cabinet, anyway. I drilled an offset hole in the circuit board adjacent to one of the original mounting holes to allow for the emergency light’s curvaceous cabinet (see Figure 7). This reduced the strain on the circuit board.

My primary reason for mounting on the exterior was the limited amount of space available inside the cabinet. The second reason is that I sealed the circuit board’s components (with the exception of the CdS phototransistor, the 10K ohm potentiometer, and the LED) in silicone caulk for electrical insulation. I used stiff postcard material to construct crude molds around the components that I did not wish to seal off from the outside world. It took the caulk between two and three days to set (see Figure 8). Third, I mounted the emergency light too high for curious and untutored hands to reach. Finally, and most importantly, I wanted to place my creation on display.

Parts List

<table>
<thead>
<tr>
<th>ITEM/DESCRIPTION</th>
<th>PART #</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 – 2.2V 20 mA 3 mm green LED</td>
<td>253665</td>
<td>1</td>
</tr>
<tr>
<td>D2, D9 – 1N4448 diodes 100PIV 0.2A</td>
<td>685242PS</td>
<td>2</td>
</tr>
<tr>
<td>R1, R4-R7 – 4.7KΩ 1/4 watt resistors</td>
<td>681024</td>
<td>5</td>
</tr>
<tr>
<td>R2 – Cadmium sulfide phototransistor</td>
<td>202403</td>
<td>1</td>
</tr>
<tr>
<td>R3 – 10KΩ trimmer potentiometer</td>
<td>254203</td>
<td>1</td>
</tr>
<tr>
<td>R8 – 330KΩ resistor 1/4 watt resistor</td>
<td>690742</td>
<td>1</td>
</tr>
<tr>
<td>IC1 – 741 operational amplifier</td>
<td>24539</td>
<td>1</td>
</tr>
<tr>
<td>QA, QB, QX – 2N2222 NPN transistors</td>
<td>28629PS</td>
<td>3</td>
</tr>
<tr>
<td>Circuit board standoff mounts</td>
<td>393895</td>
<td>2</td>
</tr>
<tr>
<td>Eight-pin DIP socket</td>
<td>683104</td>
<td>1</td>
</tr>
</tbody>
</table>

A 2-1/2” x 2-1/2” circuit board will hold all of the components for this project. RadioShack may have most of the required parts, but Jameco has a wider selection and lower prices if you are willing to pay for shipping and wait for the delivery of the parts. All part numbers listed are from Jameco.
The circuit shown in Figure 1 is based on a Microchip PIC16F876A microcontroller. This chip has a built-in, five-channel 10-bit analog-to-digital converter (ADC), but only four channels are shown being used. It is very simple to modify the code to use from one to all five ADC channels (more on this later).

A linear voltage regulator (such as the LM78L05) powers the PIC and any five volt tolerant sensors which may be added to the circuit. One mode-select jumper is used to place the microcontroller in data acquisition mode or in “data dump” mode. An in-circuit serial programming (ICSP) header is included to reprogram the PIC after the circuit has been assembled, along with a diode to prevent the programming voltage from getting into the rest of the circuit via the five volt bus.

The 876A contains three different types of memory: 368 bytes of RAM, 256 bytes of EEPROM, and 8,192 words of Flash program memory. There isn’t enough RAM or EEPROM for serious data storage, and the Flash memory is for the program code, so where can our data go?

Well, if we are very careful, we can use the WRITECODE and READCODE instructions in PICBASIC PRO (available at www.melabs.com) to store data in the Flash program memory. The code listing (available at www.nutsvolts.com) only uses about 400 words of program memory. That leaves nearly 7,800 words for data storage; enough to capture more than 1,900 samples of the four 10-bit ADC values.

The code starts out by defining variables, and the most important of these is the “pointer” variable. This defines the address in the Flash memory at which the data will be written during data acquisition. The initial value of this variable is set at an address beyond the last word of program code, so there is a bit of unused memory between code and data. If you modify and recompile the code, you must check how many words your new code occupies and adjust the initial pointer value accordingly to make sure your data cannot overwrite your code.

Next, the code checks the status of the mode select jumper on pin RA4 and jumps to either the data acquisition loop or the data dump loop. The two loops are very similar in structure, using the same variables to cycle through the ADC channels and either write to or read from the Flash memory. Each loop is terminated with an END command, so that when all of the memory has been written or read, the PIC will enter a power-saving sleep mode.

The number of ADC channels used is determined by the “channel” variable, which is used to set the number of times the ADCIN command is executed in each pass through the data acquisition loop. Here’s a simple circuit I came up with as part of another project I was working on to measure the acceleration of a model rocket in flight. While my original data storage requirements for that project were very specific (and very basic), I realized that the datalogging circuit and code had many other uses.

This datalogger is suitable for just about any application where a small, cheap, low power circuit is needed to sample analog voltages, convert them to digital values, and store a modest amount of data in non-volatile memory.

SINGLE CHIP, FOUR CHANNEL DATALOGGER

The circuit shown in Figure 1 is based on a Microchip PIC16F876A microcontroller. This chip has a built-in, five-channel 10-bit analog-to-digital converter (ADC), but only four channels are shown being used. It is very simple to modify the code to use from one to all five ADC channels (more on this later).

A linear voltage regulator (such as the LM78L05) powers the PIC and any five volt tolerant sensors which may be added to the circuit. One mode-select jumper is used to place the microcontroller in data acquisition mode or in “data dump” mode. An in-circuit serial programming (ICSP) header is included to reprogram the PIC after the circuit has been assembled, along with a diode to prevent the programming voltage from getting into the rest of the circuit via the five volt bus.

The 876A contains three different types of memory: 368 bytes of RAM, 256 bytes of EEPROM, and 8,192 words of Flash program memory. There isn’t enough RAM or EEPROM for serious data storage, and the Flash memory is for the program code, so where can our data go?

Well, if we are very careful, we can use the WRITECODE and READCODE instructions in PICBASIC PRO (available at www.melabs.com) to store that data in the Flash program memory. The code listing (available at www.nutsvolts.com) only uses about 400 words of program memory. That leaves nearly 7,800 words for data storage; enough to capture more than 1,900 samples of the four 10-bit ADC values.

The code starts out by defining variables, and the most important of these is the “pointer” variable. This defines the address in the Flash memory at which the data will be written during data acquisition. The initial value of this variable is set at an address beyond the last word of program code, so there is a bit of unused memory between code and data. If you modify and recompile the code, you must check how many words your new code occupies and adjust the initial pointer value accordingly to make sure your data cannot overwrite your code.

Next, the code checks the status of the mode select jumper on pin RA4 and jumps to either the data acquisition loop or the data dump loop. The two loops are very similar in structure, using the same variables to cycle through the ADC channels and either write to or read from the Flash memory. Each loop is terminated with an END command, so that when all of the memory has been written or read, the PIC will enter a power-saving sleep mode.

The number of ADC channels used is determined by the “channel” variable, which is used to set the number of times the ADCIN command is executed in each pass through the data acquisition loop.
As mentioned earlier, the maximum value for this variable can be anywhere from 1 to 5.

A datalogger isn’t much good without some sort of time reference associated with your data. The code provides a relative time stamp for each set of data through a pause command, which is calibrated to provide the desired delay between data acquisitions. This calibration is accomplished using the “test pulse out” signal on pin RB1 and an external frequency counter.

The code as written will collect data every 0.1 seconds using a pause value of 94 milliseconds, as near as my frequency counter could resolve. A pause value of 994 milliseconds should give a one second interval between data acquisitions, and so on. Remember to recalibrate this pause interval whenever you make changes to the code in the data acquisition loop.

Once your datalogger is full, power it down and connect it to a standard serial (not USB) port. Only the receive data and signal ground pins on the computer’s serial port need to be connected.

The computer should be running a terminal emulation program set at 2400 baud, no parity, eight data bits, and one stop bit (2400 N81). Also, make sure that the software is not set to use hardware handshaking. It’s a bit slow downloading this way — taking a minute or two to dump the whole memory — but this makes it very tolerant of different circuit construction techniques and unshielded data cables.

Before powering up the datalogger, you must install the mode select jumper so the program will begin downloading the data. If you don’t, the PIC will begin collecting more data and overwriting whatever was there before. The data dump loop formats the data into separate lines for each time reference, with the values in each line separated by commas, starting with the first ADC channel. The data can then be easily imported into a spreadsheet in a comma-separated variable (CSV) format, and processed or graphed as needed. Depending on the exact number of data sets recorded, the last line of data may contain some invalid values that will need to be ignored.

Application — Rocket Accelerometer

My rocket-borne implementation of this circuit is shown in Figure 2. I’m
using an Analog Devices’ ADXL321 two-axis evaluation board to measure the acceleration over the rocket’s flight profile. Note the five-pin connection for ICSP, the mode select jumper, and the serial data output connector (the one with the white base). A 12 V A23 battery in an N-cell holder is bolted to the back of the board, and an additional two-pin jumper is used as an on-off switch.

The circuit layout is non-critical, but all components must be firmly soldered, glued, or otherwise held in place to endure the stress of launch (the ADXL321 has a range of ±18 G, to give you an idea of what I’ve built it to endure). There are three ADC channels and plenty of board space left for additional sensors.

Have fun keeping track of your world with this datalogger — now there’s no excuse for not knowing what’s going on!

CONTACT THE AUTHOR

Dan Gravatt can be reached via email at dgravatt@juno.com.

1 A programmed PIC16F876A for this project is available from the author.

FIGURE 3. The datalogger fits neatly inside my launch vehicle.

![Figure 3](image-url)

FIGURE 4. Plot of the captured acceleration data during launch and landing (further data available at www.nutsvolts.com).

![Figure 4](image-url)

PARTS LIST

- PIC16F876A microcontroller¹
- 4 MHz ceramic resonator with capacitors
- LM78L05 five volt linear regulator in TO-92 case
- (2) 10K ohm resistors
- 1N4148 diode
- 0.1 μF capacitor
- (2) two-pin and (1) five-pin header

1.

ELECTRONIX EXPRESS

Visit our Website at: http://www.elexp.com

RSR — 3MHz SWEEP FUNCTION GENERATORS
- 6 Waveform Functions, Int/Ext Counter, Sinusoid sweep
 - MODEL FG-30 (No Digital Display) $120
 - MODEL FG-32 (5 Digit Display) $180

BENCH DMM WITH RS232 INTERFACE
- True RMS, digital and bar graph display, AC/DC Cap, Res, frequency functions. Includes software, AC or DC operation. $99

DIGITAL MULTIMETER
- 32 Ranges – 3½ Digit
- MODEL MY-64 $27
- AC/DC Volt/Curr, Res, Cap., Frequency. Rubber Holster included $280

DC POWER SUPPLIES
- MODEL HY2003 – DIGITAL DISPLAY
 - Variable output, 0-30 VDC, 0.3 Amp $88
- MODEL HY2003-3 – TRIPLE OUTPUT
 - Three 0-30 VDC, 0.3 Amp variable outputs plus 5V.3A Read, Digital Display $175

ALLIGATOR LEADS
- SET OF 10 $210
- 24-3AWG HIGH PERFORMANCE $5
- 3-WIRE IRON $100
- SUPER ECONOMY MODEL 820B $15
- 10-49 ... $6.5 $35
- 50-99 ... $4.5 $95

SOUND SENSOR CAR REQUIRES SOLDERING
- Reverses direction whenever it detects noise, or touches an obstacle. $35

ROTARY TOOL KIT
- Variable speed tool (37000 RPM), with accessory kit in a hard plastic carry case. $99

TERMS: Min. $20 + shipping. School Purchase Orders, VISA/MC. Money Order, Prepaid. NO PERSONAL CHECKS, NO COD. NJ Residents: Add 6% Sales Tax.

In NJ: 732-381-8020 365 Blair Road•Avenel, NJ 07001-2293 800-972-2225
FAX: 732-381-1006
e-mail: electron@elexp.com
See how your designs function before you design them

The Renesas HEW Target Server – make your visions become a reality.

The HEW Target Server (HTS) gives you a preview of how your hardware/software will function while you’re still in the design process, providing valuable real-time feedback. In fact, with HTS, you can create your own Windows®-based applications that can communicate with and control Renesas MCUs/MPUs and our integrated development environment HEW (High-performance Embedded Workshop). The HTS interface allows you to easily open and close a workspace, control builds and sessions, automate processes, and program target MCUs/MPUs. You can send and receive variables, set breakpoints and be notified of HTS events all through the existing debug interface. No additional USB or serial channels are required. Your application possibilities are endless with HTS. Use it to quickly automate testing, create virtual hardware, create user interfaces, view messages from your target micro, etc. Do whatever the situation requires and your imagination inspires! For more information on the HEW Target Server, visit America.Renesas.com/HTS.

To experiment with HEW Target Server right now, visit RenesasInteractive.com and sign up for a hands-on VirtuaLab session.
Roll the Dice!
Low-Cost Microcontrollers Enable Electronic "Microdice (μDice)"
by Marc McComb

A few months back, one of the engineers at Microchip came up with a simple little design using a low-cost, Baseline PIC16F57 microcontroller (MCU). The idea used inexpensive parts such as LEDs and pushbuttons to create an electronic dice board, which the engineer nicknamed microdice, or "μDice." A basic concept was used for the design — push a button and a value between 1 and 6 is displayed on seven LEDs connected to one of the ports. There is nothing overly complex about the circuit, and the real fun happens when developing the firmware. Recently, I sat down with one of the μDice boards we made and developed some firmware ideas that are detailed in this article.

Hardware

First, let’s talk about the hardware involved with this project. The PIC16F57 is a 28-pin MCU with 2K instructions of Flash program memory. The project makes use of the three general-purpose input/output ports (A, B, and C), as well as an eight-bit timer (Timer0).

Taking a closer look at the schematic in Figure 1, the lower two PORTA pins connect to two pushbuttons (SW1 and SW3) that are pulled up to V+. Each pushbutton is used to roll one of two LED die displays connected to PORTB and PORTC. The MCU recognizes a pushbutton press when that particular pin is driven to ground or a logic LOW. RA3 is connected to a buzzer used to generate a clicking sound while the pushbuttons are pressed, to simulate the “shaking” of dice. The remaining pins are connected as recommended in the datasheet for the PIC16F57.

This application does not require precise timing. Therefore, the MCU uses an RC oscillator by connecting a 10 K resistor and 1,000 pF capacitor in parallel to the OSC1/CLKIN pin (the PIC16F57 will need to be configured for RC oscillator mode in the firmware). SW2 on the schematic connects to the MCLR/Vpp pin. PIC MCUs have the ability to have an externally-triggered RESET generated by driving the MCLR/Vpp pin to ground. On any RESET, the firmware code restarts execution from the beginning.

Finally, notice the P1 header connected to various pins on the MCU. This implements an in-circuit serial programming (ICSP) configuration, which allows the firmware to...
be downloaded to the MCU using the PICkit 2 programmer/debugger.

Firmware

I chose to develop the firmware using the free CCS C compiler that comes with the current free version of the MPLAB® Integrated Development Environment (IDE — available for download at www.microchip.com/MPLAB). This allows for the development of firmware written in C directly to the MPLAB IDE. Keep in mind as you read through this article or refer to the firmware that some of the pre-processor directives and functions are compiler-specific and will only work in the CCS environment.

It is a good idea to download the CCS compiler reference manual from the CCS website (www.ccsinfo.com). This manual outlines all compiler-specific pre-processor directives, as well as a library of functions that can be used to minimize code-development time. I also suggest downloading a copy of the PIC16F57 datasheet from www.microchip.com and keeping it handy, so that you can reference such things as register addresses and control bit manipulation.

As for the code, initializing device/control registers, getting the inputs, and outputting them to the LEDs is fairly straightforward. The pushbutton states are polled periodically, and a debounce delay is

FIGURE 1. μDice schematic.

FIGURE 2. Linear feedback shift register used in μDice project.
implemented to eliminate pushbutton contact-bounce issues.

The interesting part of the firmware actually lies in determining the output values to the LED displays. In order to make sure that this dice algorithm produces a truly random result, I decided to use a random number generator (RNG). There are a number of software RNG algorithms out there. In fact, the CCS library includes an RNG function (RAND()). Initially, I did try using this function. However, the code that was generated in the background quickly ate up my data memory. Therefore, a different approach was necessary. I decided to go with a 16-bit linear feedback shift register (LFSR) algorithm. Figure 2 shows a 16-bit LFSR.

This type of RNG is based off of a “Taps” system that is described by a characteristic polynomial. Each of these tap positions indicates what bit positions within the LFSR itself will be XOR’d with a shifted out bit. Remember how the XOR operation works — if two bits differ (e.g., 1 and 0), then the result is 1. If the bits are the same (e.g., 1 and 1 or 0 and 0), the result of the XOR operation is 0.

As shown in Figure 2, the algorithm starts by shifting the LFSR bit by bit. The shifted-out bit is then XOR’d with the new value at bit position 16, since this is where a tap is located. The result of that operation is then XOR’d with the next tap at bit position 5 and so on, to the tap at bit position 2. The one-bit result of all these XOR operations is placed at bit position 1 and the process starts over.

Repeatedly performing this operation should generate seemingly unpredictable, subsequent values in the LFSR. This LFSR style of RNG is an example of a pseudo-random number generator. This means that, if scrutinized closely enough, one would observe a definite pattern in the sequence of values generated. The trick here is to make these values seem to occur randomly.

An idea 16-bit RNG should generate $2^{16} - 1 = 65535$ values before repeating a value (not counting zero). The secret is to make sure that a characteristic polynomial of maximal length is chosen. Maximal length simply means a tap sequence that will generate the longest possible run of sequential values, before the sequence repeats itself.

Some basic rules are applied to selecting a maximal length characteristic polynomial:

1) There should be an even number of taps.

2) The polynomial should be relatively prime and irreducible (the polynomial cannot be further reduced).

I chose the polynomial and tap sequence shown in Figure 2. To implement this in software, I first declare a 16-bit integer variable named LFSR and initialize it to 1. I realized I needed to save the most significant bit before the register is shifted so that it can be XOR’d with bits located at the tap positions. This is accomplished by declaring a one-bit variable of type int1 named Output_bit. To identify the tap locations, the #bit directive is used to name individual bit locations in the LFSR as follows:

```
#bit LFSR_16 = LFSR.15
```

Why am I assigning LFSR.15 (bit 15) to LFSR_16? This is to avoid confusion in the code. Different bit numbering conventions are used between the characteristic polynomial and the compiler. The compiler (and PIC16F57 datasheet) identifies a 16-bit register as bits 0–15, while the polynomial identifies these same bits as 1–16. The randnum_generator() function performs the LFSR algorithm to generate each value as follows:

1) First, the 16th bit of the current value in the LFSR variable is saved to the Output_bit variable.

2) The contents of the register are then shifted left by one.

3) The Output_bit is now XOR’d with the new contents of LFSR to generate the least significant bit in the register as follows:

```
LFSR = ((((Output_bit ^ LFSR_16) ^ LFSR_5) ^ LFSR_3) ^ LFSR_2);
```

4) If at some point the LFSR register is filled with zeros, the XOR operation will no longer work, and the algorithm will fail and produce an endless series of zero values. Therefore, this condition will need to be taken care of using a conditional IF statement to reseed the LFSR with decimal 1 to restart the sequence.

```
if (LFSR == 0b0000000000000000) LFSR = 1;
```

The randnum_generator() executes immediately on any RESET or power-up and continues to execute, so long as the MCU has power. This idea stems from the basic operating theory of slot machines. A slot machine constantly runs a RNG so long as there is power to the machine. Once the user hits a button or pulls a lever, the current random number is stored, compared against a table of possible output combinations and the result displayed accordingly. Using this basic methodology, as long as the dice application is running, a random number is generated.

FIGURE 3. Excel-generated graph of sequential contents in LFSR register.
As soon as one of the pushbuttons is pressed, the current value in the LFSR is stored and used to generate an output.

A mod by 6 operation is performed on the saved LFSR value (i.e., LFSR % 6). This divides the contents by six and discards all other information, except for the remainder. For example, if the LFSR value is 35, moding by 6 produces a remainder of 5. Likewise, moding 30 by 6 produces a remainder of 0. The result of the mod operation is used to select one of six values stored in a 1 x 6 array called DIE[6]. The array holds the predefined values that will be used to set or clear individual port pins to light the appropriate LEDs, according to the determined dice side.

Testing the Random Number Generator

To test how random the values generated by the randnum_generator() are, I implemented the Stimulus tool using the SIM simulator within the MPLAB IDE. In the Stimulus window, there are a number of options. The “Register Trace” option enables you to take subsequent contents of a register in data memory, and store them into a .txt file during a simulation.

In order to ensure that only the values you want are written to the .txt file, a tag will be needed. Basically, what you want to do is create a dummy function that contains no code. Call the dummy function just before the variable register value you are interested in changing. Setting the dummy function as the Program Counter (PC) value (in the Register Trace window) denotes when and what to write to the .txt file. At the end of the simulation run, this text file can now be imported into a spreadsheet application (such as Microsoft Excel) and graphed.

The resulting graph for the LFSR RNG used in this application is shown in Figure 3. Clearly, this is a visual method to check for repetitive sequences. Granted, checking 65,535 graphed values would be quite the task. However, this is a good, quick way to look for any obvious, periodic repetition that may exist. The resulting graph should look like noise. In fact, the noisier the graph, the better the random number generator is.

Exploring some of the statistical functions in Excel allows for a more in-depth look at the RNG. For example, I ran the Histogram Data Analysis tool from tools>>Data Analysis in Excel to check the frequency of occurrence for each value in the test period that I graphed (refer to the Help files in Excel for more information). The resulting analysis is shown in Table 1. Note that each value is identified as part of a bin (statistical term for the value whose occurrence is being analyzed).

Spicing Things Up

The application is basically complete at this point and it could be left as-is. However, what is life without a little spice?

Implemented in the firmware’s Check_button() function, I include two WHILE loops. The first loop takes the current LFSR value when a pushbutton is pressed, modifies it by 6, assigns the new value to a variable DIE_OUT, and increments it by one for the duration of the loop, until the pushbutton is released. The DIE_OUT variable is eventually used to display the final value on the LED display for either dice. This adds user interaction as a variable to the final output value. Not only that, but a simple 50 ms delay is included in the loop and the output to the buzzer is toggled, so that each time through the loop, a 1/50 ms = 20 Hz clicking sound is produced (mentioned previously).

