The Projects Of Prototype This!

AVR SIMON

An 8-Bit AVR Micro DIY game

Smiley’s Workshop
Build the Arduino Voltmeter

♦ SmartStat-Plus
Replace your mercury thermostat with this digital SMART device.

♦ Electronic Test Fixtures
That You Can Build
Checking the values of your junk box components can save money and speed your projects along.
Input Serial Data
Normal/Inverted Outputs for Buzzer or Relay

3 wire hookup

Many popular sizes & colors: 1x16, 2x16, 4x20, 6x20, Blue and Green.

Make your own custom characters.

254 Backlight Levels

TTL user Outputs

Easy to use!

Priced from $34.95!

Serial LCD

BasicX.com
Let your geek shine.

Meet Jamie Robertson, SparkFun customer and 30-year embedded design veteran. When Jamie needed a small MP3 player that could respond smoothly to volume commands for his latest interactive art collaboration, he didn’t head to the local electronics store. Rather, Jamie turned to SparkFun and custom built his own media device. After a few enhancements, his prototype became the MP3 Trigger – now available at SparkFun.com.

Whether you’re looking for new ways to explore interactive art, or want a tutorial on physical computing, the resources are out there. Find out how electronics fit with your passions, and let your geek shine too.
POWER PROJECT KITS FOR ELECTRONIC ENTHUSIASTS

VEHICLE VOLTAGE ADAPTOR

KC-5490 $46.50 plus postage & packing
This kit intercepts and alters the signal from engine sensors that supply a voltage signal to the engine control unit (ECU). Restore correct air/fuel ratios after engine modifications, prevent engine boost cuts, or alter sensor signals for improved drivability. Requires hand controller for programming, RS232 cable and a suitable input signal. Kit includes PCB, case and electronic components. Recommended with this kit:
- Hand Controller Cat. KC-5386 $39.50
- RS232 Cable Cat. WC-7502 $7.00

imar Engine Speed Equalizer Kit

KC-5488 $23.25 plus postage & packing
Avoid unnecessary noise and vibration in twin-engine boats. For optimum performance, both motors should run at exactly the same RPM. You can tune the engine speeds using the tacho for each engine, however tachos have an error of up to 5%. The Engine Speed Equalizer Kit takes the tacho signals from each motor and displays the output on a meter that is centred when both motors are running at the same RPM. When there’s a mismatch, the meter shows which motor is running faster and by how much. You simply adjust the throttles to suit. Short form kit only, requires moving coil panel meter (Cat. GP-5010 $8.00).
- 12VDC
- PCB and specified components

Motor Bike CDI Module

KC-5466 $12.75 plus postage & packing
Many modern motor bikes use a Capacitor Discharge Ignition (CDI) to enhance performance and reliability. However, replacement CDI ignition modules can be very expensive. This kit will replace 1, 2, 3 or 4 cylinder failed factory units and is suitable for engines with a positive capacitor voltage and have a separate generator and trigger coil. Supplied with solder masked PCB and overlay, case and components. Some mounting hardware required.

Improved Low Voltage Adaptor

KC-5463 $10.50 plus postage & packing
A handy regulator to run a variety of devices such as CD or MP3 players from your car cigarette lighter sockets or even powered speakers from the power supply inside your PC. It will supply 3V, 5V, 6V, 12V or 15V and (when used with an appropriate input voltage and heatsink) deliver up to four amps at the selected output voltage. Kit includes screen printed PCB and all specified components. Heatink not included.

Battery Zapper MkIII

KC-5479 $46.50 plus postage & packing
Prolongs the life of your lead acid batteries. Like the original 2005 project, this circuit produces short high level bursts of energy to reverse the sulfation effect. The battery condition checker is no longer included and the circuit has been updated and revamped to provide more reliable, long-term operation. It still includes test points for a DMM and binding posts for a battery charger. Not recommended for use with gel batteries.
- PCB with solder mask and overlay components
- Screen printed machined case
- 6, 12 & 24VDC

Fast Ni-Mh Battery Charger Kit

KC-5453 $25.00 plus postage & packing
Ideal for RC enthusiasts who burn through a lot of batteries. Capable of handling up to 15 of the same type of Ni-MH or Ni-Cd cells. Build it to suit any size cells or cell capacity and set your own fast or trickle charge rate. Features overcharge protection and temperature sensing. Kit includes solder mask & overlay PCB, programmed micro and specified electronic components. Case, heatink and battery holder not included.

Voltage Regulator Kit

KC-5446 $10.00 plus postage & packing
This handy voltage regulator can provide up to 1,000mA at any voltage from 1.3 to 22VDC. Ideal for experimental projects or as a mini bench power supply. Heatink may be regulated depending on output current. Kit supplied with PCB and electronic components.

SLA Battery Health Checker

KC-5482 $46.50 plus postage & packing
Checks the health of your SLA batteries prior to charging or zapping with a simple LED condition indication of fair, poor, good etc. An ideal companion to our Battery Zapper MkIII.
- Overlay PCB and electronic components
- Silk-screened front panel and machined case included

Post & Packaging Charges

<table>
<thead>
<tr>
<th>Order Value</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25 - $49.99</td>
<td>$7.50</td>
</tr>
<tr>
<td>$50 - $99.99</td>
<td>$20</td>
</tr>
<tr>
<td>$100 - $199.99</td>
<td>$40</td>
</tr>
<tr>
<td>$200 - $499.99</td>
<td>$60</td>
</tr>
<tr>
<td>$500+</td>
<td>$75</td>
</tr>
</tbody>
</table>

Note: Products are dispatched from Australia, so local customs duty & taxes may apply. Prices valid until 31/3/10

How to Order

ORDER ON-LINE: www.jaycar.com
- PHONE: 1-800-784-0263
- FAX: +61 2 8832 3118*
- EMAIL: techstore@jaycar.com
- POST: P.O. Box 107, Rydalmere NSW 2116 Australia
- ALL PRICING IN US DOLLARS
- MINIMUM ORDER ONLY $25

*Australian Eastern Standard Time (Monday - Friday 09.00 to 17.30 GMT + 10 hours only)
Expect 10-14 days for air parcel delivery

Free Catalog

Checkout Jaycar’s extensive range
We have kits & electronic projects for use in:
- Audio & Video
- Car & Automotive
- Computer
- Lighting
- Power
- Test & Meters
- Learning & Educational
- General Electronics Projects
- Gifts, Gadgets & Just for fun!

For your FREE catalog logon to www.jaycar.com/catalog or check out the range at www.jaycar.com
LeCroy WaveAce™ Oscilloscopes
40 MHz - 300 MHz

- 40 MHz, 60 MHz, 100 MHz, 200 MHz and 300 MHz bandwidths
- 2 and 4 channel models available
- Sample rates up to 2 GS/s
- Longest memory in class - up to 10 kpts/Ch (20 kpts interleaved)
- 5.7" bright color display on all models
- 32 automatic measurements
- 4 math functions plus FFT
- Large internal waveform and setup storage
- Multi-language user interface and context sensitive help
- USB connections for memory sticks, printers and PCs

LeCroy Authorized Distributors:

Avalon Equipment Corp.
(888) 542-8256
avalontest.com

Trek