The second loop occurs immediately after the pushbutton is released, and once again implements the buzzer output toggle. However, this time a variable called Tumble is

<table>
<thead>
<tr>
<th>Bin</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,568</td>
</tr>
<tr>
<td>1</td>
<td>1,555</td>
</tr>
<tr>
<td>2</td>
<td>1,526</td>
</tr>
<tr>
<td>3</td>
<td>1,566</td>
</tr>
<tr>
<td>4</td>
<td>1,560</td>
</tr>
<tr>
<td>5</td>
<td>1,598</td>
</tr>
<tr>
<td>More</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 1. Results of histogram analysis of example random number generator.

January 2008 NUTS & VOLTS 49
initialized to 30 and then decremented by one each time through the loop. The Tumble variable is subtracted from the delay each time through so that the loop slows from $1/10 \text{ ms} = 100 \text{ Hz}$ down to $1/40 \text{ ms} = 25 \text{ Hz}$, gradually slowing the buzzer’s clicking sound before the firmware outputs a final dice-side value to the LED display.

In this way, we can imagine the first loop simulating the shaking of the die while the pushbutton is pressed and the subsequent rolling of the die when the pushbutton is released. I also included some code to generate a sequential output of the values loaded in the DIE[6] array to the corresponding LED display in time with the rate of each loop.

Additionally, the PIC16F57 comes with a low-power SLEEP mode. Placing the device into SLEEP reduces current consumption to approximately 1 μA. Since there is no ON/OFF switch on the dice, the only way to remove power and preserve the two AAA batteries is to physically remove them. Therefore, to make for a more robust and efficient application, a counter variable Time_2_SLEEP is decremented with each overflow of the eight-bit Timer0. If Time_2_SLEEP reaches zero, the CCS compiler’s specific function SLEEP() is executed and the device powers down. If at any time during this algorithm a pushbutton is pressed, the Time_2_SLEEP variable is reloaded and SLEEP is avoided.

Once in SLEEP mode, pushing the RESET button connected to the MCLR/Vpp pin will RESET the device, wake it from SLEEP, and start code execution over from the beginning. The time it takes before the microcontroller enters SLEEP is entirely based upon what value you initialize the Timer_2_SLEEP variable to.

Final Thoughts

Even though a simple little circuit is used, the addition of an MCU enables the implementation of code with varying degrees of sophistication. Try playing with and testing the characteristic polynomial for the RNG using some of the techniques used in this article.

Typically, manufacturers of gaming equipment will run tests for days just to ensure the effectiveness of a random number generator. You could get fancy and delve into standard deviations and statistical analysis. Just explore the Data Analysis tools in the software you are using to generate your tests. Refer to the add-ins for Excel if these or other analytical tools are not present on your computer.

Remember, more than one characteristic polynomial will work for a register of a given size. Just be sure to follow the rules to develop a polynomial of maximal length. There are also other LFSR configurations out there you may wish to use. Roll the dice and let your imagination run wild! **NV**
Great Kits for Electronics Enthusiasts

Top Selling Kits

10A 12VDC Motor Speed Controller
KC-5225 $17.95 + post & packing
Ideal for controlling 12V DC motors in cars or in situations that require a more powerful output than a simple relay can provide. This kit includes a motorized speed controller with a microcontroller and IDC connectors for easy installation.

Smart Fuel Mixture Display for Fuel Injected Cars
KC-5374 $17.95 + post and packing
This kit features a fuel mixture display that automatically adjusts the mixture ratio based on engine load and speed. It comes with a microcontroller and IDC connectors for easy installation.

Clock Watcher’s Clock
KC-5404 $82.95 + post & packing
KC-5416 $110.25 + post & packing
This kit allows you to create a custom clock that can display time in any format you choose. It includes a microcontroller and IDC connectors for easy installation.

45 Second Voice Recorder Module
KC-5454 $23.25 + post & packing
This kit can be set up to record up to 45 seconds of audio. It includes a microcontroller and IDC connectors for easy installation.

Audio Playback Adaptor for CD-ROM Drives
KC-5459 $37.75 + post & packing
Put those old CD-ROM drives to good use as CD players with this nifty adaptor kit. It features an AVR driven circuit, and produces a dazzling display with 60 LEDs around the perimeter. It looks amazing, but can’t be properly explained here. We have filmed it in action so you can see for yourself on our website www.jaycarelectronics.com.

Build-Yourself Electronic Project Kits

Looking for a particular KIT?
Checkout Jaycar’s extensive range. We have kits and electronic projects for use in:
- Audio & Video
- Car & Automotive
- Computer
- Learning & Educational
- Lighting
- Power
- Test & Meters
- General Electronics Projects

Post and Packing Charges

<table>
<thead>
<tr>
<th>Order Value</th>
<th>Cost</th>
<th>Order Value</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25 - $49.99</td>
<td>$7.50</td>
<td>$200 - $499.99</td>
<td>$60</td>
</tr>
<tr>
<td>$50 - $99.99</td>
<td>$20</td>
<td>$500+</td>
<td>$75</td>
</tr>
<tr>
<td>$100 - $199.99</td>
<td>$40</td>
<td>Minimum order $25.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Products are despatched from Australia, so local customs duties and taxes may apply.

How to order:
Phone: Call Australian Eastern Standard Time Mon-Fri on 0800 032 7241
Email: techstore@jaycar.com
Post: PO BOX 6424, Silverwater NSW 1811, Australia
Expect 10-14 days for air parcel delivery

Low Voltage Battery Warning
KG-9000 $8.00 + post and packing
This circuit monitors any battery voltage between 3-15 volts. Whenever the voltage falls below a predetermined value a Red LED lamp lights up to alert you. Use it for monitoring all sorts of battery systems and avoiding battery damage.

Light-Sensitive Switch 240VAC 10A
AA-0326 $5.00 + post and packing
This circuit monitors any battery voltage between 3-15 volts. Whenever the voltage falls below a predetermined value a Red LED lamp lights up to alert you. Use it for monitoring all sorts of battery systems and avoiding battery damage.

Electronic Project Kits

Checkout Jaycar’s extensive range. We have kits and electronic projects for use in:
- Audio & Video
- Car & Automotive
- Computer
- Learning & Educational
- Lighting
- Power
- Test & Meters
- General Electronics Projects

Check out the Jaycar range in your FREE Catalog - logon to www.jaycar.com/catalog or check out the range at www.jaycar.com
In the September 1969 issue of Popular Electronics Magazine, Don Lancaster presented a color organ which he called Psychedelia I that I thought was the coolest thing I had ever seen. A color organ — as you may know — is a device that splits music up into numerous frequency bands and modulates colored lights (typically one color of light per band) according to musical content. In honor of Don Lancaster (my electronics hero) I named this color organ, Psychedelia II.

In Don’s design, all of the functions of the color organ were done with analog circuitry, typical of the time. Don coupled transistorized active filters for frequency selectivity to triac, solid-state switching devices to control 110 VAC incandescent lights. All in all, a very nice design.

The problem I have with all analog color organ circuits I have ever seen or built is that as the musical material applied to the color organ changes, manual adjustments need to be made to sensitivity controls on each channel to achieve a pleasant, balanced display. This constant adjustment gets old after a while, so fixing this problem was one of the motivations for designing a digital color organ.

The other motivation was to implement the design with a very small but powerful microcontroller (see Photo 1) using a development kit from Texas Instruments that cost just $20. When I started down this path, I wasn’t sure it was possible. I now know it was.

There is analog circuitry in my design, as well. In fact, the complete analog front end is analog. What is different about this design is that all of the frequency selectivity is provided by digital filters in the digital domain and the output devices are now low voltage super bright LEDs instead of incandescent bulbs. In addition, a digital automatic gain control (or AGC) was included to allow the color organ to adjust itself to varying musical material.

I described some of the technology used to implement this color organ in two previous articles for Nuts & Volts Magazine. See the articles entitled, “Floating Point Multiplication and Division without Hardware Support” and “Lattice Wave Digital Filters” for additional background information.

How It Works

This color organ has both hardware and software (firmware) components. Each will be described briefly here. For this discussion, the term microcontroller has been abbreviated as μC.

The Hardware

As shown on the schematics, the hardware consists of three sections: the analog front end, the power supply section, and the output section. The analog front end is where the audio signals from either a built-in condenser microphone or a stereo line input are processed in preparation for analog-to-digital conversion inside the μC.

The built-in microphone has its own high gain pre-amp whose gain is controlled by trimmer pot R5. Stereo line level input signals are summed into a mono signal as this color organ is a mono device. Whichever audio source is selected for use, its bandwidth is limited to less than one half the sampling frequency of 16,000 samples/second as required by the Nyquist criteria.

Numerous first order low pass filters distributed throughout the circuitry, along with a second order Sallen-Key active filter, help limit the bandwidth to reduce aliasing effects when the audio signal is digitized. All of the analog circuitry runs single ended from a single five-volt power supply.

Power for the color organ is provided by a wall wart power supply which provides between 8 and 12...
VDC, depending on the load. Diode D1 prevents the DC power source from being connected backwards and causing damage. The raw DC is sent to the output section for powering the LEDs in the display. Two voltage regulators provide 5 VDC for the analog and TTL circuitry and 3.3 VDC for powering the MSP430F2012 target board.

On the output side, the 74HCT139 demultiplexes the pulse width modulation (PWM) signal from the µC used to control LED brightness. All four outputs are inverted in preparation for driving the output switching transistors. NOTE: 74HCT technology is required for reliably interfacing the 3.3 volt logic outputs of the µC with the five volt logic which follows.

Each color channel is driven by a switching power transistor. Resistors in each channel limit the current flow to around 200 mA to equalize maximum brilliance between channels. Resistor values in the output channels differ as a result of the differing forward voltage drops across the different colored LEDs. The output transistors run only slightly warm to the touch so heatsinks are not required.

There is hardware internal to the µC used by the color organ. Specifically:

1) A 10 bit analog-to-digital converter (ADC) is used to digitize the audio with a sampling rate of 16,000 samples/second.
2) Timer A is used to generate accurately timed PWM pulses to control the brightness of each output channel independently.
3) The watchdog timer functions as a general-purpose timer to generate periodic interrupts used to synchronize the display process.

As you can see, the µC provides a lot of useful hardware for this application.

The Software

The complexity of this color organ is in the real-time nature of the software. There are three distinct threads of execution at work: the main thread, the sample acquisition and processing thread, and the display thread. (Consult the program listing for the details.)

The Main Thread

The main thread starts every time the µC powers up and performs all hardware and application initialization including:

1) Setting up the port bits needed to drive the output demultiplexer.
2) Setting up the ADC for operation and configuring a pin on the µC for analog input.
3) Setting up the watch dog timer for generating periodic interrupts.
4) Setting up Timer A for PWM operation.
5) Initializing application variables.
6) Enabling interrupts.
7) Putting the ADC into the automatic single channel sample acquisition mode.

With initialization complete, the main thread enters an infinite loop doing nothing forever.

The Sample Acquisition and Processing Thread

This is where time-critical activities occur. You can visualize this code as having one input (the new sample) and four outputs (the output of the four color organ channels). This code runs 16,000 times per second. Each new sample is subjected to the following processes:

- Noise Gate — The noise gate monitors each newly digitized sample to make sure it is above a minimum value before being allowed to pass. Values smaller than the minimum are replaced with a zero valued sample.
- Decay Processor — The decay processor monitors the sample stream for long runs of zero valued samples. Two things happen when a lull in the audio is detected. First, all of the filter delay elements are reset to terminate any ringing of the filters and second, the AGC gain variable is set to unity (Gain = 0) causing the AGC processor to restart its gain control function. The decay processor guarantees the display goes dark between songs and in low volume passages.
- The AGC Processor — The AGC processor is made up of two parts: the AGC gain control element and the AGC state machine (SM). The SM can be considered the brains of the AGC processor; the gain control element, the brawn.

A Gain value of zero indicates unity gain and the samples flowing through the gain element are untouched. Each incremental value of Gain causes a sample to be left shifted. If Gain is 4, samples are left shifted four times for a gain of 16. The AGC manipulates sample amplitude by applying more or less gain to the samples as they flow through the AGC Gain element.

There have been many AGC designs over the years, but I may have invented a new variety by using a state machine to control gain. To understand the operation of the SM in detail, you should consult the code listing. Basically, the SM runs every sample period and has a total of four states. The SM runs to completion every 1/16th of a second or every 1,000 samples.

The result of the SM execution is...
the manipulation of the Gain variable used to control the AGC Gain element. The value of the Gain variable can change by at most, one; each execution of the SM which allows the gain to change up to 16 times a second as different program material is applied to the color organ.

- **Digital Filters** — The four channels of the color organ represent four bands of frequency selectivity implemented using third order lattice wave digital filters. Each acquired sample is processed by all four filters. Table 1 gives the specifics.

- **PWM Processing** — The final step in the real-time processing of samples is the conversion of the filter outputs into a form that can drive the PWM hardware in the μC. The following operations are required:

 1) Sample value replaced by its absolute value.
 2) Sample is compared to a min threshold and, if smaller, is replaced by a value that causes the channel to remain off during its display period.
 3) Sample value is clipped to a maximum value, if required.
 4) Sample value converted into a range necessary for the PWM hardware.
 5) Processed sample is stored in memory for the display process thread.

The Display Thread

The display processor is executed every 256 microseconds by the watchdog interrupt. One channel of color organ output is done each interrupt. The display processor (see wdt_isr in the listing) performs the following operations:

 1) Disables Timer A’s PWM output line.
 2) Determines which channel of output to display from the value of Slot.
 3) Sets the output port bits to select the appropriate output channel from the demultiplexer.
 4) Fetches the processed PWM value for the selected channel and loads it into Timer A’s compare register.
 5) Resets Timer A’s counter and starts the PWM output.
 6) Increments Slot and returns from the interrupt.

Four new values of processed PWM data are stored in memory every 62.5 microseconds but the display processor only picks up one of these values every 256 microseconds for display.

FIGURE 1. Low band filter.
Real Time and μC Resource Analysis

During the design of the software, I had to determine if the MSP430F2012 μC had the performance necessary to handle the color organ's real-time requirements. Specifically, with the μC clock running at 16 MHz and a sample rate of 16,000 samples/second, there was a maximum of 1,000 instruction cycles available per sample period. Luckily, many of the instructions (all register to register instructions) execute in a single cycle. When I did my initial calculations, I found the processor was over-committed by some 20%, meaning the processing of the audio samples were taking longer than real time allowed. Needless to say, this is bad.

The easiest fix for this real-time overage would have been to eliminate one of the color organ's channels, but I was reluctant to do that. Instead, I decided to optimize the real-time software so it could execute completely in the allotted time. Optimizations included:

1) Moving 95% of the code in-line to eliminate almost all subroutine calls and returns.

2) Moving all of the real-time code directly into the interrupt service routines.

3) In-lining code for small subroutines that were used in multiple places in the code. In other words, I used additional code space to boost performance.

With these changes, I estimate the color organ is now using roughly 95% of the available CPU cycles. If you plan on making changes to the software, please keep this fact in mind.

In terms of the hardware internal to the μC, it is all being used except for a few port lines. There are about 240 unused bytes of code (Flash) memory remaining and, assuming a maximum of five levels of subroutine nesting (the stack uses RAM), there are about 57 remaining bytes of RAM. I think it is safe to say this color organ application uses up the MSP430F2012 μC almost completely.

Building One

This color organ can be built for approximately $100. MSP430F2012 target boards are available from TI (three for $10), but you will have to program them with the code provided.

1) Resistor R1 on the target board should be removed to prevent a power...
supply conflict between the color organ and the USB development hardware. Removing this resistor means the target board will always be powered by the color organ’s power supply.

2) There is an LED on the target board which will be on while the color organ is operational. The LED can be removed if this is a problem.

Build the color organ using the schematics and parts list as your guides. I used wire wrap, but you can build it anyway you choose. I built the main controller portion of the color organ on one perf board and the output section on another, but they could have been built on a single board.

Six connections are required between the target board and the color organ. Since the I/O pin holes on the target board are on .1” centers (the same as the perf board I was using), I pushed wire wrap pins through the perf board in the proper positions so that the target board could be slid on and soldered. The wire wrap pins not only provide the electrical connections but also provide the physical support for the target board.

I packaged the color organ in a triangular box I purchased. The box seemed about the right size for the 40 LEDs I was going to use for the display. I replaced the glass front that came on the box with diffusion plastic from the hardware store. The plastic I used causes the LEDs to appear like fuzzy circles of color about 1-1/4 inch in diameter. The back panel of the box has convenient swivel tabs that lock into slots on the box which make taking the color organ apart and putting it back together very easy.

The LED leads were bent around toward the LED and glued directly to the box’s rear panel. I laid out the LEDs in geometric patterns, but you can lay them out anyway you want. Wire-wrap wire was used to connect the LEDs together and to the output board.

The color organ’s control panel was built from a piece of sheet metal. The control panel has the line input jax, a condenser microphone, the mic/line switch, and the power switch.

I decided to hard-wire the power supply to the unit, so I drilled a hole in the back panel and ran the power supply wire through it. I then tied a knot in the wire inside the box for strain relief.

Once your color organ is assembled, do the following:

1) Plug in the wall wart and turn on the power switch to check the power supplies. You should have 3.3 VDC, 5 VDC, and a high voltage output between 8 and 12 VDC. If there is a problem with a power supply, find and fix it before continuing. Check for power and ground at each socket before installing the ICs.

2) Program the μC with the provided software.

3) With the μC programmed, you should see the LED on the target board light up (assuming you haven’t removed it yet). It should come on with the power and stay on indicating the display processor is running.

4) Perform an initial calibration of the microphone preamp’s gain. This can be done by connecting a headphone through a capacitor (10 μF will do) to the preamp output and adjusting the trimmer for no distortion. After your color organ is working correctly, you may need to back down the preamp’s gain so the color organ’s display is not completely saturated when the mic source is selected.
5) Connect a line input source and connect your headphone/capacitor between the arm of the mic/line switch and ground. You should hear the output of the microphone in the mic position and hear the line input source in the line position.

Once these checks are successful, you should have a working color organ.

Conclusions

I would say this color organ project was successful. The color organ performs the function it was designed to do and illustrates what can be done using DSP techniques on a very small µC. Is the software perfect? Probably not, but it works. Does the color organ look cool in operation? Yes, it does.

The experience using the TI development tools was a very pleasant one.

The $20 development kit and the provided software worked without a hitch and proves that TI has indeed brought µC development to the masses.

I do hope some of you build the color organ. It may not be the ‘60s any longer, but it is still fun to watch lights flashing to your favorite music.

PHOTO 5. Front view of the color organ.

FIGURE 5. Color organ controller schematic.
FIGURE 6. Color organ output schematic.

COLOR ORGAN PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,C4,C5,C6,C8</td>
<td>4.7 μF capacitor</td>
<td></td>
</tr>
<tr>
<td>C2,C13,C15</td>
<td>0.1 μF capacitor</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>230 pf capacitor</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.022 μF capacitor</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>0.01 μF capacitor</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>0.02 μF capacitor</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>0.04 μF capacitor</td>
<td></td>
</tr>
<tr>
<td>C12,C14,C16</td>
<td>47 μF capacitor</td>
<td>Polarized</td>
</tr>
<tr>
<td>R1</td>
<td>4.7K resistor</td>
<td>1/4W 5%</td>
</tr>
<tr>
<td>R2,R6-R8,R13,R14</td>
<td>1K resistor</td>
<td>1/4W 5%</td>
</tr>
<tr>
<td>R3,R4,R9,R10</td>
<td>20K resistor</td>
<td>1/4W 5%</td>
</tr>
<tr>
<td>R5</td>
<td>1 meg trimmer</td>
<td>10 or 20 turns</td>
</tr>
<tr>
<td>R11,R12</td>
<td>1.6K resistor</td>
<td>1/4W 5%</td>
</tr>
<tr>
<td>R15</td>
<td>270 ohm resistor</td>
<td>1/4W 5%</td>
</tr>
<tr>
<td>R16,R18,R20,R22</td>
<td>470 ohm resistor</td>
<td>1/4W 5%</td>
</tr>
<tr>
<td>R17</td>
<td>22 ohm resistor</td>
<td>1W</td>
</tr>
<tr>
<td>R19</td>
<td>18 ohm resistor</td>
<td>1W</td>
</tr>
<tr>
<td>R21,R23</td>
<td>6.8 ohm resistor</td>
<td>1W</td>
</tr>
<tr>
<td>D1</td>
<td>1N5819 diode</td>
<td>Optional reverse voltage protection diode</td>
</tr>
<tr>
<td>D2,D33-D42</td>
<td>Blue LEDs</td>
<td></td>
</tr>
<tr>
<td>D3-D12</td>
<td>Red LEDs</td>
<td></td>
</tr>
<tr>
<td>D13-D22</td>
<td>Yellow LEDs</td>
<td></td>
</tr>
<tr>
<td>D23-D32</td>
<td>Green LEDs</td>
<td></td>
</tr>
<tr>
<td>J1</td>
<td>Stereo 3.5 mm/1/8” jax</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>Two wire power jax</td>
<td></td>
</tr>
<tr>
<td>J3/J4</td>
<td>Inter-board connections</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Condenser microphone</td>
<td>Jameco #160979</td>
</tr>
<tr>
<td>Q1-Q4</td>
<td>2N4921 switching/power transistor</td>
<td></td>
</tr>
<tr>
<td>SW1</td>
<td>SPDT</td>
<td>Mic/line switch</td>
</tr>
<tr>
<td>SW2</td>
<td>SPST</td>
<td>Power off/on switch</td>
</tr>
<tr>
<td>U2</td>
<td>LM2940CT</td>
<td>Five volt, one amp voltage regulator</td>
</tr>
<tr>
<td>U3</td>
<td>LM3940IT</td>
<td>3.3 volt, one amp voltage regulator</td>
</tr>
<tr>
<td>U4</td>
<td>MSP430-F2012</td>
<td>uC target board. Available from TI. (See Resource sidebar.)</td>
</tr>
<tr>
<td>U1</td>
<td>LM324</td>
<td>Quad op-amp</td>
</tr>
<tr>
<td>U5</td>
<td>74HCT139</td>
<td>Two to four demultiplexer</td>
</tr>
<tr>
<td>U6</td>
<td>74HCT04</td>
<td>Hex inverter/buffer</td>
</tr>
</tbody>
</table>

RESOURCES

The color organ source code file — colororgan.s43 — is available from the Nuts & Volts website at www.nutsvolts.com.

The LEDs used in this project were purchased from www.superbrightleds.com.

Other parts for this project were purchased at Jameco and RadioShack.

CONTACT THE AUTHOR

Craig A. Lindley can be contacted via email at calhjh@gmail.com
BEST SCOPE & LOGGER SELECTION!

Scopes

- **Color LCD Scope**
 - Ovon - 25MHz 2-ch trigger standalone USB bench scope with 7.8" color LCD. Battery powered optional.
 - PDS5225 $349
 - PDS5257 $550

- **Low-Cost Scope**
 - 2-Ch 20 MS2/S 2 MHz 8-bit scope adapter with 32 KB buffer and USB 2.0 (fast screen updates) with case & probes.
 - P52202 Bundle $357

- **In 1 Scope**
 - Automotive Diagnostics - Award-winning Pico kits turn your PC into a powerful vehicle-electronics diagnostic tool 2.5-4.6 volt versions for components & connectors.
 - PicoScope with probes $199

- **PicoScope 3206**
 - 24ch 12-bit USB scope
 - $1576

- **Scope + Analyzer**
 - 100MHz 2-ch 16 logic scope and logic analyzer. 2000 wfm’s refresh rate. Ultra Compact Design with small footprint saves bench space.
 - DS1102A $1095
 - DS1102CD $1995

- **150MHz Wfm Gen**
 - 150MHz USB 14-bit Function/Arbitrary wfm Generators. 10 built-in wfm’s; PM, AM, FM, FSK, SWEEP and BURST; 6 digit 200MHz frequency counter.
 - DG0111 / DG1021 $650 / $795

Data Loggers

- **Wireless Data Loggers**
 - PT104 - 4-ch temperature logger with 0.001°C resolution, 0.05°C accuracy using platinum RTD sensors. Also measures resistance and voltage.
 - PT104 $747

- **Ultimate Temp Logger**
 - 8/16ch Voltage Logger
 - 20-bit 8/16-bit 24-bit 16-ch USB voltage logger w/ control output. Galvanic isolation from the PC eliminates noise.
 - ADC-20 (20-bit) $321
 - ADC-24 (24-bit) $747

- **Pico USB ADC-11**
 - USB powered 11-ch voltage data logger - 10KHz sampling rates with digital outputs for control or alarm.
 - USB ADC-11/12 $173

- **DLF - Low cost, USB-powered digital sensor. Easily monitor temperature/humidity/dew point from USB port.**
 - DLF-TH1 $99

- **Pico USB TC-08**
 - USB connected and powered 8-ch thermocouple data logger. Samples at up to 15 readings/second with built-in CJ/C from -270°C to +1820°C.
 - USB TC-08 $460

- **Ethernet Temp/Hum**
 - T&D - Networked logger for remote ambient measurement. Send email or phone warnings if thresholds exceeded. Optional WiFi for remote installation.
 - TR-72W $489

- **Thermocouple Logger**
 - DLP - Low cost, USB-powered digital sensor. Easily monitor temperature/humidity/dew point from USB port.
 - DLP-TH1 $99

- **Line Tester**
 - TTI - High speed/dutyLCZ AC power analyzer to 16A for ease product power-compliance measurements. Measures/displays up to 42B harmonics in real time.
 - HA1600A $289

- **USB Temp Logging**
 - PicoScope 3224 - Is an impressive 2-ch 100/200/300MHz 2 ch, 2GS/s DSO and 20MHz or 60MHz rugged handheld USB scope with 3.5" color LCD. Built-in meter great for your tool kit.
 - $234

- **Networked logger for 100MHz, 24kB buffer CV/ref.
 - DS11002B $2227
 - DS11004B $3380

USB Bus Analyzers

- **USB1.1/2.0/WM Media analyzers and now - EZK200 can test USB3.0/500 tow! Tool Emulate host/device, verify compliance.**
 - TR110 / EX200 / EZ200 $995 / $2399 / CALL

- **MM**
 - TTI - High speed/dutyLCZ AC power analyzer to 16A for ease product power-compliance measurements. Measures/displays up to 42B harmonics in real time.
 - HA1600A $289

NEW!

- **NEW!**
 - USB Analyzer $495

- **NEW!**
 - *Complete RS-232/422/485 adapter kit*!
 - PCB, Board, Breakout, Power, USB/RS-232 Adapter $164

Log & Analyze

- **EMC Spectrum Analyzer**
 - **EMC RF & EMF Spectrum - Analyzer 1Hz to 75GHz for measuring transmissions from radar, radiotelephone, WLAN, WiFi, WiMAX, Bluetooth, microwave ovens, etc.**
 - from $299 / $1999

- **Logic Analyzer**
 - **Logic Analyzer**

Customers

- **Join our huge list of satisfied customers:**
 - Intel, Philips, Maxim, GM, GE, NEC, Kodak, Xerox, Nokia, T2, Harris, Sony, Pelagic, Sandisk, HP, General Dynamics, US Military, etc.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PicoScope 3206</td>
<td>$1576</td>
</tr>
<tr>
<td>20MHz or 60MHz rugged handheld USB scope with 3.5" color LCD. Built-in meter great for your tool kit.</td>
<td>$234</td>
</tr>
</tbody>
</table>

USB Temp Logging

- **USB Temp Logging**
 - PicoScope 3224 - Is an impressive 2-ch 100/200/300MHz 2 ch, 2GS/s DSO and 20MHz or 60MHz rugged handheld USB scope with 3.5" color LCD. Built-in meter great for your tool kit.
 - $234

Call 1-888-75AELEG

 Mention Offer # SBW

Free Coffee

Get a free Starbuck's Card with your order!
Part 2
In the first part, we saw that there are three main components to an analog power supply: input power conversion and conditioning, rectification and filtering, and regulation. We examined the first two components and in this article we will examine the regulation aspect. We will concentrate on the basic three-terminal regulators that are cheap and easy to obtain.

However, it should be remembered that many of the basic design aspects of three-terminal regulators apply to any analog regulator design. In this article, a zero to 30 VDC, zero to one amp, current limited power supply will be developed. The basic cost for parts is under $25.

Basic Three-Terminal Regulator

Figure 1 shows a conceptual design of a three-terminal regulator. (We will limit our discussion to positive regulators because the negative regulators are virtually the same, other than polarity.) It is important to appreciate how this works in order to properly understand and apply analog regulator concepts. Fundamentally, the regulator is a negative-feedback servo system. The resistor and zener diode provide a stable voltage reference to the non-inverting input of an op-amp. The inverting input of the op-amp measures the output. If the output is higher than the reference, the op-amp slews towards a lower voltage.

Conversely, if the output is lower than the reference, the inversion of the op-amp's input drives the base of the transistor harder to allow a higher voltage to pass. This design concept is pretty straightforward (although implementing it can be fairly complex).

There are a number of points about this basic design that need discussion. The first is that the pass transistor is acting as a variable resistor. It reduces the input voltage by limiting the current. As you can imagine, a fixed resistor in this situation must be able to dissipate plenty of heat, so it’s the same for the transistor. We will examine this in more detail later.

The second point is that there is a voltage drop across the pass transistor. All bipolar semiconductor junctions display this effect. This means that the input voltage must
be higher than the output voltage for proper operation. For the standard three-terminal voltage regulators, this voltage is about 1-2.5 V, depending on temperature and current drawn. (However, for proper design purposes the 2.5V "drop-out" voltage should always be employed.)

If the desired input-output voltage difference is less than this 2.5 V, the circuit will no longer have the headroom to regulate properly and drop out of regulation. (There are other "low-dropout" or LDO regulators available that can operate with much less input-output differential — some as low as 0.1 V. However, care must be taken to provide proper capacitive loading or else they may not function properly.)

The third point is that it takes some small amount of time for an output change to propagate through the op-amp and transistor (loop delay). During this time, the output is not being properly regulated. Obviously, the faster the op-amp and transistor, the shorter this transient will be. However, manufacturing fast, high-power transistors is not easy or cheap.

Additionally, the faster the transistor and op-amp circuit is, the more prone to oscillation it is. Having your power supply oscillate is not a good thing. Most three-terminal regulators have a transient response (closed-loop delay time) of about 30 μs.

The last point concerns adjustable voltage regulators (Figure 1 shows a fixed-voltage regulator). Without getting into a long technical discussion, it is difficult to provide a stable and cheap reference voltage below 1.2 V. This limits the minimum output voltage of adjustable regulators. However, we'll see a cheap and easy solution to this problem, later.

Additional Components Needed

For the fixed voltage regulator, only an input and output bypass capacitor (connected to ground) are required (typically 0.1 to 1.0 μF). These are to stabilize the op-amp in the regulator. If the large filter capacitor is in close physical proximity (less than 6") to the regulator input, then the input bypass capacitor can be omitted.

In theory, the output capacitor can also be omitted. But if your circuit to be powered just happens to have a load capacitance of 500 pF to 5,000 pF, then the regulator might oscillate. Using a 1.0 μF output bypass capacitor forces the op-amp into a stable operating mode. It is always a good idea to spend a few pennies on this to be sure you have a reliable power supply.

Figure 2 shows the proper design for an adjustable regulator. The input and output bypass capacitors (Ci and Co) are the same as in the fixed regulator implementation.

The two resistors (Rb and Radj) are required to choose the output voltage. Typically, Rp is set at 240 ohms to provide a proper current (typically about 50 μA) into the feedback of the op-amp. Radj is used to vary the output to the desired value. The capacitor connected to the adjustment pin (Cbyp) is used to improve ripple/noise rejection. This is especially useful if the raw DC input is coming from a switching power supply which is typically quite noisy.

The diodes are used to protect the regulator against unexpected voltage reversals. If the input should be shorted to ground, capacitors on the output and/or the adjustment pin will still maintain their voltage. They will then discharge backwards through the respective pins towards the input. This can destroy the device.

If there is no adjustment bypass capacitor used (Cbyp), then the Dadj can be omitted. If you are sure that the device being powered will never have 10 μF or more load capacitance, then Do can be omitted, as well.

Adjustment Calculations

It is important to remember that (for adjustable regulators) the adjustment pin acts as a non-inverting feedback point to the internal op-amp. As such, the op-amp will do whatever it can to maintain the voltage on this pin (which is specified to be 1.25 volts below the output). So if we apply a voltage (through a resistor) to this pin, the output will go up. If we short this pin to ground, then the output will fall to about 1.25 volts. If a negative 1.25 volts is applied, then the output will go all the way to zero volts.

Generally, a voltage divider is used to pass some of the output voltage back into the regulator to set the output voltage (as shown in Figure 2). The equation is \[V_{out} = V_{ref} (1 + \frac{R_p}{R_d}) \]

where \(V_{ref} \) is the reference voltage which is 1.25 V as noted above.

The second term \((I_{adj} \times R_d) \) is the error correction for the 1.25 V reference. Generally this is quite small and is often ignored. If this is ignored and the typical value of 240

FIGURE 2. The practical implementation of the LM317 adjustable regulator requires a few additional components for optimal performance and reliability. The text describes the additional parts and their function.

FIGURE 3. By substituting the load for the adjustment resistor, the LM317 becomes a current regulator (the voltage changes according to the load). This is a very useful circuit that is not often used.
Ω is used for Rp, then the equation becomes $V_{out} = 1.25 \times (1 + \frac{240}{R_{adj}})$. Usually, this is accurate to within a few percent.

A curious thing happens when we replace R_{adj} with a power load instead of a resistor (see Figure 3). The output voltage varies with the load. We see that this makes sense because the power load variation is acting as a variable resistor. The result is that the current to the load remains fixed but the voltage varies. In other words, the voltage regulator has changed into a current regulator. Instead of a constant voltage, we have a constant current.

It is easily seen that the maximum current allowed depends upon Rp. If Rp is made 1.25 Ω, then up to a full amp of current can be supplied. Note that this current is limited by the 1.5 A maximum output of the regulator and the maximum output voltage obtainable (which depends upon the input voltage). This current regulation is a very useful feature (of these regulators) that is not often used.

Power Dissipation

Basically, the regulator acts like a variable resistor in series with the power supply. The amount of power dissipated is simply the voltage difference between the input and output pins times the current drawn. This creates some interesting situations.

For example, suppose you provide 35 V to the input of an adjustable regulator and expect to draw one amp at five volts and also at 32 V. At five volts, there will be a 30 V drop across the regulator. With an amp of current, the regulator will have to dissipate 30 W while providing five watts to the load. It's only 14% efficient. At 32 volts, there will be a three volt drop which means that the regulator must dissipate just three watts while supplying 32 W to the load. This is 91% efficient.

It is clear that keeping the input voltage as close to the output as possible results in better efficiency and less heat. (Note that with an input voltage of 35 V and a current requirement of one amp the total power used will always be 35 W. The more power the load uses, the less the regulator must dissipate.)

Often times, multiple voltages are needed for a circuit. There is nothing wrong with placing a five volt regulator after a 10 V one. In this way, the voltage drop for the five volt regulator is shared between two devices. However, if the two voltages have significantly different current requirements, this approach may not be optimal. (You can use Ohm's Law to calculate the effective resistance of the regulator given the desired voltage and current. The power is then calculated to be the resistance times the current squared.)

Applying the Theory

We can now combine the information from the two articles to build a practical power supply. We'll start with a basic supply and then discuss how to change it to add features that may be useful. Figure 4 provides a practical circuit for an adjustable, current limited and voltage regulated, one amp power supply that goes from zero volts to about 30 volts. (This particular circuit has proven to be very useful and adaptable in a number of high-reliability designs for my clients, usually with fixed current limit and fixed output voltage.)

The raw DC circuit was described in detail last month and will not be discussed further except to note a few minor changes. The power transformer is now specified as a 24 volt, center-tapped, 1.0 to 1.5 amp device instead of 25.2 volts at two amps. The reason for this change is three-fold.

The first is that some regulators are limited to 35 V (most others are rated to 40 V and there is a high
the current is limited to a maximum value of 1.25 A. (Power is equal to current squared times resistance). This would burn out a 1.25 W resistor or 1.0 Ω.

In this instance, there will be about 0.4 W of power through it. This means that a one watt potentiometer is adequate, but a two watt unit will be used to be very conservative. Remember, it’s better to spend a little bit extra on the power supply than to spend a lot on ruined circuits.

The voltage regulator section is simply the design from the beginning of this article. The only change is to use a variable resistor (R6) instead of a fixed resistor (Radj).

Heatsinking is an important issue. The voltage regulator must be able to dissipate up to 32 W of power, worst case. This creates a significant problem. The typical TO-220 case is limited to 15 W as per the spec sheet. One poor solution is to reduce the maximum power rating to about 0.5 A for lower voltages. This is changing the specs to match the design instead of designing to match the specs. There is another approach that requires a bit of creative engineering that will be detailed below.

Curiously, the current regulator is very efficient. The voltage drop is typically 2.5 V (worst case) so the maximum power dissipated at one amp is 2.5 W. A simple and inexpensive clip-on heatsink is sufficient here.

Fixing the Heat Problem

As noted, there is too much heat to be dissipated at low voltages. The problem comes from the large voltage drop from the input to the output of the regulator. The solution is to use a center-tapped transformer and switch between taps. Center-tapped transformers are common and generally cost no more than non-center-tapped transformers.

When the switch is connected to the top end of the transformer, the full voltage is applied to the rest of the circuit and the full range of voltages is possible. As long as the current draw is kept below about 0.5 A, there will be no heat problem. However, if the power supply needs to provide a high current at a low voltage, the switch is used to connect to the center-tap and reduces the input voltage by 50%. Thus, only about 18 volts is applied to the rest of the power supply.

So, if five volts at one amp is needed, then only 13 W of power must be dissipated by the regulator as heat (instead of about 30 W). This allows the standard TO-220 style regulator to be used within the specified limits. (If you want to get fancy, you could monitor the adjustment voltage and use a separate circuit to automatically switch between the transformer windings.)

Fixing the Minimum 1.2 Volt Problem

Most people want a power supply to go all the way to ground. It turns out that there is an easy way to accomplish this; just add two diodes in series with the output. Each diode drops the voltage by about 0.7 V (depending on load). So, two diodes will reduce the output by 1.4 V. In actual operation, only about 1.0 V is dropped at no load. This makes the minimum output no load voltage 0.2 V. This is virtually zero.

If you really want to, you can add another diode in series to drop the output further, but it seems unnecessary. The resistor to ground is included to drain off any leakage through the diodes. Without the resistor, the output can float up to the voltage applied to the diodes.

It should be noted that you can pull the output of the regulator to ground if you apply a negative voltage to the adjustment pin. This is somewhat complicated if a negative voltage is not easily available (as in this case). The addition of two diodes is a quick and easy fix.

Minimum Current Discussion

As noted on the schematic shown in Figure 4, the minimum current limit is about 5 mA. For virtually all applications, this is not a problem. Very few components will
be damaged with 5 mA applied to them. However, if the voltage is set to 30 V, then 150 mW of power is present at the output. This could be too much for some components. It must be remembered that the voltage regulator uses some current for its operation (in addition to the current dissipated during the process of regulation). As it happens, the regulator draws about a constant 5 mA with a 30 V input, regardless of the voltage output setting. Therefore, while the current regulator provides a minimum of 5 mA, this current is used by the following voltage regulator and it is not seen at the output to a great degree (although in certain special cases it might be). This is not a perfect solution, but it is reasonable.

If desired, a larger current adjustment resistor (R5) can be used. A 1K potentiometer will reduce the minimum current out of the current regulator to about 1 mA.

Adding Meters

It’s always nice to be able to measure the voltage output and current used. Adding a voltmeter is simple. Just place it across the output to measure the voltage. The current meter is a bit more complicated. You can place an ammeter in series with the output to measure the current used. This will work most of the time. The problem is with the series resistance added by the meter. Depending on the meter, this might affect the circuit you are powering. Basically, it increases the power supply impedance. This is especially true for low current ranges where the series resistance may be a hundred ohms or more (my cheap meter has 800 Ω of resistance on the 500 μA scale).

If you don’t mind an error of a few mA, there is a very convenient place to measure the current. All you have to do is measure the voltage across the leads of R4 in the current limiting circuit. This is a one ohm resistor and will provide one volt per amp of output current.

The basic accuracy depends upon the precision of the resistor. A 1% resistor will be accurate to 1% except for the few mA used by the voltage regulator circuit that follows. (Note that you can measure small load currents by noting the current before connecting the load and after it has been connected. The difference is due to the load. Your basic limitation here is the ability to measure small voltages. Five mA of current will provide only 5 mV across the resistor.)

The proper method of measuring the output current is to add a small series resistor to the output and measure the voltage drop across it (just like we did with R4). Typically, this resistor is 0.1 Ω or less and requires a bit of careful design. There are current monitor ICs available for a couple of dollars that greatly simplify the problem of converting a current into an easy to measure voltage.

Conclusion

Understanding basic analog power supply concepts allows the design of a robust, general-purpose power supply for under $25. Adjustable three-terminal regulators are inexpensive and their shortcomings can be compensated for without too much trouble. Higher current and higher voltage regulators are available so that larger power supplies can be built.

Instead of providing only a circuit diagram and instructions, these two articles have attempted to provide a foundation of information needed to help anyone design a power supply for their own needs. Power supply design is a basic skill every engineer and hobbyist should have. After all, every project needs to be powered in some way.
2 AMP “SMART” BATTERY CHARGER / MAINTAINER
Black & Decker® VEC080BD. 2 Amp charger / maintainer for lead-acid batteries.
* 2-stage high-efficiency charging technology provides a faster, safer charge than older type conventional chargers. Charges with high efficiency pure DC current.
* Keeps stand-by batteries fully charged
* Automatically switches from full-top charge to float mode monitoring. Charges automatically.
* Quick Disconnect Harness - Fast connects for hardwire ring terminals, battery clips or cigarette-type plug
* Red, Yellow, Green LED Charging Indicators
* All solid state circuitry * UL listed
* Includes Multi-use 3 connector set - Battery clips, Accessory plug, and Battery Ring Terms
CAT# BC-80 $2195

SOLDERLESS BREADBOARD
Design and change circuits quickly and cleanly. Accommodate all sizes of dips and discrete components with lead diameters up to 0.032”. Interconnect with solid hook-up wire (#22 AWG recommended). Wires and components can be used and re-used many times without damage to board or components. 400 tie points. 300 contacts on main board and 50 contacts on each of two power distribution strips. Distribution strips are removable.
CAT# PB-400 $4.00 each

SOLAR POWERED GARDEN LIGHT
Easy-to-install garden lights. Because they’re solar powered, no wiring is required; just push stake into ground and you’re ready to go. Solar-cell on top of light charges battery during daylight hours. Light comes on automatically when darkness falls. The illumination of the lamp is not particularly bright, but it is adequate to mark a path. Light source is one white LED, which is multiplied with the help of the serrated plastic globe. Includes one rechargeable AA Nickel-cadmium battery.
CAT# SPL-09 $4.75 each

SPECIAL - ULTRABRIGHT GREEN LED
Bright green 5mm diameter (T 1 3/4) LED. Water-clear in off-state.
CAT# LED-128 $21.95 each

SHINY METAL MIRROR
4.36” x 2.15” x 0.03” thick. Shiny, reflective metal mirror. An auto-mobile visor, or towel dispenser mirror. A nice piece of plated metal. May have decorative application.
CAT# MIR-22 $5.00 each

THIN 3.5MM STEREO / AUDIO CORD (GREAT FOR iPHONE)
A great cord for connecting an iPhone to another audio device. Right-angle plugs. The 1” long cord is ultra-thin and flexible and, unlike most other 3.5mm plugs, they have a small diameter shank that fits the recessed jack on iPhones.
CAT# CB-400 $2.00 each

7-SEGMENT DISPLAY
Fairchild # MAN71A. 0.3” high red character with decimal point. DIP package fits 14-pin DIP socket. Common anode. Large quantity available.
CAT# SDA-71 $0.35 each

12VDC 3.33A SWITCHING POWER SUPPLY
Hipro # HP-O2040D43
Input: 100-240Vac
Output: 12Vdc 3.33A
Table-top style switching power supply. 5 ft output cord with female IEC connector for EMI suppression. Terminated with 2.5mm coax power plug, center positive. Includes three-prong IEC detachable power cord. UL, CE.
CAT# PS-1233 $15.75 each

Shop ON-LINE www.allelectronics.com
ORDER TOLL FREE 1-800-826-5432
MAIL ORDERS TO: ALL ELECTRONICS CORP. 14928 OXNARD ST., VAN NUYS, CA 91411-2610
FAX (818) 781-2653 • INFO (818) 904-0524 • E-MAIL allcorp@allcorp.com
NO MINIMUM ORDER • All Orders Can Be Charged to Visa, Mastercard, American Express or Discover • Checks and Money Orders Accepted by Mail • Orders Delivered in the State of California must include California State Sales Tax • NO C.O.D. • Shipping and Handling $7.00 for the 48 Continental United States - ALL OTHERS including Alaska, Hawaii, P.R. and Canada Must Pay Full Shipping • Quantities Limited • Prices Subject to change without notice.
MANUFACTURERS - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or Fax YOUR LIST.
This is the ultimate starter setup, as most of these software tools are free. You can download the PICkit 2 command-line software from www.microchip.com/pickit2. The download is a zip file, so you need to download it and then unzip it into a location on your hard drive. The final step is to connect the PICkit 2 to the USB port on your PC, and then set up the PICkit 2 in the MicroCode Studio IDE for that one-click compile/program feature most of us want.

PICKIT 2 SETUP

The steps to set up the PICkit 2 in MicroCode Studio are easy, once you know what to do. First, open MicroCode Studio, and then click on the “View > Compile and Program Options” selection as shown in Figure 1. The window shown in Figure 2 should appear.

The next step is to click on the “Add New Programmer” button to create the PICkit 2 setup in MicroCode Studio. Figure 3 shows the “Add New Programmer” window that appears. The “Create a custom programmer entry” should already be selected, so click on the “Next >” button.

A second “Add New Programmer” window will appear with a blank line. Enter the name you want to appear in the programmer selection window when you select your programmer at compile time. I chose to call it simply “PICkit2,” as you can see in Figure 4.

After you enter the programmer name, click the “Next >” button and the “Editing PICkit2” window will ask for the PICkit 2 command-line executable. If you chose a different name, the window title will show the name you selected. The command line executable for the PICkit 2 is the

NOTE: MPLAB and PIC are registered trademarks of Microchip Technology, Inc., in the USA and other countries. PICkit is a trademark of Microchip Technology, Inc., in the USA. All other trademarks mentioned herein are property of their respective companies.
The pk2cmd.exe file that was included in the zip file you downloaded. You don’t have to know where it is for this step but, when you click on the “Next >” button, the screen in Figure 6 will pop up asking for the file location.

You have a choice in how you want to find the “pk2cmd.exe” executable file. You can have MicroCode Studio search for the command line automatically, or you can manually select it yourself if you remember where you put it on your hard drive. The manual option is a lot faster.

COMMAND-LINE OPTIONS

The next step I’m going to describe is the most critical and the most difficult, because these are the command-line options that will transfer the PIC you are using and the .hex file that the compiler just created to the PICkit 2, prior to starting the PICkit 2 command-line executable.

The “Readme for PK2CMD.txt” file that downloaded with the “pk2cmd.exe” file explains all the PICkit 2 command-line options. I highly suggest you read this over. The command-line options I ended up with are shown entered into the screen in Figure 7. Let me explain my choices.

The –P option selects the PIC, but I wanted MicroCode Studio to pass that on from its selection window. MicroCode Studio offers that detail as a parameter “$target-device$,” but it doesn’t include the “PIC” in front of the number (e.g., it shows simply “16F690,” instead of PIC16F690) so you have to type that in. This gives us the “–PPIC$target-device$” part of the command-line option.

I’m using the PICBASIC PRO compiler, and the –F option selects the .hex file from the compiler created. MicroCode Studio offers the path to the compiled and assembled .hex files through a parameter called “$hex-filename$.” This part of the command line thus becomes “-F$hex-filename$.”

The other command-line options are where you may modify the setup that to the PICkit 2.

I have. I first added the –E option, which directs the PICkit 2 to erase the PIC first, before loading a new program. Then I added the –M option, which directs the PICkit 2 to program all locations, including program memory, the configuration, the EEPROM, and the ID memory. You can do these separately if you want just the program memory. The different command-line options for these other choices are explained in the “Readme for PK2CMD.txt” file.

The –Y is the last option I chose to include in my command line, and it verifies the device. I would have thought –V would have been for verify, but it does something else, which is another reason why I recommend reading the README file. As with the –M command, I chose to have everything verified. The program memory, configuration, EEPROM, and ID locations are all verified. You can do these individually, as well.

You will notice that I added a second –Y to the end of the command line. This is strictly for a delay. When the command line starts from within MicroCode Studio, it actually opens a separate DOS command-line window as shown in Figure 8, then performs the erasing and programming routines, and then verifies the locations. After the verification is complete, it quickly closes the DOS command window that it had opened. The problem is it closes the DOS command-line window so quickly, that I could not see if the “Program Succeeded” and “Verify Succeeded” messages were displayed. Adding the second –Y provided enough delay to allow me to read them.

I later found out that the –M command actually erases the part and verifies it also. So a “Program Succeeded” message means the part was also successfully erased and verified. I prefer to see the actual “Erasing Device” and “Verify Succeeded” messages so that is why I still include the –E and –Y. Therefore, if you add all this up, my command line actually erases the part twice, programs in
once, and verifies it three times. Overkill, but I get the messages I want.

That’s it. Follow these steps and you should have your PICkit 2 running within MicroCode Studio, with the PICBASIC PRO compiler, and have a one-click, compile and program solution . . . or will you? If everything is perfect, then you will. However, there are always a few gotchas when trying to do something new like this.

NOTHING’S PERFECT

If, for some reason, the PICkit 2 command-line interface has a problem, then an error message will appear. However, the window will close so fast that you won’t see it. I haven’t figured out a way to add a delay to the error messages since they are displayed automatically. This is one of the shortcomings to the way the command-line program is written.

If you see the DOS command-line window open and then close quickly, assume you have an error. To view it, you have to open the command line yourself and run the pk2cmd.exe file from the DOS command line (if you know how to do that). Only then can you see what the error is. The next step is figuring out what the error(s) mean(s). Here are a few tips you’ll need to make sure you are successful in getting this to work.

Make sure your PICkit 2 has firmware level V2.10.00 or later, otherwise it won’t work with the command-line option. This is stated in the README file. You can update the firmware through the command line interface, but I find it easier to use the GUI interface that comes with your PICkit 2.

Make sure your board with the PIC installed is powered separately from the PICkit 2 if you want it to run after programming. Even though the PICkit 2 can power a circuit after the chip has been programmed, the command-line option doesn’t support that feature. The PICkit 2 under command line control will only power the board during the programming operation.

Once you have successfully programmed and verified your PIC, and have seen the success messages in the DOS command line window, you will see the DOS window close but your program will not run in your circuit. This is because the PICkit 2 is holding the reset or MCLR pin low, keeping the PIC in reset mode. You have to disconnect the PICkit 2 from the circuit to release the MCLR line, and then your program should start to run. You can easily add a program/run switch to the MCLR pin on your circuit to make this easier.

I’m sure the command-line interface will get updated to correct a lot of these quirks, as this is only version 1.00. I’m also told that the source code may be made public, so all of you great PC programmers out there may be able to do a lot to improve this command-line interface. As it stands, it can easily be placed in a batch file for automatic programming if you have several prototypes to build. The options are endless for this great addition to the PICkit 2.

CONCLUSION

As you can see, the PICkit 2 just gets better and better. Now, the ability to use this with a third-party IDE such as MicroCode Studio opens up a whole new arena for the PICkit 2. This won’t give you the DEBUG support that the PICkit 2 offers. That requires you to run the PICkit 2 from the Microchip MPLAB IDE but, for many beginners, all they want is an easy path to write a program and one click compile and program, so this is a great USB option to do this for a really low cost.

There are other USB PIC MCU programmers that have a command-line interface, but I still like to use the PICkit 2 programmer because of the low cost and simple six-pin interface. It’s easier to build that six-pin interface on a circuit board or even a bread board. I have been searching the web for a DOS version ever since I first started using the PICkit 2. Hats off to the team at Microchip who made this happen. This adds another step to making it easier for beginners to get started programming Microchip microcontrollers. As usual, email me your comments and questions. I look forward to hearing about how well this worked for you. See you next month. NV

CONTACT THE AUTHOR

Chuck Hellebuyck can be reached at chuck@elproducts.com
ROBOTICS
PERSONAL
UNDERSTANDING, DESIGNING & CONSTRUCTING ROBOTS & ROBOTIC SYSTEMS

BY VERN GRANER

ROBO SPIN ART — Retro Art Meets the Joystick Generation

THE VENERABLE SPIN ART MACHINES popularized in the 1960s and 1970s created funky, psychedelic artwork many of us remember from the carnivals and county fairs of our youth. Simply put, “spin art” is created when paint is dropped on to a rotating paper, allowing centrifugal force to make streaks of color. The RoboSpinArt machine updates this concept by making spin art attractive to the so-called ”joystick generation” of today while also adding on features to the original design.

REELING IN THE YEARS

When I was about 10 years old, a Halloween carnival came to a park near my house, and they had a spin art booth in their Midway. The spin art machines they used were the pinnacle of simplicity — a table with a hole cut in it for a bucket, and a motor in the bottom of the bucket with a small bracket to hold a paper card. The operator would turn on the motor, and the kids would use various ketchup bottle type containers to drip different colors of paint on the card as it spun. After a few minutes, the operator would turn off the motor and hand you the finished “painting.” At 10 years old, I thought this was amazingly cool!

Flash-forward a few years (okay, more like decades) and I’m in my garage cleaning up a bit with my 10-year-old son Nicholas when I came across a box with various relics of mine from that time. One item was a slightly faded cardboard card with the classic spin art swirls on it. I showed it to my son enthusing about how it was made, how much fun it was to make, and how cool it looked. Giving me the patented “uh ... sure Dad” look, he said it sounded “okay but kinda boring.” I wrote off his disinterest at the time, but his reaction stayed in the back of my mind. What was it that made the difference? Why was it interesting to me at 10 years old, but not to him?

LIVING IN A DIGITAL WORLD

After the thoughts incubated in my head for a bit, it occurred to me that my son isn’t used to dealing with devices that don’t have some type of digital user interface. Video games, the TV remote, microwave oven, computer, cell phone, and MP3 player ... all the things he uses daily and understands thoroughly have some version of a digital user interface. Buttons and joysticks are usually accompanied by sound effects, LCD displays, voice prompts, and in many cases, a rockin’ stereo soundtrack. Although as a kid of 10 I was fascinated by the simple spinning colors of the spin art machine, my 10-year-old son was not nearly so impressed. On reflection, I wondered if it was the spin art that failed to ignite his interest or the interface to the spin art that was a barrier. If we updated the interface, would the spin art suddenly become interesting again?

Coincidentally, all this occurred about the same time that First Night Austin (a local, family-oriented New Year’s celebration) started soliciting artists for proposals for their annual
First Night Austin street celebration. Thinking this the ideal venue for such an amalgam of retro art techno geekdom, I spoke with a few of my regular cohorts at The Robot Group and decided to propose “Robo SpinArt” for First Night. Since I’d already been thinking about making a spin art machine of some type, I sketched up some plans and features (Figure 1) and sent in a proposal.

After weeks of waiting for an answer, I just decided to go ahead and start on the machine myself. I figured if First Night did say yes, I would need to have a good head start to ensure the unit would be ready by New Year’s Eve. If they didn’t approve the proposal, at least I would be on my way to having a cool new project.

Making a List ... Checking It Twice ...

Using the notes from my sketches, I outlined the functions of the machine. I started by going over the things the original old style spin art machine had and compiling a list of the things I needed to do to “update” the machine for the “Joystick Generation.”

- **Limit the ammo**: One of the first things to do to improve the machine would be to limit the amount of paint available (i.e., 30 drops or shots of paint). By making sure the kids only had a limited amount of paint ammo, I could eliminate paper saturation as a problem and have a much better chance of the finished piece having that classic spin art look. Not only would this reduce the chance of someone making a mess of their paper, it would also cut down on the amount of paint consumed by the device in the course of its operation, thereby keeping operating costs down. This approach had the added advantage of reducing the amount of time kids had to wait to use the machine since once your ammo was gone, your turn was over.

- **Limit the time**: By putting a countdown timer on the machine, a sense of urgency is created. If you only have, say 30 seconds, you need to start painting quickly. This not only makes it exciting, it helps with the throughput of the machine. Kids who carefully place their shots would know exactly how much time they have to aim and fire their paint. I could also use this as a way to calculate the maximum throughput when trying to determine how many kids could be served and how much paper should be brought to a given event.

- **Arcade style controls**: The paint firing would be controlled by a series of arcade quality buttons that could be used to fire the paint shots. An arcade style joystick would be used to aim where the paint would fall. Not only would arcade-style controls make the machine more robust, they would also be familiar to the kids and give them an intuitive interface to operate the machine. Each of the buttons also had a colored cover that would light up to indicate the pump was on and what color of paint would dispense when a given button was pressed. A paint gantry (reminiscent of a record player tonearm) would move in an arc over the bucket to allow the kids to aim at different parts of the paper.

- **Speed control**: As a new twist on the old spin art design, I thought that since I had both UP/DOWN and LEFT/RIGHT controls in the joystick, I could use the UP/DOWN motion to control the speed of the motor that spins the paper. Pushing UP on the joystick would accelerate the paper causing the paint tendrils to become thinner and the colors could become more translucent. Pushing DOWN would make the tendrils appear to be thicker and the colors more vibrant since less paint would be thrown off the paper. Also, accelerating and decelerating the motor right as you drop a paint shot could alter the paint trajectory as it moved outward on the paper. This would cause effects such as swirling or bending paint tendrils. Having this sort of hidden functionality was reminiscent of special combo moves in video games.

- **Freeze frame**: Another common problem with the older spin art machines was the inability to see your artwork until the motor stopped spinning the paper. By the time the motor had stopped, it was too late to add paint to a blank portion of the paper or add a few more paint drops that might improve the final piece. To allow the kids to preview their work, I planned to add high-intensity white LEDs pointed down into the bucket to act as strobe lights. These lights would be timed by an encoder on the motor shaft that, when activated, would blink the LEDs one time per rotation of the paper. This would freeze the image and let the progress of the painting be inspected while it was being made.

- **Video broadcast**: As an added touch, I thought it might be interesting to have a video camera in the top of the machine pointing down into the bucket so people in line could watch as the spin art was being made. This would also help them understand the operation of the machine, reducing the amount of instruction required when it was their turn.

- **Card logo and inscriptions**: When I was a boy, it was a standing rule in my household that when we attended an event and the event offered souvenirs, we were only allowed to choose one that had the event or location written on it. As it was likely that the spin art machine would be taken to various events, I thought it would be neat if I could continue this tradition by inscribing text and placing a graphic logo on each card. By limiting the travel of the paint gantry, I could protect the center of the card from being painted, thereby leaving space for this inscription. It would then be a simple matter to pre-print cards for an event with a logo and some descriptive text. However, there was always the problem of printing too few or too many cards for a given event (leading to wasted cards). To mitigate this, I planned to print some cards with a generic graphical logo (i.e., a birthday cake), and then add text to the logo at the time of painting (i.e., “Happy Birthday Sami!”). This would make creating custom cards easy and
reduce wasted cards. Parallax had recently made available a serially controlled ink jet kit that, when placed on a movable arm, could be lowered into the bucket just before painting to inscribe text around the logo.

- **Sound and music:** Lastly, the machine would need a pair of stereo speakers and a nice, powerful audio amplifier in the box so that sound effects and the rockin’ stereo soundtrack would accompany each turn on the machine. This would help to complete the arcade experience, entertain the person painting, and also draw in a crowd to see what all the excitement was about.

WHERE TO START?

So, now that the requirements were all lined up, it was time to start making things. The first item we attacked was the method for dispensing paint. In a traditional spin art machine, the kids are handed a ketchup-style bottle full of paint. Most children will simply dump as much of it as they can on to the paper resulting in a soggy, saturated, monochromatic mess. In order to alleviate this problem, I needed to have a pump that could be triggered to dispense a precisely controlled amount of paint. I explored a number of pump systems but finally settled on the peristaltic pump design.

Peristaltic pumps work by using a roller bearing to pinch a section of flexible hose (creating a movable “seal”) and then moving the pinch point away from the source of the liquid and towards its destination. This creates pressure in front of the pinch point and a vacuum behind it. This style of pump is commonly used in food preparation and the medical industry because the pump does not come into contact with the liquid being moved.

This is also perfect for pumping paint because, not only can you very precisely control the amount of paint moved, but you would not have to clean paint out of the pumps at the end of the day. It seemed a peristaltic pump would be perfect for operation by a microcontroller as I could deliver a precise shot of paint with each press of a button.

To make the peristaltic pumps, I turned to Rick Abbott, a talented “old school” machinist and long-time member of The Robot Group. He hand-built a prototype peristaltic pump out of clear Lucite with aluminum pinch rollers and a continuous motion servo motor. Although beautiful to behold, this first pump didn’t work well at all.

Upon careful observation, a number of things were apparent. First, the shaft of the servo motor was plastic, and as the pinch roller went past the unsupported section of the hose guide (Figure 2), the servo shaft would bend and the lack of pressure by the roller against the tube would cause the pinch seal to fail. When used to pump water, this prototype would draw the water about a quarter inch up the tube; then, when the seal broke, the water would fall back down.

After some head scratching, Rick went back to his shop and emerged a few days later with a new design that had three pinch rollers, a solid steel shaft to support the rollers, and dual bearings to keep the rollers square in the housing. This way, the servo motor only had to provide rotational torque, and the dual bearings kept the pinch rollers in constant pressure against the tube. He brought the new pump over to my house and we tried them out on a cup of water. They worked beautifully! He then set to work making a set of four matching pumps for the machine (Figure 3).

With the pumps finished, Rick designed a bracket to hold the paper in the bucket. He re-purposed an old pump motor and machined an aluminum frame to hold the paper. We tested this first design and discovered that when paint is applied to the top of a paper card, the pulp expands and the card can bow upwards. This
turns the card into a rudimentary wing which made it fly right out of
the frame! (See the Resources for a video about the RoboSpinArt
machine that includes the paper launching into the air!).

This was one of many lessons we learned while building this
machine. Rick re-designed the aluminum frame to have a
snap-down PVC plastic cover to hold the paper in place and in
testing, the paper stayed put for painting (Figure 4). So, now we
had the basic mechanical parts for the machine. We just needed
something to put them in.

BOXTING DAY!

As I’m not too handy in the wood-
working arena, I reached out to anoth-
er friend of mine who does carpentry
for a living. I went out to see Bruce
Tabor. Bruce has a fully-equipped
carpentry shop and he said he could
help out with the project. I brought my
sketches and hoped he would be able
to help convert them into reality. Bruce
happened to have a cabinet base left
over from a project and offered to
convert it into the chassis for the
RoboSpinArt machine (Figure 5).

After a number of hours cutting the
slanted top, adding some channels
for the Plexiglas, and cutting a hole for
the all-important bucket, a spin art
machine began to take form. (Figure
6). I brought the raw wooden box
home and placed a few parts in it. It
was really beginning to look like a
cool vintage arcade game (Figure 7)! I
mounted the bucket, the controls,
and the pumps. With most of the
hardware done, it was time to get
busy bringing the monster to life by
writing some software. I started
small, first building a prototyping
platform that would allow me to
start writing and testing software
for the various component parts
(Figure 9). This small board had all
the systems I expected I would
need including:

- Parallax BASIC Stamp II
- Parallax Super Carrier Board
- Parallax Serial Servo Controller
- Rogue Robotics uMP3 Player
- EFX-TEK DC-16
- Hitt Consulting HC4LED display
- RadioShack audio amp
- Arcade buttons from Happ Controls

I wrote some general code blocks
that would let me read the buttons,
run the servos, change the values
shown on the LED display, turn the but-
ton lights on and off, and trigger sound
effects. I spent lots of time getting the
logic straight, which for me means build-
ing flow charts of different programming
methods to track the logic (Figure 10).

HELLO WORLD!

Now that I had the box all ready,
of people were very interested in seeing how the final product would turn out.

IF IT DON’T FIT, DON’T FORCE IT

Now that I had the basic building blocks of code, I started to try and string them together to get true game-style operation. For starters, I needed to track four paint shot buttons, four joystick directions, the number of paint shots remaining, how long the pumps ran, which pumps were on, when they should be turned off, what sound effects were playing, and how much time was left before the game was over! I very quickly realized I was not going to make all this fit in my trusty BASIC Stamp II chip.

Luckily, I had a Parallax BSIIp24 chip. This chip has eight memory slots. I could fit eight times the code into this chip and it was three times faster than the BSII. It would be even better at handling all the complex tasks that had to happen (in what appeared to the end user) as being in parallel. This turned out to be a very good choice as I soon discovered that, not only did I need to make the game work as described above, I had to build other modes of operation such as “Game Over,” “Maintenance,” “Setup,” and “Attract” modes. In my final design, each of these options received its own slot in the BSIIp24.

Though the BSIIp24 had more memory than the BASIC Stamp II, it still had the same number of pins. With all the features I was adding, I was rapidly running out of I/O on the chip. I turned to my friend Paul Atkinson (yet another Robot Group member) to help with the overhaul of the prototype board. Paul designed and etched a PCB to hold a 74LS165 input multiplexer to handle...
the pump buttons and the joystick switches, and we added a Parallax Serial LCD display to show menus and settings in the Setup and Maintenance modes. We finished up by adding a second Rogue Robotics uMP3 player so we could have music and sound effects happen at the same time (Figure 12).

MUSIC TO MY EARS

Now that the demo board had proven successful, I needed to start on the sound effects. I contacted a good friend of mine, John Richter, who is (among other things) a rather talented composer. He has some very cool digital keyboards and he agreed to make some “sci-fi” sound effects to accompany the actions of the machine. Over a course of a few days, John sent me about 60 different sound effects from which I pulled 16 to use for the final sounds. Now, I just had to find that rockin’ stereo soundtrack.

I had recently discovered Jonathan Coulton (some of you may be aware of his hit song “Code Monkey”), a musician with a huge online following and some very rockin’ quirky tech-oriented music that I had listened to rather extensively while I worked on the software for the machine. I sent him an email asking if I could use his music for the soundtrack part of the project and included some details about the machine. Surprisingly, I received an almost immediate reply that not only gave me permission to use the music but declaring the RoboSpinArt machine “so awesome!” (Figure 13).

IF ONE IS GOOD ...

Now that I had the soundtrack done and most of the code written, it was time to put the parts into the actual machine and start testing. I had a build party at my house one weekend and invited some of the roboTERS from The Robot Group (Figure 14) over to assist in putting together the prototype. We spent the afternoons transferring the parts from the proto board into the actual machine and I spent the evenings building and soldering the custom wiring loom (Figure 15). By the end of the weekend, I had a baseline operational RoboSpinArt machine with all the parts mounted (Figure 16). Which is good because about that time we finally heard from First Night Austin. Seems they really liked the idea of a RoboSpinArt machine. In fact, they liked the idea so much that they wanted to know if we could build two of them for First Night! Oh, and while we were at it, could we bring a machine down for a little PR event at city hall where the mayor of Austin would be announcing First Night Austin at a press conference ... this weekend? Lucky for us, we had started early so we were able to show off a fully operational RoboSpinArt machine (Figure 17). At the press event, several people took turns making spin art while the cameras rolled (Figure 18), and I had the opportunity to describe the machine for some reporters (Figure 19).

ON YOUR MARK, GET SET ...

The next weeks were spent pulling late nights and building as much as we
could as quickly as we could trying to make a complete second RoboSpinArt machine from scratch. Rick made a second set of peristaltic pumps (again all by hand) and another spinner for the bucket in record time. Paul photo-etched more custom printed circuit boards. Many other roboteers stepped in to help with woodworking, decorations, painting, circuit board preparation, and all the other bits needed to finish the machine.

In the end, we only ended up with two unrealized features: the strobe light sync circuit and the ink jet painting gantry. Though we did get the ink jet gantry mounted (Figure 20) and in preliminary tests we could get it to print the circular logo (Figure 21), we found we would need a more precise motor speed controller to make sure that the ink jet wouldn’t underwrite or overwrite the text due to variations in speed of the motor that spun the paper. The solution (a feedback enabled motor controller) would require us to rework the shaft sensor to provide the feedback. Unfortunately, it would also require a reworking of the strobe light timing circuit to process this new signal. There just wasn’t time to get it done, so the strobe effect and the ink jet would have to wait.

For all intents and purposes, when the day arrived, we had two fully operational RoboSpinArt machines (Figure 22) ready for First Night. We set up on the day of New Year’s Eve in front of City Hall at 10:30 a.m. By 11:00 a.m. we had a line of people waiting, so we fired up the machines and started painting. We had a steady line of folks till 11:30 that night (Figure 23)! The machines ran non-stop (only changing out the operators) for a full 12+ hours, going through well over 1,600 cards without a single system failure. It was an amazing success! Little children, older folks, parents — everyone loved making spin art!
AND ... WE'RE BACK!

Since that night, the RoboSpinArt machines have been a staple at Robot Group events. We even had one of them up and running during Maker Faire Austin (Figure 24). The folks at First Night were also very happy with the RoboSpinArt performance. In fact, they've booked us for a return engagement! At this year’s First Night Austin, our two RoboSpinArt machines will flank The Ponginator (see Nuts & Volts December ’07) which will be making its inaugural outdoor appearance. We plan to have the strobe light function and the ink jet gantries added to the RoboSpinArt machines by then so, if you’re in Austin on December 31, 2007, feel free to come by and make some RoboSpinArt with us!

The operator unloads the finished art and then reloads paper for the next artist. When not actively painting, the RoboSpinArt will revert to “attract mode” where sounds and lights will entice people into trying their hand at creating art.

With a typical turn-around time of 1.5 minutes per artwork (20 seconds to load the paper, 20 seconds to inscribe the message, 30 seconds for the artist to paint, and 20 seconds to remove the paper and hand to the artist), each RoboSpinArt machine can entertain approximately 40 people per hour.

To operate the RoboSpinArt machine, a person behind the unit (the operator) will place a piece of paper on the turntable. Once the paper is in place and an artist is ready to begin, the operator presses a start button on the back of the cabinet. At this point, the RoboSpinArt machine will drop a print head down onto the paper and inscribe a circular message onto the paper. After the inscription, the turntable will spin up to the accompaniment of music. Once up to speed, the artist will be verbally signaled with a countdown of “three ... two ... one ... PAINT!” At this point, they may choose to:

- Move the paint gantry left or right with the joystick.
- Increase or decrease the speed of the turntable with the joystick.
- Dispense paint using the pushbuttons.
- Activate the strobe light.

Once 30 paint shots or 30 seconds has elapsed (time and paint shot values are adjustable by the operator), the turntable will spin down and the operator is signaled to remove the painting.

The operator unloads the finished art and then reloads paper for the next artist. When not actively painting, the RoboSpinArt will revert to “attract mode” where sounds and lights will entice people into trying their hand at creating art.

With a typical turn-around time of 1.5 minutes per artwork (20 seconds to load the paper, 20 seconds to inscribe the message, 30 seconds for the artist to paint, and 20 seconds to remove the paper and hand to the artist), each RoboSpinArt machine can entertain approximately 40 people per hour.

CONTACT THE AUTHOR

Vern Graner can be contacted via email at vern@txis.com.

SG Series Arms

www.crustcrawler.com
(480)-577-5557

- 14-23oz. (403-641g) lift capability with standard servos
- 17.2° (43.5 cm) - 19.2° (48.8 cm) reach
- All aluminum construction
- High resolution 60 tooth gear train
- Sensor accommodating gripper design
- 360 degrees of joint rotation
- Open source control software
- Extensive manual with code examples
Build Your Own:

THEREMIN

Theremax
The Ultimate Theremin

PAIA
Electronic Music Kits and More

Music/Tutorials/Kits
Analog Synthesizers
Guitar Effects
Tube Electronics
Studio Gear

AP CIRCUITS
PCB Fabrication Since 1984

As low as...

$9.95

Two Boards
Two Layers
Two Masks
One Legend

Unmasked boards ship next day!

www.apcircuits.com

You know it wants one. Go ahead, spoil your robot. Give it the brain and the brawn to take on other robots.

Give your robot the power to do anything it can imagine.

All modules shown actual size

TReX Jr
$59.95

TReX Jr: all the great features of the full TReX in a lower-power, lower-cost package.

Orangutan LV-168: full-featured robot controller perfect for low-voltage robots. ATmega168 uC, 2-channel H-bridges, 8x2 LCD, buzzer, and more.

Orangutan LV-168 $59.95

TReX dual motor controller $99.95

Find out more at www.pololu.com or by calling 1-877-7-POLOLU.

Pololu Robotics & Electronics

6000 S. Eastern Ave. 12D, Las Vegas, NV 89119

78 NUTS & VOLTS January 2008
Interface a sharp LCD display to your BASIC Stamp® or other micro-controller project with ease. No-solder wiring harnesses and easy mounting kits available too. See www.seetron.com today.

- 3.2 x 1.4 in. supertwist LCD
- 2400/9600 baud serial
- Low (≈2mA) current draw
- Great with BASIC Stamps®

- 3.2 x 2 in. backlit LCD
- 1200-9600 baud serial
- Advanced protocol, 4 switch inputs
- EEPROM for configuration settings
- Favorite for OEM applications

- 3.2 x 1.4 in. graphics LCD
- 2400/9600 baud serial
- Font and 15 screens in EEPROM
- Easily draw points, lines, screens

- 3 x 2 in. supertwist LCD
- 1200-9600 baud serial
- ESD-protected, 4x4 keypad input
- Store up to 95 screens in EEPROM

Scott Edwards Electronics, Inc.
1939 S. Frontage Rd. #F, Sierra Vista, AZ 85635
phone 520-459-4802 • fax 520-459-0623
www.seetron.com • sales@seetron.com

More displays available, including bright VFDs. See www.seetron.com

Seetron Serial LCDs

- 3.2 x 1.4 in. supertwist LCD
- 2400/9600 baud serial
- Low (=2mA) current draw
- Great with BASIC Stamps®

- 3.2 x 2 in. backlit LCD
- 1200-9600 baud serial
- Advanced protocol, 4 switch inputs
- EEPROM for configuration settings
- Favorite for OEM applications

- 3.2 x 1.4 in. graphics LCD
- 2400/9600 baud serial
- Font and 15 screens in EEPROM
- Easily draw points, lines, screens

- 3 x 2 in. supertwist LCD
- 1200-9600 baud serial
- ESD-protected, 4x4 keypad input
- Store up to 95 screens in EEPROM

more displays available, including bright VFDs. See www.seetron.com

Front Panels & Enclosures

Customized front panels can be easily designed with our free software Front Panel Designer

- Cost-effective prototypes and production runs
- Wide range of materials or customization of provided material
- Automatic price calculation
- Fabrication in 1, 3 or 7 days

Sample price: $43.78 plus S&H

www.frontpanelexpress.com
(206) 768-0602

Lynxmotion

The Lynxmotion Servo Erector Set

Imagine it... Build it... Control it!

With our popular Servo Erector Set you can easily build and control the robot of your dreams. Our interchangeable aluminum brackets make the ultimate precision mechanical assemblies. Our Visual Sequencer for SSC-32 provides powerful PC, Atom, or B52 based control.

Visit our huge website to see our complete line of aluminum and Lexan based robot kits, electronics, and mechanical components.

www.lynxmotion.com
Toll Free: 866-512-1024

SWS now has 52 Unique Aluminum Components!

Images represent a fraction of what can be made!
NEW! HIDmaker FS for Full Speed FLASH PIC18F4550

Creates complete PC and Peripheral programs that talk to each other over USB. Ready to compile and run!

- Large data Reports
- 64,000 bytes/sec per Interface
- Easily creates devices with multiple Interfaces, even multiple Identities!
- Automatically does MULTITASKING
- Makes standard or special USB HID devices

NEW! "Developers Guide for USB HID Peripherals" shows you how to make devices for special requirements.

Both PC and Peripheral programs understand your data items (even odd sized ones), and give you convenient variables to handle them.

PIC18F Compilers: PICBASIC Pro, MPASM, C18, Hi-Tech C.

PIC16C Compilers: PICBASIC Pro, MPASM, Hi-Tech C, CCS C.

PC Compilers: Delphi, C++ Builder, Visual Basic 6.

HIDmaker FS Combo: Only $599.95

DOWNLOAD the HIDmaker FS Test Drive today!
www.TraceSystemsInc.com
301-262-0300
Microprocessor Hands-On Training

The PRIMER Trainer is now New & Improved and even easier to use. The PRIMER is a flexible, instructional tool featured in Prentice Hall textbooks and used by colleges and universities around the world. Ruggedly designed to resist wear, the PRIMER supports several different programming languages. A comprehensive self instruction manual and an applications manual provides lessons, theory, and sample code for a number of Hands-On lab projects.

Application Projects Include:
- Scan Keypad input & Write to a Display
- Detect Light Levels with a Photocell
- Control Motor Speed using Back EMF
- Design a Waveform Generator
- Measure Temperature
- Program EPROMs
- Run Interface an 8255 PPI
- Construct a Capacitance Meter
- Interface and Control Stepper Motors
- Programming a Reaction Time Tester

Since 1985 OVER 22 YEARS OF SINGLE BOARD SOLUTIONS

EMAC, inc.
Phone 618-529-4525 Fax 618-457-0110
2390 EMAC Way, Carbondale, IL 62901
World Wide Web: www.emacinc.com

Turn Your PC into a Real-Time Audio Spectrum Analyzer

Features
- FFT to 1648576 pts
- 24 bit, 192kHz
- 1/96 Octave
- Dual Channel
- 3-D Surface Plot
- Spectrogram Plot
- Digital Filtering
- Signal Generation
- RT-60, Leq, Delay
- THD, IMD, SNR
- DDE, Logging
- Vibration Analysis

SpectraPLUS 5.0
FFT Spectral Analysis System

Download 30 day FREE trial!
www.spectraplus.com
Starting at $295

Pioneer Hill Software
24460 Mason Rd
Poulsbo WA 98370
360 697-7346 voice 360 697-7717 fax
pioneer@telebyte.com

Proteus Design Suite 7
Make Your Job Easier and Faster!

- Design Your Schematic
- Simulate Your Design
- Make Your PCB

NEW in Proteus Version 7:
- New User Interface
 - Easy to Use - Conventional Mouse Buttons
 - Context Menus - More Information Available
 - More Information On Screen to Assist User

- New Design Explorer
 - Cross Probing, from Schematic and PCB
 - Spreadsheet like view of the design parts and Netlist
 - Parts list view shows the design by sheets, parts, & pins
 - Drilling Down to Parts Pins and nets

- New Tools
 - New industrial Grade 4 Channel Oscilloscope
 - Logic Analyser Instruments
 - 3D Visualization of PCB Layout, See Below
 - Print 3D View of PCB
 - Add Your Parts in 3D to Lib
 - 3D Output 3ds Format

3D View of PCB Layout

World's FIRST Schematic Based USB Device Simulation Tool!!!
See website for details
The same holds true if your microcontroller has to switch high currents. You'll have to put some heavy duty electronic hardware between the microcontroller’s multi-milliampere I/O pin and the amperage hungry I/O device at the other end. Amperage is not the only worry you have. You can’t reliably drive a 12-volt relay coil with a raw 3.3-volt or 5-volt microcontroller I/O pin. And, 12 volts may be a drop in the bucket if you’ve got an I/O device that wants to see a 60 volt source. What about controlling a standard household AC device? Can you imagine driving a microcontroller I/O pin with 120 VAC? Smoke on the water.

Okay, suppose you’ve figured out a way to get those high voltages and currents under control. Now, in addition to wrangling the voltages and currents, you have to accurately read temperatures! I’m not talking room temperatures that you would normally take with a temperature sensor like the LM35C. Your temperature data will originate at the point of a thermocouple.

Fortunately, every obstacle I’ve thrown into your Design Cycle can be easily circumvented without resorting to exotic or expensive special-purpose electronic components. In fact, we can solve every problem I’ve thrown out on the table with a simple order to Mouser or Jameco. If you’re still reading, I’ll show you how to easily drive relays, solenoids, high-current devices, high-voltage devices, and high-voltage/high-current I/O devices with a simple PIC microcontroller and everyday electronic parts. We’ll also take a look at getting that thermocouple data.

I/O BASICS

Professional athletes are drilled on the fundamentals of their respective sports. That’s why they excel at what they do. Musicians practice, practice, and practice some more. That’s why you buy their musical work in the form of a CD or a live performance. For us that dabble with electricity by indirectly moving electrons about within silicon lattices, a firm grasp on the basics of I/O interfacing is as good as a LeBron James dunk on Sunday afternoon.

To understand how to drive that device on the other end of your microcontroller’s I/O pin requires that you understand just what that microcontroller I/O pin can really do. Let’s use a typical Microchip PIC as an example case. The run-of-the-mill PIC can sink or source up to a maximum of 25 mA on most of its I/O pins. That’s a measly 0.025 amperes per pin. The truth is, 25 mA of sink/source capability is a relatively high value as many other microcontrollers can only handle 20 mA or better and only on a portion of their pin complement. I’ve seen microcontroller datasheets that claim 40 mA maximum values but I personally have not put that maximum figure to the test.

If you read the fine print in those high-current I/O datasheets, the 40 mA maximum is just that — a maximum value you’re not supposed to approach in normal use. Reading carefully reveals that according to the test conditions, the 40 mA per pin microcontroller can really handle 20 mA @ 5V safely. Nevertheless, I have abused my share of PIC I/O pins. I have accidentally driven PIC I/O pins above 25 mA many times. (That’s something you don’t want to do for any length of time.) There’s nothing worse than trying to troubleshoot a “dead” PIC port pin.

If you think you can drive a bunch of 25 mA devices without any intermediate buffering, you’re almost right as long as you don’t exceed a total of 200 mA across all of the I/O pins you are using to drive the loads. The point I’m trying to make here is that realistically you can’t drive anything much larger than an LED load on a single PIC microcontroller I/O pin. If you think in terms of each LED drawing 10 mA, you can only drive a maximum of 20 LEDs simultaneously directly from the I/O pins of a single PIC microcontroller. I’ve not been brave enough to try this and say I did it, and I don’t recommend that you try this at home.

Most of the time, I design my I/O buffer hardware so that
the electronic switch component will sink the load current. Sinking current means that the electronic switch component being controlled by the microcontroller’s I/O pin provides a ground path for the I/O device. You can easily pick out a sink configuration as the positive power source is always connected to the I/O device in a “sink = on” configuration.

In electronic terms, the opposite of sink is source. Connecting an LED’s anode directly to a microcontroller’s I/O pin and grounding the LED’s cathode is an extreme example of sourcing current to illuminate the LED. Naturally, you would have a current limiting resistor in the mix to keep from driving the LED into darkness and/or the microcontroller’s I/O pin into burnout. I’ve drawn up a couple of simple LED driver circuits in Schematic 1 to illustrate the difference between sourcing and sinking current using a PIC microcontroller’s I/O pin.

The electronic switch component I alluded to earlier is usually a transistor or MOSFET device. We could talk for weeks about selecting transistors and MOSFETs as there are tons of these devices to choose from. In my experience, light to medium loads can be easily handled by standard switching transistors. Darlington array transistor devices can be used in high-power situations. Many of the LM723-based high-current power supply circuits you can find on the Internet use Darlington transistors in their high-voltage/high-current output stages. However, in high-current/high-voltage applications, I prefer MOSFETs.

Honestly, I prefer MOSFETs over transistors in the light to medium application area, as well. The fact is, logic-level gate MOSFET devices are designed to be driven from a microcontroller I/O pin and exhibit very low “on” series resistances, which lead to lower voltage drops across the electronic switch component and reduced heat in the electronic switch component.

Using a logic-level gate MOSFET is just as easy as using a 2N2222A switching transistor. The idea is to provide enough drive to the MOSFET gate to completely turn on the MOSFET’s Drain-Source junction. Once you supply enough voltage to exceed the MOSFET’s Gate-Source threshold, the Drain-Source resistance will drastically decrease allowing current to flow between the MOSFET’s Drain and Source. I’ll let you debate on which way the electrons flow. In our case, it really doesn’t matter as all we want to do is toggle the device at the end of the PIC’s I/O pin off and on. Let’s put this MOSFET switching theory discussion into practice.

For this theory-to-hardware exposition, I’ve chosen the Zetex ZVN4306G as our electronic switching component. The ZVN4306G is actually an N-channel DMOS FET with a minimum Gate-Source threshold voltage of 1.3V and a maximum Gate-Source threshold voltage of 3.0V. We really don’t have to worry about current drain on our microcontroller I/O pin as the ZVN4306G gate current requirements are in the dust.

For our discussion, our PIC is powered with a +5V VCC supply. So, according to the ZVN4306G’s maximum and minimum Gate-Source threshold voltage specifications, all we have to do is provide a logical high state from our PIC I/O pin to the ZVN4306G’s gate to open up the MOSFET’s Drain-Source channel. Conversely, a low level on the ZVN4306G gate will pinch off the current flow and turn the target device off. Once the ZVN4306G is turned on, its Drain-Source resistance drops to 0.32Ω. When in the on state, the ZVN4306G can switch up to 2.1A of current continuously. The maximum switching voltage (Drain-Source voltage) of the ZVN4306G is 60V. If things get warm, the ZVN4306G is housed in an SOT223 package that can be soldered to a suitable heatsink pad on the printed circuit board (PCB).

The ZVN4306G is designed into a sinking configuration as shown in Schematic 2. The ZVN4306G is acting as a high-voltage/high-current buffer for the PIC’s RB0 I/O pin. In this case, we are driving a simple solenoid assembly like the one you see in Photo 1 in the sink configuration. At 12V, the solenoid coil in the fluid switch you see in Photo 1 will draw 450 mA when energized. The application that uses this fluid switch requires the solenoid to open and close the fluid passageway for 10 seconds once every hour. This is a light

SCHEMATIC 1. Applying VCC to the LED1 anode via the PIC’s RB0 I/O pin illuminates the sourced LED. When RB0 provides a ground path for LED2 — which is configured in a sink configuration — you will see the light.
duty requirement as far as the ZVN4306G is concerned. As a test, I decided to run the solenoid continuously until the magic smoke appeared. As it turned out, the solenoid got much hotter than the ZVN4306G, which retained its magic smoke. So, we can actually get away without attaching an external heatsink to the ZVN4306G. I lashed up a prototype of the MOSFET buffer in Photo 2. Note that I used a specialized Chicago Miniature LED in the prototype. The prototype LED contains a built-in current limiting resistor. I like to use these LEDs in prototypes and for debugging as they can simply be soldered into the circuit as-is. These LEDs also come in five-volt versions. The available colors are red, amber, and green. You can get these specialized LEDs from Mouser. The LED is used here to provide a visual indication of the state of the solenoid valve. When the solenoid is energized, the LED illuminates. The Chicago Miniature LED only draws 13 mA and does not introduce any significant load to the ZVN4306G.

The ZVN4306G in the sink configuration can provide buffered control for a brushed DC motor or a relay coil with ease. However, even with the ZVN4306G's high-voltage and high-current capabilities, you may find that your application needs some additional horsepower. Fortunately, we can take the basic ZVN4306G-based I/O concept we have been discussing and amplify it by employing a heftier MOSFET switching element. That's exactly what Werner von Braun did. He took the Redstone Rocket concept and amplified it to create the Saturn booster.

In this case, our ZVN4306G is the Redstone Rocket and the IRLI2910 is the Moon Rocket. The IRLI2910 is a logic-level gate drive power MOSFET. If you keep it cool, the IRLI2910 can pass up to 31A at voltages up to 100V. The IRLI2910's Gate-Source threshold voltage lies between 1.0V and 2.0V and when you turn it on with 5V, the Drain-Source resistance falls to .030Ω.

An interesting feature of the IRLI2910 is the way it is packaged. The IRLI2910 is completely insulated with a moulding compound that electrically isolates the device from the heatsink while providing a very high thermal transfer characteristic. To use the IRLI2910, simply drop it into our ZVN4306G circuit as the electronic switching component instead of the ZVN4306G.

The words that I speak in the Design Cycle column are
well rooted in theory and high on implementation. With that, the Redstone Rocket and the Saturn Launch Vehicle are shown working together in a real-world application in Photo 3.

What we have just done is to assemble simple circuitry driven by PIC microcontroller I/O pins that perform very useful tasks. Each of the electronic switch components are controlled by a logical state of high or low, which emanates from a PIC microcontroller I/O pin. The results of this simple binary pattern include spinning motors, energizing solenoid valves, and switching relay contacts which, in turn, play an important role in the overall system mission. I think that you will agree that this stuff is easy. There is no rule that useful electronic devices have to be complicated.

BASIC I/O CONDENSED

Suppose you need a quartet of ZVN4306G-like control circuits to control some low-voltage devices (less than 60V) that draw no more than 700 mA each when active. There’s nothing wrong with lining up four of the ZVN4306G circuits depicted in Schematic 2 on a piece of PCB real estate. However, each ZVN4306G buffer is made up of a minimum of five components. Can I show you how you can assemble four ZVN4306G-like buffers for this application with only four components?

Behold Schematic 3 and the Allegro MicroSystems UDK2559. The four components that make up our electronic switch are the UDK2559, the UDK2559 power supply bypass capacitor, and the UDK2559 bulk device source voltage bypass capacitor pair.

I’ve purposely left the PIC’s particulars out of Schematic 3 as the UDK2559 connection specifics are the important part of the schematic contents. Logically, the UDK2559 is a collection of four sets of AND gates feeding four high-current bipolar outputs that can each sink up to 700 mA in their “on” state. Schematic 3 shows all of the UDK2559 drivers being linked up to the same bulk device source voltage of +12 VDC. If you need to use differing bulk device source voltages, you can divide the four UDK2559 drivers into pairs and provide one of your bulk device source

SCHEMATIC 3. Yes. The PIC has been neglected here. The idea is to show you how to hook up the UDK2559. If you’re PIC challenged, just look back at past Design Cycle columns to get a grasp on standard PIC configurations.
voltages to the UDK2559 pin 2 K input and the other bulk device source voltage to the pin 7 K input. UDK2559 outputs OUT3 and OUT4 follow the pin 2 K bulk device source voltage and outputs OUT1 and OUT2 march to the bulk device source voltage applied at the pin 7 K input.

The UDK2559’s output behaves like an NPN transistor and each bipolar output module is fronted by an AND logic gate. The UDK2559 Enable line is common to all of the UDK2559’s AND gates as it is tied to one of the two inputs on all four of the UDK2559’s AND logic gates. Each of the UDK2559’s four INx inputs are independently tied to the remaining input of the four AND logic gates. A logical low output from the respective bipolar output’s AND logic gate is needed to turn on the associated NPN transistor output logic. That means we have to supply a logical high to the UDK2559’s Enable pin in order to enable any sinking action through any of the UDK2559 output pins.

To obtain a sink condition on a particular UDK2559 output after enabling the outputs with a logical high level on the Enable pin, we must place a logically high level on the input representing the output we want to take to the sink state. Following standard AND logic, a logical high on the Enable pin coupled with a logical low on an INx pin results in a logical low on the AND gate output, which turns off the associated NPN-based output. Both the Enable pin and the selected INx pin must be logically high to sink current at the selected UDK2559 output pin. It’s that simple. All we really have to worry about is keeping the UDK2559 cool. That is easily done by providing some ground plane area for the UDK2559 ground pins, which also act as thermal dissipation tabs. If we manage to get the UDK2559 too hot, its internal thermal limiting circuitry will shut the device down.

■ PHOTO 4. The idea here was to lay down just enough copper to allow me to make point-to-point connections between the UDK2559 and the five-volt regulator circuit. Everything else is wired in as necessary. The ring of copper surrounding the UDK2559 is tied to the UDK2559’s ground pins and is intended to act as a heatsink for the UDK2559.

■ PHOTO 5. The trick is to keep the AD594’s source voltage clean. It’s also a good idea not to waste any space between the thermocouple wires and the AD594 thermocouple input pins. Notice the different AD594 packages in this shot.

■ PHOTO 6. The idea here was to lay down just enough copper to allow me to make point-to-point connections between the UDK2559 and the five-volt regulator circuit. Everything else is wired in as necessary. The ring of copper surrounding the UDK2559 is tied to the UDK2559’s ground pins and is intended to act as a heatsink for the UDK2559.

■ SCHEMATIC 4. Don’t let the word “thermocouple” scare you off. Getting good temperature data from a thermocouple is as easy as getting temperature data from an LM35C.
I used ExpressPCB to design and fabricate a very simplistic UDK2559 prototype platform. I’ll share the ExpressPCB layout via the Nuts & Volts website and I’ll share a view of the UDK2559 in position on the ExpressPCB-generated prototype PCB in Photo 4.

I’m rather sure that I don’t have to take this discussion any further. You should now be able to interface a PIC I/O pin to any voltage or current situation that may come your way.

ANALOG ACADEMY

Did you realize that all you need to make a simple thermocouple is a bit of thermocouple wire and a twist? If you need an industrial strength thermocouple, I suggest getting one from a professional. However, if you want to experiment with thermocouple technology, just get yourself some Type J thermocouple wire and an Analog Devices AD594 Monolithic Thermocouple Amplifier. I put a home-brewed garage thermocouple together for you using a length of Type J thermocouple wire in Photo 5.

The AD594 is really an instrumentation amplifier that is pretrimmed to interface a Type J thermocouple with a microcontroller’s analog-to-digital converter (ADC). The AD594 produces an output voltage of 10 mV/°C directly from a thermocouple input signal. I’ve assembled an AD594 design in Schematic 4. As you can see in this schematic, all of the rocket science is contained within the AD594. All we have to do is connect the thermocouple to the AD594 input pins and read the temperature voltages from the AD594 with a PIC’s ADC module.

The AD594 hardware I’ve presented in Schematic 4 can only read positive temperatures as I have used a single-rail +5-volt power supply. If your application needs to read negative temperatures, you’ll have to provide a ± dual-rail power supply for the AD594.

Believe it or not, the code to read the AD594 temperature data is just as simple as the hardware. Let’s use the PIC18F2685’s AN0 input to read the AD594 output (see Listing 1).

Remember that we must also use the PIC’s TRIS function to declare RA0 (AN0) as an input. In this case, let’s just make all of the PORTA I/O pins inputs:

```
TRISA = 0b11111111;
```

LISTING 1

```
//*******************************************************
//*    CONFIGURE A2D AND COMPARATORS
//*******************************************************
ADCON0 = 0b00000000; //select channel AD0
ADCON1 = 0b00001110; //RA0 = ADC input
ADCON2 = 0b10111111; //clocking RC osc - max
ADON = 1; //turn on ADC module
CMCON = 0x07; //comparators OFF
```
The PIC18F2685’s ADC module is capable of resolving 10 bits of resolution. That is equivalent to 1024 steps including zero. The PIC18F2685’s ADC is referenced to the supply voltage according to the cleared bits in the upper nibble of the ADCON1 register value. So, that means every step of the PIC18F2685’s ADC will represent approximately 0.005 volts. That means 1°C is equal to two ADC steps. So, to get an absolute temperature result we need only to read the ADC and divide by two. In the code that follows, I read the AD594’s output 20 times, take the average of the 20 readings, and divide the average by two (see Listing 2).

Nothing to it. Now that you know how to make an AD594 work for you, I’ll show you one that is ready for action in Photo 5.

CAN YOU DO THIS?

Yep. You’re trained. The next time you tackle what seems to be a difficult embedded project, just kick back and think of the I/O basics you need to accomplish each individual task. Once you’ve worked out the fundamentals, merge all of the solutions together to complete the system’s mission.

I’ll leave you with something to consider. How would you send the AD594 data to another PIC-based computing node? Listing 3 shows how I did it.

Yes you CAN! Put another notch in your soldering iron. **NV**

LISTING 3

```
dataLen = 4;  // length of CAN message
id = brd_display_temp_id;  // sender’s CAN ID
data[0] = addr_ad594;  // destination CAN ID
// the CAN message contains this data:
data[1] = temp_in_C;  
data[2] = make8(temp_in_C,1);  // high byte
data[3] = make8(temp_in_C,0);  // low byte
while(!ECANSendMessage(id, data, dataLen, ECAN_TX_STD_FRAME));
```
Metal Fabrication

1-2 Day Lead Times Available

Both of these parts were ordered on Tuesday and shipped FedEx on Wednesday.

Materials from 0.001" to 6.000" in thickness. Parts from practically any material.

* Quick
* Affordable
* Precise
* No Minimums

Complete Fabrication Center
Integrated Ideas & Technologies, Inc.
Precision Laser, Waterjet, Plasma, Machining, Forming, and Welding Capabilities

3896 N. Schreiber Way • Coeur d’Alene, ID • 83815-8362 • USA
Ph (208) 665-2166 • Fax (208) 665-5906 • www.iitmetalfab.com

PicoScope 5000 Series
The No Compromise PC Oscilloscopes

With class-leading bandwidth, sampling rate, memory depth and an array of advanced high end features, the PicoScope 5000 PC Oscilloscopes give you the features and performance you need without any compromise.

USB Connected
HIGH SPEED
PC OSCILLOSCOPES
and Spectrum Analyzer

250 MHz bandwidth
1 GS/s real-time sample rate
128 Megasample record length

Advanced Triggers | Arbitrary Waveform Generator
High speed USB 2.0 Connection | Waveform Playback Tool
250MHz Spectrum Analyzer | Automatic Measurements

To check out our full line of pc based instruments visit www.picotech.com/pco408
or call 1.800.591.3916 for information and a products catalog

January 2008 NUTSVOLTS 89
Traditionally, BalloonSats have used a 555 driven relay circuit to operate their onboard cameras. The 555 circuit that appears to be the norm is a 12 volt intervalometer kit designed for high current applications. The result is a circuit that, in my opinion, is a bit large and clunky for BalloonSats.

Take a look at Figure 1. The two camera timers described in this month’s column are replacements for this timer. They are lower in power and programmable. Since their interval is programmed, there’s no need to adjust a trimmer to get the proper timing like there is with a 555 timer based intervalometer. In fact, it’s possible to program the timer to record photographs at changing intervals during a mission, which is something the older 555 based intervalometer kit is unable to do.

Another feature is that the timers have a commit pin. Until the shorting block is removed from the commit pins, the timer waits to begin taking pictures. This means fewer wasted pictures of the ground before the mission starts and more of the ground and sky during the actual mission.

The first timer is a single channel version that operates the shutter of the camera attached to it. The second timer is a two channel version that first powers up its camera, triggers the camera to take a photograph, then shuts down the

CAMERA TIMER PARTS LIST AND FUNCTION

- LM2940T -5 (voltage regulator or power supply for PICAXE and relay)
- 22 μF electrolytic capacitor (filtering for LM2940)
- 10K resistor (current limiter for programming header)
- 22K resistor (pull-down for programming header)
- 1K resistor (pull-up for commit pin)
- 1K resistor (current limiter for indicator LED)
- LED (indicator)
- 1N4001 diode (protection against back current)
- 5V reed relay (electrically operated switch)
- PICAXE-08 (programmable microcontroller)

NOTE: All PCB patterns and files are available on the Nuts & Volts website at www.nutsvolts.com.
camera. The two channel version has full control over a camera and is best for cameras with power-save features that may shut it down during a mission. However, the two channel camera timer is not limited to operating a single camera. It could operate two separate cameras inside a BalloonSat or a single camera along with a second device that a relay can operate.

THEORY OF OPERATION

Upon powering up, the PICAXE blinks its indicator LED (connected to pin 1) five times showing its readiness, then goes into a wait loop until the shorting block is pulled off the commit pin. The commit pin pulls pin 3 to +5V and the shorting block shorts it to ground. After detecting the removal of the shorting block (that is, when pin 3 goes high), the PICAXE signals its detection of the removal by blinking the indicator LED five more times. Then, the PICAXE enters an infinite loop where it energizes the relay by setting pin 2 high and turning on the indicator LED by setting pin 1 high. The LED is a troubleshooting tool that indicates when the PICAXE is triggering the relay to take a picture.

After a one second pause, the PICAXE sets pin 1 and pin 2 low to open the relay and shut off the indicator LED. When the PICAXE turns off the relay, the magnetic field contained within the relay’s coil collapses and creates a potentially damaging reverse current through pin 2. To protect the PICAXE from damage, the 1N4001 diode shorts the relay’s coil to reverse current. After a pause, the PICAXE again sets pin 1 and pin 2 high to then take the next photograph.

The two channel camera timer operates the same way, except that its two relays are fired in sequence. The first relay attaches to the camera’s power switch, allowing the PICAXE to power up the camera. After a short pause, the second relay (which is connected to the camera’s shutter switch) fires to take a picture. After the camera has time to save the image to memory, the first relay is fired once more to shut down the camera.

BUILDING THE ONE AND TWO CHANNEL CAMERA TIMER

Begin assembling the timer by soldering the lowest lying components (the resistors and diodes) first. Solder an eight pin IC socket to the PCB rather than the PICAXE to protect it from the heat of soldering. I recommend using snapable headers for the programming header and commit pin (it’s cheaper to purchase a long row of headers and snap them off as needed). Watch the orientation of the LM2940 voltage regulator and the diode(s). If the diode is soldered backwards, it will short out every time the PICAXE fires the relay.

The large holes at the top and bottom (and sides in the two channel version) are strain relief holes for the timer. Wires connecting the timer to the camera and battery pack pass through the strain relief holes to prevent normal use breaking the soldered wires off of the PCB. The battery holder for the timer can either be a nine volt battery snap or a four cell AAA holder.

The commit shorting block is a short loop of wire terminated with small crimps and mounted inside a plastic housing. A cord tied to the wire loop of the shorting block exits the BalloonSat airframe and is attached to a brightly colored tag.
The tag is marked with text (like Remove Before Launch) to remind the launch crew to pull the shorting block off the commit pins before the balloon lifts off.

CONNECTING A CAMERA TO THE PICAXE CAMERA TIMER

The relay in the timer replaces a camera’s shutter (and power switch in the two channel version). Therefore, these timers only work for cameras with electrical switches. Fortunately, this means they’ll work for most modern cameras.

You’ll need to open the body of the camera to attach the timer. **Warning!!** Part of the camera’s flash circuit is a high-voltage electrolytic capacitor that’s capable of delivering a nasty shock. *Under no circumstances touch this capacitor*, as it can hold a hefty charge long after the batteries have been removed. Apply electrician’s tape over the capacitor’s exposed wires if you’re concerned that you might accidentally touch them (would anybody intentionally touch them?).

Open the camera only far enough to expose the solder pads of the shutter switch. After opening the camera, it’s a good idea to test the camera once again for damage by loading batteries and pressing its shutter switch. Remove the batteries after testing and set a multimeter to measure resistance or continuity. Using the meter, identify which of the two of the switch’s pads connect to each other when the button is pressed. If the multimeter leads are touching the correct two pins, the multimeter will indicate zero ohms of resistance when the switch is pressed.

Rather than try to remove the shutter switch from the camera, just solder thin gauge wires to the two pads and then run them out of the camera case. It would be a good idea to run the wires through a hole or pair of holes in the camera case where they can be tied off for strain relief. The free ends of the wires are then soldered to the timer.

Now, here’s a complicating factor. Some cameras have three pins on the shutter switch that are connected together when the shutter switch is pressed. Typically, the third pin triggers the camera to focus (so you should only see this happen with an autofocus or AF camera). You can determine if the camera has a focus pin in its shutter switch by noting if a third pin shorts when the button is only half pressed. However, to do this, you first have to locate the shutter switch pin that connects to ground.

The switch’s ground pin is the pin that the autofocus and shutter pins connect to when the shutter switch is pressed. After you identify the focus and shutter pins in the switch, connect both to one side of the relay and the ground pin to the other side. Shorting the focus and shutter pins together like this causes the camera to focus and take a picture together when the relay is fired.

A possible alternative is to solder a wire between the shutter switch focus pin to the ground pin. This keeps the camera constantly focusing itself and should be okay as long as it doesn’t drain the battery during a typical two to three hour flight.

Connecting the two channel timer to a camera is done the same way except the second relay connects to the camera’s power switch. Follow the above procedures to locate the correct pins to connect to the relay.

FINISHING THE PICAXE CAMERA TIMER

Now download the PICAXE program and test the circuit. At power up, the LED indicator will blink and the timer will wait for the removal of the shorting block. Once the block is removed, the timer will begin taking pictures and lighting its indicator LED. If the timer checks out, cover the back of the PCB with a piece of foam core and hot glue to protect the traces on the underside from shorting out. The PICAXE BASIC code for the single channel camera timer is available on the Nuts & Volts website at www.nutsvolts.com.
THE PICAXE TERMINATOR

This month’s second PICAXE project is a terminator. While this terminator is not a famous movie character, it does contain a PICAXE (PICAXE Inside?). The PICAXE Terminator ensures that a near space mission ends on time by cutting away the balloon. Occasionally, near space missions fail when the weather balloon becomes neutrally buoyant. When that happens, the balloon stops rising and the near spacecraft remains at a fixed altitude until the onboard battery dies. Once power is lost, the near spacecraft stops transmitting its position and becomes lost. The loss of a near spacecraft can be expensive considering that onboard it is a GPS receiver, amateur radio, and a radio modem called a TNC.

Normally, if the balloon’s lift is at least three pounds greater than the weight of its payload, a neutrally buoyant condition won’t occur. However, if the balloon develops a slow leak or if the balloon’s lift is set low in an effort to reach the maximum possible altitude, the risk of a neutrally buoyant condition increases.

The PICAXE Terminator makes sure missions like these still end in a timely fashion. Even if the balloon bursts properly, cutting away the balloon fragments makes the rest of the descent less chaotic for the near spacecraft.

The PICAXE Terminator monitors two flight conditions and acts as a mission timer. The two environmental conditions monitored are the air pressure and air temperature. On a near space mission, the air pressure decreases until the balloon bursts. The air temperature initially decreases as the balloon climbs through the troposphere and then begins increasing once the balloon enters the stratosphere. But then at balloon burst, the air temperature drops rapidly. Code in the PICAXE waits for either the air temperature to drop after it rose earlier in the flight, for the air pressure to begin increasing, or the air pressure to reach a minimum value coded into the program. When any of these events occur, it signals that the balloon has burst or has reached its

![Terminator schematic diagram]

The SM5812 is a Silicon Microstructures pressure sensor. A datasheet is available at www.si-micro.com. The part can be ordered from www.servoflo.com.

TERMINATOR PARTS LIST AND FUNCTION

- 1K resistor (voltage divider resistor for the LM335)
- 10K resistors (current limiting resistor for PICAXE programmer and pull-up resistor)
- 22K resistor (pull-down resistor for PICAXE programmer)
- 22 μF electrolytic capacitor (voltage regulation)
- LM2940T-5 (voltage regulator)
- Toggle switch (power switch)
- 1N4001 (kick back suppressor diode)
- Reed relay (electrical switch)
- LM335 (temperature sensor)
- SM5812 (pressure sensor)
- PICAXE-08M (programmable microcontroller)
- Two Pin male header (commit switch)
- Three Pin male header (programmer header)
desired maximum pressure altitude. Otherwise, the PICAXE Terminator waits until the programmed maximum time has elapsed.

To cut away the balloon, the PICAXE fires the relay for 10 seconds. The current flowing through the relay heats the nichrome coil to a dull red, melting the line running through it. The line separates letting the near spacecraft drop and the balloon rise by itself. Without the weight of the near spacecraft holding it back, the balloon quickly ascends to an altitude where air pressure will burst the balloon. It’s guaranteed to burst even if it was previously in a neutrally buoyant condition.

THEORY OF OPERATION

The ADC in PICAXE pin 1 and pin 2 digitizes the voltages of the two sensors in the terminator. Pin 1 connects to the output of the LM335 temperature sensor. This sensor produces a voltage of 0.01 volts per degree Celsius. Theoretically, the sensor produces zero volts at absolute zero, or 0 kelvins and maxes out with five volts at 500 kelvins or 227 degrees Celsius (that’s 440 degrees Fahrenheit).

PICAXE pin 2 connects to the output of the SM5812 (or its equivalent) pressure sensor. This sensor produces 0.5 volts in a vacuum, 4.5 volts at one atmosphere of pressure, and its output is linear with atmospheric pressure. PICAXE pin 3 connects to a pair of pins that are pulled up to five volts with a 10K resistor. While the shorting block is on the pair of pins, pin 3 is shorted to ground. pin 4 connects to the coil of a 5V reed relay. When set high, pin 4 energizes the relay’s coil, switching six volts to the terminator’s nichrome coil which gets hot and melts the load line between the balloon and parachute.

The programming header not only allows the program in the PICAXE to be updated, but also allows access to data stored in PICAXE memory. On each mission, the PICAXE records eight, one byte environmental records into memory. By reviewing these records, the terminator’s program can be tweaked for better performance. Here’s a table of conditions that the PICAXE-08M stores and their memory locations:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pressure at commit</td>
<td>0</td>
</tr>
<tr>
<td>Air temperature at commit</td>
<td>1</td>
</tr>
<tr>
<td>Time to tropopause</td>
<td>2</td>
</tr>
<tr>
<td>Air pressure at tropopause</td>
<td>3</td>
</tr>
<tr>
<td>Air temperature at tropopause</td>
<td>4</td>
</tr>
<tr>
<td>Time at cutdown</td>
<td>5</td>
</tr>
<tr>
<td>Air pressure at cutdown</td>
<td>6</td>
</tr>
<tr>
<td>Air temperature at cutdown</td>
<td>7</td>
</tr>
</tbody>
</table>

After powering up the terminator, the PICAXE waits in a program loop for pin 3 to go high (five volts). The transition to five volts takes place when the launch crew removes the Commit tag which is connected to a shorting block like the one described above for the camera timer.

After the tag is removed, the PICAXE first dumps the data in its first eight bytes of memory (use the PICAXE programmer’s terminal feature to read them). Next, the current air pressure and temperature are recorded into memory. Since it takes a few minutes to finish raising the balloon before its release, the PICAXE goes into a short wait loop before it will begin monitoring the time, temperature, and pressure. Then, the PICAXE enters into a one minute loop where the time is incremented and the pressure and temperature are digitized and recorded as needed.

Air pressure decreases with increasing altitude, however, air temperature only decreases with increasing altitude until the balloon enters the stratosphere. Once in the stratosphere, the air temperature begins increasing with increasing altitude because of the ozone layer. When the air temperature begins increasing (which occurs between 40,000 and 50,000 feet), the PICAXE records the elapsed time, the air pressure, and air temperature as the time, pressure, and temperature of the tropopause — the boundary between the troposphere and stratosphere.

The one minute program loop continues until the maximum time is exceeded, the pressure begins to increase, the air pressure reaches its minimum value, or the air temperature begins dropping after the balloon has
been detected entering the stratosphere. When it’s time to cut the load line, the PICAXE records the final time, air temperature, and air pressure into memory. It then fires the relay for 10 seconds to melt the line before ending the program.

BUILDING THE PICAXE TERMINATOR

Like the camera timers above, the first components soldered to the PICAXE Terminator PCB should be the lowest lying components (that is, the resistors and diode). Solder an eight pin socket to the PCB instead of the PICAXE to protect it from damage. Use snappable headers for the programming header and shorting pins. The components sensitive to orientation are the diode, voltage regulator, regulating capacitor, LM335, SM5812, and ultimately, the PICAXE. Be sure to double check their orientation before soldering them into place. Since the circuit is housed inside a Styrofoam box, the temperature sensor and power switch must be mounted to cables in order for them to reach the outside of the box.

The terminator’s nichrome coil mounts to the two holes at the bottom left of the PCB with #2-56 hardware. Use a three inch length of thin gauge nichrome wire for the coil (my spool of nichrome wire is about 30 AWG). Wrap the nichrome wire around a 3/16 inch diameter dowel to form the coil (I use a jeweler’s screwdriver). The ends are curled around the #2-56 bolts and firmly bolted to the PCB.

CONNECTING THE PICAXE TERMINATOR TO THE NEAR SPACECRAFT

Since I’ve not had a chance to test the PICAXE Terminator in flight (only ground tests have been performed to date), I haven’t finalized its mounting design. However, I envision mounting the terminator to a sheet of Sintra plastic or thin modeling plywood. This mounting plate will be large enough to hold the terminator PCB on one side and two batteries, the logic battery (9V transistor battery), and the nichrome heater battery (either a rechargeable or camera battery) on the back. The logic battery will be a lithium 9V battery and the nichrome coil battery will be either a 7.2V rechargeable lithium or a non-rechargeable 6V lithium camera battery.

Attached to the mounting plate and directly in line with the nichrome coil are two brass or aluminum tubes, with one above the PCB and the other below. The load line runs through these two tubes to align the load line with the nichrome wire coil. The tubes prevent the load line from pulling the coil out of shape or free of the PCB.

The bottom of the mounting plate attaches to the apex of the recovery parachute with a split ring that’s also positioned in line with the nichrome coil. If the ring is not mounted directly underneath the nichrome coil, then the load line will twist up around the nichrome coil as the balloon rotates in relation to the parachute.

There are two things to note here. First, it’s the mounting plate that attaches to the parachute (via its split ring) and not the terminator PCB. Second, the load line from the balloon doesn’t tie to the mounting plate. The load line from the balloon only passes through the terminator and its mounting plate. Since the load line ties directly to the parachute apex, the PICAXE Terminator and its mounting plate do not experience stress from the weight of the near spacecraft.

To protect the batteries and nichrome coil from the cold of near space, a two piece Styrofoam box (a front and back face) will cover the mounting plate. The front face has holes that the LM335 temperature sensor, power switch, and Commit tag pass through. The box is held closed around the mounting plate with rubber bands. Rubber bands tolerate the cold and ultraviolet of near space well while allowing the balloon crew to quickly and easily open and close the box before the balloon is launched.

To make it easier for the launch crew, pass the load line through the PICAXE Terminator the night before and tie it to the parachute apex. The code for the PICAXE Terminator is also available for downloading on the Nuts & Volts website.

Well, that’s all for this month. Next time is a report on the Spaceward Game that my girlfriend Rachel and I attended. Until then,

Onwards and Upwards,
Your Near Space Guide

NV

January 2008 NUTS & VOLTS 95
I am writing to congratulate you and Doug Malone for the excellent article, "Build a 0.01% Accurate Voltage Reference," which appeared in the Sep '07 issue of Nuts & Volts.

As a retired electrical engineer who did analog circuit design at companies such as Quantum and Western Digital, I can readily appreciate the superb design and clear description that Doug wrote for your magazine, plus attention to detail when laying out the board. This is evident in the stress relief cuts he made in the vicinity of the reference IC.

Not having any skills when it comes to soldering surface mount parts, I ordered two PCBs from Doug with the reference IC installed. There was a small typo in the parts list, but an email to Doug brought a prompt reply with the right part number.

When the boards arrived and the additional parts were installed, I was very pleased to find that the output of the two reference supplies differed by only 200 microvolts. A truly remarkable achievement considering the cost involved. Back when I was doing analog circuit design, it would have cost at least 20 times as much and required a temperature controlled oven to obtain similar results.

Phil Kenny

January 2008
Check out our new webstore for many more great titles!!

The Nuts & Volts WEBSTORE

CD-ROMS

GREAT ARTICLES – GREAT PROJECTS!

Catch up on 2003-2007 back issues

Those CD-ROMs are PC and MAC compatible. They require Acrobat Reader Ver. 6 or above. Don’t worry; we have included Acrobat Reader Ver. 7 on each of the discs.

Buy 2 or more $21.95 each

Buy all 8 CD-ROMs for $169.95 and get free shipping!

ELECTRONICS

Programming and Customizing the PICAXE Microcontroller by David Lincoln

Here’s everything you need to harness the power of PICAXE, the inexpensive yet versatile chip that’s taken the electronics community by storm. This beginner-friendly guide from IT pro and PICAXE expert David Lincoln shows you just what Revolution Education’s PICAXE can do — and helps you make it do it! Packed with ready-to-build projects for all the flavors of PICAXE, $39.95

Troubleshooting and Repairing Major Appliances: 2nd Edition by Eric Kleinert

Now covering both gas and electric appliances, the updated second edition of Troubleshooting and Repairing Major Appliances offers you a complete guide to the latest tools, techniques, and parts for troubleshooting and repairing any appliance. Packed with over 200 illustrations, the book includes step-by-step procedures for testing and replacing parts, instructions for reading wiring diagrams, charts with troubleshooting solutions, advice on using tools and test meters, safety techniques, and more. $59.95*

Programming the PIC Microcontroller with MBASIC by Jack Smith

No microcontroller is of any use without software to make it perform useful functions. This comprehensive reference focuses on designing with Microchip’s mid-range PIC line using MBASIC, a powerful but easy to learn programming language. It illustrates MBASIC’s abilities through a series of design examples, beginning with simple PIC-based projects and proceeding through more advanced designs. $62.95*

Electronics: A First Course Second Edition by Owen Bishop

Electronics: First Course starts with the basics of electricity and component types, and introduces students to practical work almost straightaway. No prior knowledge of electronics is assumed. The second edition now has additional applicability to BTEC First Electronics from Edexcel with coverage of fundamental topics required by students of this qualification, as well as other essential new topics that reflect recent technological developments. $34.95

Electronic Circuits — Fundamentals & Applications: Third Edition by Mike Tooley

In Electronic Circuits, Mike Tooley provides all the essential information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies, and oscillators. The third edition now offers an even more extensive range of topics, with extended coverage of practical areas such as circuit construction and fault finding, and new topics including circuit simulation, electronic CAD, and a brand new chapter devoted to the PIC microcontroller. $34.95

Encyclopedia of Electronic Circuits, Volume 7 by Rudolf F. Graf / William Sheets

Publish Date: August 31, 1998

An extensive library of 1,000 circuits from the bestselling, seven-volume Encyclopedia of Electronic Circuits. A virtual treasurehouse. An invaluable reference tool for every hobbyist, technician, student, and design professional. $39.95

Build Your Own Electronics Workshop

By Thomas Petruzzellis

YOUR DREAM ELECTRONICS LAB IS WAITING INSIDE!

This value-packed resource provides everything needed to put together a fully functioning home electronics workshop! From finding space to stocking it with components to putting the shop into action — building, testing, and troubleshooting systems — popular electronics author Tom Petruzzellis’ Build Your Own Electronics Workshop has it all! And the best part is, this book will save you money, big time! $29.95*

GREAT BOOK

CD-ROMS

GREAT ARTICLES – GREAT PROJECTS!

Catch up on 2003-2007 back issues

Those CD-ROMs are PC and MAC compatible. They require Acrobat Reader Ver. 6 or above. Don’t worry; we have included Acrobat Reader Ver. 7 on each of the discs.

Buy 2 or more $21.95 each

Buy all 8 CD-ROMs for $169.95 and get free shipping!

ELECTRONICS

Programming and Customizing the PICAXE Microcontroller by David Lincoln

Here’s everything you need to harness the power of PICAXE, the inexpensive yet versatile chip that’s taken the electronics community by storm. This beginner-friendly guide from IT pro and PICAXE expert David Lincoln shows you just what Revolution Education’s PICAXE can do — and helps you make it do it! Packed with ready-to-build projects for all the flavors of PICAXE, $39.95

Troubleshooting and Repairing Major Appliances: 2nd Edition by Eric Kleinert

Now covering both gas and electric appliances, the updated second edition of Troubleshooting and Repairing Major Appliances offers you a complete guide to the latest tools, techniques, and parts for troubleshooting and repairing any appliance. Packed with over 200 illustrations, the book includes step-by-step procedures for testing and replacing parts, instructions for reading wiring diagrams, charts with troubleshooting solutions, advice on using tools and test meters, safety techniques, and more. $59.95*

Programming the PIC Microcontroller with MBASIC by Jack Smith

No microcontroller is of any use without software to make it perform useful functions. This comprehensive reference focuses on designing with Microchip’s mid-range PIC line using MBASIC, a powerful but easy to learn programming language. It illustrates MBASIC’s abilities through a series of design examples, beginning with simple PIC-based projects and proceeding through more advanced designs. $62.95*

Electronics: A First Course Second Edition by Owen Bishop

Electronics: First Course starts with the basics of electricity and component types, and introduces students to practical work almost straightaway. No prior knowledge of electronics is assumed. The second edition now has additional applicability to BTEC First Electronics from Edexcel with coverage of fundamental topics required by students of this qualification, as well as other essential new topics that reflect recent technological developments. $34.95

Electronic Circuits — Fundamentals & Applications: Third Edition by Mike Tooley

In Electronic Circuits, Mike Tooley provides all the essential information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies, and oscillators. The third edition now offers an even more extensive range of topics, with extended coverage of practical areas such as circuit construction and fault finding, and new topics including circuit simulation, electronic CAD, and a brand new chapter devoted to the PIC microcontroller. $34.95

Encyclopedia of Electronic Circuits, Volume 7 by Rudolf F. Graf / William Sheets

Publish Date: August 31, 1998

An extensive library of 1,000 circuits from the bestselling, seven-volume Encyclopedia of Electronic Circuits. A virtual treasurehouse. An invaluable reference tool for every hobbyist, technician, student, and design professional. $39.95

Build Your Own Electronics Workshop

By Thomas Petruzzellis

YOUR DREAM ELECTRONICS LAB IS WAITING INSIDE!

This value-packed resource provides everything needed to put together a fully functioning home electronics workshop! From finding space to stocking it with components to putting the shop into action — building, testing, and troubleshooting systems — popular electronics author Tom Petruzzellis’ Build Your Own Electronics Workshop has it all! And the best part is, this book will save you money, big time! $29.95*
Garage Door Alarm Kit

Save yourself time and aggravation from lost or stolen items that mysteriously disappear from your garage when — as we have all done — THE DOOR IS LEFT OPEN! With this small but mighty kit (inspired by one of our project writers, Garth O’Donald), the alarm lets you know when your door is open and has an audible alarm when anyone enters the garage.

For more information, please check out your November 2007 issue or go to our website @ www.nutsvolts.com

- **Subscriber’s Price**: $49.95
- **Non-Subscriber’s Price**: $57.45

Kit includes article reprint, complete instructions, parts list, and hole drilling templates.

Projects

- **PIC Microcontroller Project Book**
 - by John Iovine
 - The PIC microcontroller is enormously popular both in the US and abroad. The electronics hobbyist market has become more sophisticated. This new edition is fully updated and revised to include detailed directions on using both versions of the microcontroller, with no-nonsense recommendations on which is better served in different situations.
 - **Price**: $29.95

- **Nixie Clock Kit**
 - Nixie tube clocks fuse the spirit, drama, and eerie beauty of cold war technology with modern inner works to create uncommon handcrafted timepieces.
 - This clock/kit was shown at the October 2007 MAKER Faire in Austin, TX by Nut & Volts Magazine and was very well received as a novel way to show the Nixie tubes. Plus, it’s a great kit for all levels of electronic experience.
 - For more information, please check out your October 2006 issue or go to our website @ www.nutsvolts.com
 - **Subscriber’s Price**: $124.95
 - **Non-Subscriber’s Price**: $139.00
 - Both include an article reprint.

- **Solar Hydrogen Power Generation Set**
 - The Solar Hydrogen Generation Set includes a solar cell, a PEM reversible fuel cell, as well as oxygen and hydrogen gas containers. The set only needs pure water to create hydrogen and produce electricity. Perfect for science labs, classroom use, or demonstration purposes.
 - **Price**: $67.00

- **Hydrogen Powered Racer**
 - With this kit, you now can see and feel the future of energy generation in your own hands! Recently named as one of the Best Inventions of 2006 by Time Magazine, the H-racer is now the best selling fuel cell product in the world. For more info, go to our online store at www.nutsvolts.com.
 - **Price**: $115.00

- **Magic Box Kit**
 - We received such great reviews on this magic box kit that we decided to offer it in our store.
 - This unique DIY construction project blends electronics technology with carefully planned handcraftsmanship. Its delightful innovation will surely amuse you. More importantly though, it bewilders, baffles, and mystifies those observing this subtle magic trick.
 - **Subscriber’s Price**: $39.95
 - **Non-Subscriber’s Price**: $45.95
 - Both include an article reprint.
Energy Technology and Directions for the Future
by John R. Fanchi
Publish Date: January 26, 2004
This book is a survey of energy sources that will be available for use in the 21st century energy mix. You will learn about the history and science of several energy sources, as well as the technology and social significance of energy. The book includes geothermal, nuclear, solar, wind, and renewable energy. You will get explanations, definitions, and analysis of each alternative energy source from a technological point-of-view. $72.95*

If you are an alternative energy enthusiast, you’re going to love this shirt! Going, Going, Gone Green! Check it out in our Webstore! www.nutvolts.com $24.95*

Solar Energy Projects for the Evil Genius
by Gavin D. J. Harper
Let the sun shine on your evil side—and have a wicked amount of fun on your way to becoming a solar energy master! In Solar Energy Projects for the Evil Genius, high-tech guru Gavin Harper gives you everything you need to build more than 50 thrilling solar energy projects. You’ll find complete, easy-to-follow plans, with clear diagrams and schematics, so you know exactly what’s involved before you begin. $24.95

The Complete Idiot’s Guide to Solar Power for Your Home
by Dan Ramsey / David Hughes
Publish Date: May 2007
The perfect source for solar power—fully illustrated. This book helps readers understand the basics of solar power and other renewable energy sources, explore whether solar power makes sense for them, what their options are, and what’s involved with installing various on- and off-grid systems. $18.95
Anyone know a rule of thumb for determining how much energy you can pump into an LED without destroying it? I’ve seen many specs on maximum voltage, current, and duty cycle. However, I’m trying to determine how much current you can actually pump into one in a short duration pulse (around one microsecond) without damaging the LED junction, and at what maximum repetition rate. I’ve heard of strobe applications where 10X the maximum absolute current could be pulsed without destroying the LED. But what is the limit and how do you determine it from the specs?

#1083 Charlie Brown

How can I extract music files (usually .wav or .mp3) embedded in Microsoft Power Point files?

#1084 Steve Buu

Is there a way to export stock market data from the Internet (PC) through USB or RS-232, to be displayed on a homemade stock sticker?

#1085 Steve Buu

Where is the current cursor position from the mouse stored in Windows (PC) and how can it be accessed? I want to externally control the cursor in addition to the mouse.

#1086 Steve Buu

I am working on a bingo flash board that will be shipped to Honduras. It is the big board that everyone watches after the bingo numbers have been called. It has 75 lighted 2" x 2" segments that can be individually lit as the numbers are called. I have the bingo machine controller but it is old and unfixable. What I need to do is come up with a way to control the lighted board. I am open to suggestions. I thought about using a PIC and a digital input pad to input the number. You could even use relays and 75 switches but having that many wires may be a bit much.

#1083 Charlie Brown

How can I extract music files (usually .wav or .mp3) embedded in Microsoft Power Point files?

#1084 Steve Buu

Is there a way to export stock market data from the Internet (PC) through USB or RS-232, to be displayed on a homemade stock sticker?

#1085 Steve Buu

Where is the current cursor position from the mouse stored in Windows (PC) and how can it be accessed? I want to externally control the cursor in addition to the mouse.

#1086 Steve Buu

I am working on a bingo flash board that will be shipped to Honduras. It is the big board that everyone watches after the bingo numbers have been called. It has 75 lighted 2" x 2" segments that can be individually lit as the numbers are called. I have the bingo machine controller but it is old and unfixable. What I need to do is come up with a way to control the lighted board. I am open to suggestions. I thought about using a PIC and a digital input pad to input the number. You could even use relays and 75 switches but having that many wires may be a bit much.

#1083 Charlie Brown

How can I extract music files (usually .wav or .mp3) embedded in Microsoft Power Point files?

#1084 Steve Buu

Is there a way to export stock market data from the Internet (PC) through USB or RS-232, to be displayed on a homemade stock sticker?

#1085 Steve Buu

Where is the current cursor position from the mouse stored in Windows (PC) and how can it be accessed? I want to externally control the cursor in addition to the mouse.

#1086 Steve Buu

I am working on a bingo flash board that will be shipped to Honduras. It is the big board that everyone watches after the bingo numbers have been called. It has 75 lighted 2" x 2" segments that can be individually lit as the numbers are called. I have the bingo machine controller but it is old and unfixable. What I need to do is come up with a way to control the lighted board. I am open to suggestions. I thought about using a PIC and a digital input pad to input the number. You could even use relays and 75 switches but having that many wires may be a bit much.
want to get as much power as possible without burning out the motor. In this application, space is limited and there is minimal air flow for cooling.

Is there a way to limit the maximum current allowed to the motor, even if stalled (a virtual short circuit), while still allowing throttle control up to that limit? The smallest motors run 10 amps continuous at 7 to 12 volts and the big ones over 40 amps at 30 to 50 volts.

#1087 Dan Schwartz
Northbrook, IL

>>> ANSWERS

[#10074 - October 2007]
I have been using the serial port of my PC and languages such as assembly, C++, Java, and VB to communicate with custom designed circuits. Nowadays, all PCs have replaced the serial port with multiple USB ports. I want to migrate my applications but have found working with USB rather difficult. Could someone please suggest a way to send/receive a simple 1-0 digital signal using any programming language (preferably Java)?

I'm assuming that your current Java implementation uses the java.comm package to communicate with the serial port. If this is the case, by far the easiest way to adapt your projects for use with computers which have no serial port is to use a USB-to-serial converter. These are available from many sources on the web for under $20 and are very easy to use. See http://sewelldirect.com/usbtoserial.asp for a specific example. If you'd rather have something that can be built into your project, take a look at www.pololu.com/products/pololu/0391/

Tom Dimock
Ithaca, NY

[#11072 - November 2007]
My mother has Alzheimer's and is unable to operate her television anymore. We had a very simple remote with about six large buttons which she could use. That TV broke and our new 37 inch LCD is a good size for her, but the remote has about 40 tiny buttons which she can't see or remember which ones to press.

The functions she needs are TV off/on, volume and channel up/down. I want to build a simple remote with giant buttons that are perceptually different for each of these two-dimensional control functions in hopes that she will intuitively feel the difference.

#1 I think I have found the perfect remote for Stan's mother to use. The TV remote that he described in his question reminded me of one that we had purchased for our kids to use. It is called the "weemote." When I visited the manufacturer's website to provide Stan with the information, I found that they now make an adult version called the "weemote Sr. TV remote for adults." More information can be found at www.weemote.com.

Greg Cloutier
South Windsor, CT

#2 If you go to www.tauntek.com, check out two chips: one called IRMimic and another called IRMimic2.

Rick Curl
Pinson, AL

Figure 1

#10075 - October 2007
I have an irrigation system with a six zone controller. It has only four wires plus a ground going to it and the valve box. It would be impossible to run new or additional wire as the wiring goes under a concrete floor.

Four zones are being used. I recently added a fifth battery-operated zone, but it's a problem as the batteries tend to wear out. I want to use the controller for timing zone five and would appreciate a circuit that could do this.

Let's take a simple, low-tech approach to the problem. The zone outputs are all AC. By using only the positive half-cycles from one zone and only the negative half-cycles of the next, we can have two zones share one control wire. We will use the common ground as one conductor (which will remain grounded), and use one conductor for unswitched 28 VAC. This leaves three conductors for control, which allows you to use all six zones.

Referring to the diagram, here's how it works. When zone 1 is active, 28 VAC is rectified by D3 so only positive half-cycles are sent down the control wire. Out at the valve end, D1 allows the positive half-cycles to charge C1 through R1. C1 keeps the 12 volt DC relay from chattering due to half-cycles being applied to it. R1 drops the voltage down to approximately 12 volts. Since D2 is reverse-biased, RLY2 is not pulled in. The same thing happens when zone 2 is active, only this time we are sending negative half-cycles down the control wire to pull in RLY2.

The drawing shows the circuit for two zones. By duplicating the circuit two more times, you will have six zones available. All circuits share the same ground and 28 VAC conductors.

The typical RadioShack part numbers are:
C1, C2: 272-1015
D1 - D4: 276-1003
R1, R2: 271-1118
RLY1, RLY2: 275-248

Rick Curl
Pinson, AL
These chips can memorize commands from your existing remote, for playing back under control of your own switches. With IRMimic2, you can record several commands and then play them back in sequence as a macro, all in response to one button press.

Bob Grieb
Medford, NJ

[11073 - November 2007]

In the past several years, it has become harder and takes greater pressure to make contact with most of the rubberized keys on our TV remote.

Inside, I've noticed a slimy film covering the circuit board and keys. I've cleaned everything with contact cleaner. It worked for several months, then, the same old problem re-appeared.

#1 I also have seen the problem with remote controls and some two-way radios that use pressure type switches. The carbon impregnated rubber either becomes contaminated or wears away over time.

A solution that I have found is to buy some adhesive backed foil. Craft stores and home centers carry metal tapes that should work. I have a few rolls of tape that I got from RadioShack years ago that were used on audio tapes.

Take either a handheld hole punch or a hobby knife and cut the foil to fit over the carbon part of the rubber buttons, where they depress against the PC board inside of the remote control. Carefully place the adhesive foil over the old rubber, trimming it to fit neatly and reassemble the remote.

Whenever you press one of the buttons, the foil will make contact with the PC board instead of the less or non-conducting carbon coating. The foil will make good, long lasting contacts that should be much less prone to contamination or wear.

E. Kirk Ellis, KI4RK
Pikeville, NC

#2 I have successfully cleaned dozens of remote controls using the following method. This is a long-term solution if the carbon pads are not worn out.

Carefully pry apart the remote control; some may have screws holding it together. Place the pad in a tall microwave safe drinking glass. Cover the pad with water to one inch above the pad. Add one teaspoon of table salt. Place in a microwave oven and microwave on high power for three or four minutes. Remove it from the oven and add a squirt of liquid dishwashing soap. Stir well, remove the pad, and carefully scrub it with a toothbrush. Also, clean the remote control top cover, inside and out. Rinse well and allow to dry. To clean the circuit board, I use Rawn contact/degreaser part #1118 (available from MCM; order #20-2005). Use a paper towel saturated with this and wipe the board and keypad.

You may also use denatured alcohol, but be careful not to get any on the plastic case.

Norman Nollett
Valentine, NE

#3 The slimy build-up on the PC board can be all or just part of the problem. In our shop, we clean the rubber buttons with dish soap and warm water. Clean the board contacts with 90% alcohol. If that works well and excess pressure isn't needed to operate, return it to service and consider some form of plastic bag, wrap, or other protection to keep it from the drink spills that no one will ever admit to. If the excess pressure or no operation still persists, apply conductive coating to the bottom of the rubber key pads. (Caig Caikote 44 #K-CK44-G, MCM #200-315 or Chemtronics Rubber Keypad Repair Kit #CW2605; MCM #20-3890.)

Ivan Strong
Des Moines, IA

#4 Make sure the contact cleaner you're using is of the fast dry, non-residue type (non-lubricating). 'The slimy film' may be left over from the contact cleaner and will attract dirt to the contact pads. Isopropanol alcohol can also be used to clean these type of contacts.

Bob Lindstrom
Broomfield, CO
This month’s spotlight is on Jaycar Electronics, a mail order business offering a wide variety of electronic equipment with company stores located throughout Australia and New Zealand. They also maintain a manufacturer’s rep/distributor business for semiconductors and other electronic components in those countries and additionally in Singapore, India, and elsewhere. A Mr. Jock Carr founded the company in 1950. Mr. Carr died in 1962 and Gary Johnston purchased the firm which had all but ceased to function in 1980. He revived the business to the point where it presently has approximately 650 staff members and over 50 company owned stores (not franchises).

Gary is the sole owner of the business. He began operating Jaycar when he was 30 and is now 57 years old. Prior to owning and operating Jaycar, he worked for a company called Dick Smith Electronics. They are an Australian firm that tried to enter into the American marketplace in the early 1980’s, but they did not succeed. He left that organization before that occurred.

The main office and warehouse of Jaycar occupies 70,000 square feet. They are moving later this year to a 200,000 square foot facility.

When interviewed for this column recently, he replied to our questions in this manner:

Marvin: Please describe the nature of your business and how it operates.

Gary: As a business, the closest thing in United States terms you could compare us to is a hybrid of RadioShack and Jameco. We also do a large range of do-it-yourself kits so we are a bit like Ramsey, as well. We do not sell brand-name products at all. We generally either make kits up ourselves or source goods from overseas suppliers; generally Asia.

M: How many different products do you offer, either at your company stores or on the Internet?

G: On that subject, we generally release about 1,000 new products every year on a range of 8,000. We discontinue about 500 products a year so our range is growing overall. Naturally, we would like a smaller number of products to manage, but it just does not seem to work out that way. As we indicate on our website, we do not skimp on quality with our kits. We supply 1% metal film resistors in lieu of 5% carbon ones. We use high quality MKT style plastic capacitors and IC sockets, where appropriate. Our kit production department is audited under the ISO9001:2000 Quality System, an International benchmark. Jaycar sells kits all over the world these days. We cannot afford to let someone down whether they are in Birmingham, England or Birmingham, Alabama. The kit that a customer receives in Melbourne, Florida, is the same as the one delivered to a customer in Melbourne, Australia. We source projects from all over the world.

M: How much business do you do annually?

G: We are not a publicly traded company and we tend to keep financial details to ourselves, but in US dollars, our ballpark retail turnover is about $70 million. That’s pretty big by Australian standards, but nothing compared to RadioShack! We require a minimum order of $15 USD for our American customers. Other minimums apply for other countries. Shipping charges are a function of order value, distance, and method of shipping.

M: Care to comment on any problems you have selling your products in an American market?

G: We have been producing a US dollar version of our catalog for some years now. While we have had some success marketing to enthusiasts in the USA, I think that Americans have a perception problem with “down under.” I feel that many Americans just don’t see Australia as a source of technical products. Heck, we make half the world’s heart pacemakers down here, for example. We also make about 25 percent of the world’s slot machines — and the really electronic ones at that.

M: Finally, how can our readers get information about your product line and place orders?

G: We have a 400+ page US catalog that is free to any US or Canadian customer. They only have to contact us at www.jaycar.com.au. We have been around for over 50 years, and welcome any customer who holidays down under to pay us a visit. There is a reason why we are so big down here and we would love to prove our worth to US enthusiasts.
AD INDEX

AMATEUR RADIO AND TV
- Atomic Time .. 41
- PolarisUSA Video, Inc. ... 9
- Ramsey Electronics, Inc. 22-23

BATTERIES/CHARGERS
- Cunard Associates .. 31

BUYING ELECTRONIC SURPLUS
- Earth Computer Technologies 31
- Jaycar Electronics ... 51

CCD CAMERAS/VIDEO
- Circuit Specialists, Inc. .. 106-107
- Matco, Inc. .. 31
- PolarisUSA Video, Inc. 9
- Ramsey Electronics, Inc. 22-23

CIRCUIT BOARDS
- AP Circuits .. 78
- Comfile Technology .. 37
- Cunard Associates .. 31
- Dimension Engineering ... 69
- ExpressPCB .. 29
- IMET Corporation .. 80
- PCB Cart .. 80
- PCB Pool .. 50
- Pulser, Inc. ... 31
- R4Systems, Inc. .. 81
- Saelig Company, Inc. ... 59
- Schmart Board .. 31

COMPONENTS
- Cam Expert, LLC .. 31
- Comfile Technology .. 37
- Cunard Associates .. 31
- Dimension Engineering ... 69
- ExpressPCB .. 29
- IMET Corporation .. 80
- PCB Cart .. 80
- PCB Pool .. 50
- Pulser, Inc. ... 31
- R4Systems, Inc. .. 81
- Saelig Company, Inc. ... 59
- Schmart Board .. 31

COMPUTER HARDWARE
- ActiveWire, Inc. .. 31
- Earth Computer Technologies 31

Microcontrollers / I/O Boards
- Abacom Technologies95
- Comfile Technology .. 37
- EMAC, Inc. ... 81
- HobbyLab ... 31
- microEngineering Labs 87
- Mouser Electronics .. 27
- Net Media .. 2
- Parallax, Inc. .. 87
- Pololu Robotics & Electronics 78
- R4Systems, Inc. .. 81
- Renesas Technology America 45
- Scott Edwards Electronics, Inc. 79
- Trace Systems, Inc. .. 80
- XGameStation ... 31

DESIGN/ENGINEERING/REPAIR SERVICES
- Cam Expert, LLC .. 31
- ExpressPCB .. 29
- Front Panel Express LLC 79
- General Atomics Aeronautical Systems 13
- IMET Corporation .. 80
- PCB Cart .. 80
- PCB Pool .. 50
- Pulser, Inc. ... 31
- R4Systems, Inc. .. 81
- Trace Systems, Inc. .. 80

DISPLAY
- Comfile Technology .. 37

DRAFTER/DESIGNERS
- General Atomics Aeronautical Systems 13

EDUCATION
- Command Productions ... 37
- EMAC, Inc. ... 81
- PAIA ... 78
- Schmart Board ... 31
- XGameStation ... 31

EMBEDDED TOOLS
- Mouser Electronics .. 27
- NetBurner .. 7

ENCLOSURES
- Integrated Ideas & Tech. 89

KEYBOARD EMULATORS
- Hagstrom Electronics ... 31

KITS & PLANS
- DesignNotes.com, Inc. .. 80
- Earth Computer Technologies 31
- Electronics 123 ... 31
- EMAC, Inc. ... 81
- Information Unlimited .. 64
- Jaycar Electronics .. 51
- NetBurner .. 7
- PAIA ... 78
- QKITS .. 31
- Rabbit, A Digi International Brand 22-23
- Ramsey Electronics, Inc. 22-23
- Scott Edwards Electronics, Inc. 79
- XGameStation ... 31

LASERS
- Information Unlimited .. 64

LSI (micon)
- Renesas Technology Corp. 21

MISC./SURPLUS
- All Electronics Corp. ... 65
- Front Panel Express LLC 79

MOTORS
- Jameco .. 30

PROGRAMMERS
- Electronics 123 ... 31
- General Atomics Aeronautical Systems 13
- microEngineering Labs 87

RF TRANSMITTERS/RECEIVERS
- Abacom Technologies ... 95
- Mato, Inc. ... 31

ROBOTICS
- Budget Robotics .. 50
- CrustCrawler .. 77
- HobbyLab ... 31
- Jameco .. 30
- Lemos International Co., Inc. 6
- Lynxmotion .. 79
- Net Media .. 2
- Pololu Robotics & Electronics 78

SATELLITE
- Lemos International Co., Inc. 6

SECURITY
- Information Unlimited .. 64
- Mato, Inc. ... 31
- PolarisUSA Video, Inc. 9

SOFTWARE DEVELOPMENT TOOLS
- Renesas Technology America 45

TEST EQUIPMENT
- Circuit Specialists, Inc. 106-107
- DesignNotes.com, Inc. .. 80
- Dimension Engineering .. 69
- Electronic Design Specialists 88
- Exphil .. 30
- HobbyLab ... 31
- Jaycar Electronics .. 51
- Link Instruments ... 5
- Lynxmotion, Inc. ... 79
- Mato, Inc. ... 31
- microEngineering Labs 87
- Mouser Electronics .. 27
- NetBurner .. 7
- Net Media .. 2
- Parallax, Inc. .. 87
- PAIA ... 78
- PCB Cart .. 80
- PCB Pool .. 50
- Pico Technology Ltd. UK 89
- Pioneer Hill Software ... 81
- PolarisUSA Video, Inc. 9
- Pololu Robotics & Electronics 78
- Pulsar, Inc. ... 31
- QKITS .. 31
- R4Systems, Inc. .. 81
- Rabbit, A Digi International Brand 22-23
- Ramsey Electronics, Inc. 22-23
- Renesas Technology America 45
- Renesas Technology Corp. 21
- Saelig Company, Inc. ... 59
- Schmart Board .. 31
- Scott Edwards Electronics, Inc. 79
- TORMACH ... 88
- Trace Systems, Inc. .. 80
- XGameStation ... 31

WIRE, CABLE AND CONNECTORS
- DesignNotes.com, Inc. .. 80
- Jameco .. 30

January 2008

NUTS\&VOLTS
Our Premium All in One Repairing System

- All in one system. Combines the function of a Hot Air Gun, a Soldering Iron and a Desoldering Gun.
- Microprocessor controlled ESD safe unit. All digital display of hot air temperature, soldering iron temperature, desoldering gun temperature and air pressure with touch type panel controls.
- The desoldering tool comes with zero crossing circuitry preventing electrical surges and is equipped with air cylinder type strong suction vacuum pump.
- The 24V soldering iron is compatible with the compound tip design by connecting the ceramic heater, sensor, control unit and tip as one. Designed for efficiency.
- Replacement of tips with easy slip in/out method.
- Compatible with various type of air nozzles.
- Compatible with different kinds of tips.
- Full compliment of nozzles & tips are available.
- Use with lead-free or standard solder.

FREE CSI486 Smoke Filter (a $27.99 value) with the purchase of a CSI-9000

Only $249.00

Details at Web Site Soldering & Rework Hot Air Rework

Programmable DC Power Supplies

The CSI 3600 Series Programmable DC Power Supplies are equipped with a back-lit LCD display, number keypad and a rotary code switch for ease of use & quick programming. Voltage, Current & Power can all be displayed on the LCD or computer screen (with optional RS-232 interface module). It can be operated at constant current mode, constant voltage mode & constant power mode. It also can be set with maximum limits for current & power output. Ideal instruments for scientific research, educational labs or any application requiring a sophisticated DC-power source.

<table>
<thead>
<tr>
<th>Model</th>
<th>CSI3644A</th>
<th>CSI3645A</th>
<th>CSI3646A</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>0-18V</td>
<td>0-36V</td>
<td>0-72V</td>
</tr>
<tr>
<td>DC Current</td>
<td>5A</td>
<td>3A</td>
<td>1.5A</td>
</tr>
<tr>
<td>Power (max)</td>
<td>90W</td>
<td>108W</td>
<td>108W</td>
</tr>
</tbody>
</table>

Only $199.00 Each!

Details at Web Site Power Supplies Bench Power Supplies

ESD Safe CPU Controlled SMD Hot Air Rework Station

The heater and air control system are built-in and adjusted by the simple touch of the front keypad for precise settings. Temperature range is from 100°C to 480°C / 212°F to 896°F, and the entire unit will enter a temperature drop state after 15 minutes of non-use for safety and to eliminate excessive wear.

- CPU Controlled
- Built-in Vacuum System
- Temperature Range:100°C to 480°C / 212°F to 896°F
- 15-Minute Stand-by temperature "sleep" mode
- Power:110/120 VAC, 320 W maximum

Item# CS1825A++

Sale $149.00!

Details at Web Site Soldering & Rework Hot Air Rework

Double Output DC Bench Power Supplies

High stability digital read-out bench power supplies featuring constant voltage and current outputs. Short-circuit and current limiting protection is provided. SMT PC boards and a built-in cooling fan help ensure reliable performance and long life.

- Source Effect: 5x10⁻⁴ 2mV
- Load Effect: 5x10⁻⁴ 2mV
- Ripple Coefficient: <250µV
- Stepped Current: 0mA +/- 1mA

All 3 Models have a 1A/5VDC Fixed Output on the rear panel

<table>
<thead>
<tr>
<th>Model</th>
<th>CSI3003X: 0-30VDC/0-3Amp</th>
<th>CSI5003X: 0-50V/0-3Amp</th>
<th>CSI3005X: 0-30V/0-5Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0-30VDC x 2 @ 3 or 5 Amps & 1ea. fixed output @ 5VDC@3A</td>
<td>0.145 5%</td>
<td>0.145 5%</td>
</tr>
<tr>
<td>Source Effect</td>
<td>5x10⁻⁴ 2mV</td>
<td>5x10⁻⁴ 2mV</td>
<td>5x10⁻⁴ 2mV</td>
</tr>
<tr>
<td>Ripple Coefficient</td>
<td><250µV</td>
<td><250µV</td>
<td><250µV</td>
</tr>
<tr>
<td>Stepped Current</td>
<td>0mA +/- 1mA</td>
<td>0mA +/- 1mA</td>
<td>0mA +/- 1mA</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>110VAC</td>
<td>110VAC</td>
<td>110VAC</td>
</tr>
</tbody>
</table>

Details at Web Site Power Supplies Bench Power Supplies

As Low As $99.50!

Hot Item!

Details at Web Site Power Supplies Bench Power Supplies

Circuit Specialists, Inc. 220 S. Country Club Dr., Mesa, AZ 85210
800-528-1417 / 480-464-2485 / FAX: 480-464-5824
PowerSupply1 Switching Power Supplies

These Highly Reliable PS1 Series, universal AC input/full range single output power supplies comply with the RoHS directive. Choose between various 25, 40, 60, 100 & 150 Watt versions. They have the approval of UL and CE and come 100% full load burn-in tested and with overload/over and voltage/short circuit protection. Also included is a 2 year manufacturer’s warranty.

NEW 25W Series Added!

<table>
<thead>
<tr>
<th>PowerSupply1</th>
<th>Qty 1</th>
<th>Qty 10</th>
<th>Qty 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>25W Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available in</td>
<td>3.3,5,12,15,24,48V</td>
<td>$14.90</td>
<td>$12.60</td>
</tr>
<tr>
<td>40W Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available in</td>
<td>5,12,15,24,48V</td>
<td>$22.50</td>
<td>$18.80</td>
</tr>
<tr>
<td>60W Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available in</td>
<td>5,12,15,24,48V</td>
<td>$26.88</td>
<td>$21.92</td>
</tr>
<tr>
<td>100W Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available in</td>
<td>3.3,5,7,5,12,15,24,48V</td>
<td>$32.80</td>
<td>$26.49</td>
</tr>
<tr>
<td>150W Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available in</td>
<td>5,7,5,9,12,24,28,36V</td>
<td>$40.75</td>
<td>$33.70</td>
</tr>
</tbody>
</table>

Digital Storage Oscilloscope Module

Convert any PC with USB interface to a high performance Digital Storage Oscilloscope. This is an advanced PC based oscilloscope with the ability to test diodes, transistors and continuity. A special feature included is the Auto Test Lead Input Indication Technology. This will ensure that whenever you switch functions on the DMM, the proper positive lead will light indicating where to plug the red test lead into so that no mistakes can be made by the user. It even goes so far as to give a warning tone if you do plug the lead into the incorrect jack! A very helpful feature for the novice and even for the experienced user who is using the meter in less than ideal lighting conditions. Overall, we find this to be a meter that compares very favorably with much higher priced competitors on the market today.

Price Breakthrough!

Item# 200DSO Only $819.00

mCU Controlled True RMS High Accuracy DMM

The CSI2205D Micro Control Unit auto-ranging DMM is UL Listed and designed for measuring resistance, capacitance, DC & True RMS AC voltage, DC & True RMS AC current, frequency, duty cycle and temperature, along with the ability to test diodes, transistors and continuity. A special feature included is the Auto Test Lead Input Indication Technology. This will ensure that whenever you switch functions on the DMM, the proper positive lead will light indicating where to plug the red test lead into so that no mistakes can be made by the user. It even goes so far as to give a warning tone if you do plug the lead into the incorrect jack! A very helpful feature for the novice and even for the experienced user who is using the meter in less than ideal lighting conditions. Overall, we find this to be a meter that compares very favorably with much higher priced competitors on the market today.

New!

Item # CSI2205D Only $59.00.

Stepper Motors

Part #	**Motor Frame Size**	**Holding Torque**	**Price**
42BYGH404 | NEMA 17 | 3.4kg.cm/47oz.in | $17.95
57BYGH207 | NEMA 23 | 8kg.cm/11oz.in | $24.95
57BYGH303 | NEMA 23 | 10kg.cm/26oz.in | $29.95
57BYGH405 | NEMA 23 | 20kg.cm/27oz.in | $34.95
85BYGH150B-03 | NEMA 34 | 48kg.cm/66oz.in | $79.95
85BYGH150C-03 | NEMA 34 | 63kg.cm/87oz.in | $119.95

Sirocco SMD Rework Unit

The CSI-6028 is a small yet powerful rework system. The Sirocco style fan induces seamless airflow thru the heating element providing convection style heating, and this non-pressurized air stream works perfectly for reworking highly sensitive IC packages such as BGA, QSP, SOP and plastic based SMD devices.

Item # CSI-6028 $94.50

Details at Web Site Soldering & Rework Hot Air Rework

Soldering Station w/Iron & SMD Hot Tweezers

- Electrostatic discharge safe design with grounding measure
- Tweezers directly applies heat to components being repaired while avoiding nearby components
- Suitable for crowded circuit boards
- 24V output voltage to ensure safety of user and protect soldered components on board

Item# CSI-950+ $59.00

Details at Web Site Soldering & Rework Soldering Stations

3-1/2 Digit LCD Panel Meter (enhanced version)

The PM-128E is an enhanced version of our best selling PM-128A. The E version can be set to work with either a 5VDC or 9VDC power source, will perform with either a common ground or an isolated ground, and is supplied with easy to use jumper points so the end user can easily set the measurement range required.

Item# PM-128E

Details at Web Site Panel Meters Digital LCD Display

Only $12.25 Quantity Price Break at website!
912 MHZ RF TRANSCEIVER

The 912 MHz RF Transceiver provides an easy way to transfer data between two Parallax microcontrollers such as the BASIC Stamp® 2, SX or Propeller® chip serially at 9600 baud. These RF transceivers have excellent range, employ 16-bit CRC error checking and have a FIFO buffer.

Each module can send and receive serial data and 2 modules are required for communication. A simple example of sending data from a BASIC Stamp 2 microcontroller is:

SEROUT 0, 84, ["Hello World"]

Features of the 912 MHz RF Transceiver:
- 800 foot range
- 9600 bps serial (9600, N, 8, 1)
- 16-bit CRC error checking
- FIFO buffer
- +3V to +5V operation
- Built-in antenna

Note: Each module can send and receive serial data and two modules are required for communication.

To order the 912 MHz RF Transceiver (#27985; $49.95), visit parallax.com or call our Sales toll-free at 888-512-1024 (Mon-Fri, 7am-5pm, PT).

BASIC Stamp is a registered trademark of Parallax Inc. Propeller, Parallax and the Parallax logo are trademarks of Parallax Inc. SX is a trademark of Ubicom, used with permission. Copyright © 2007 Parallax Inc.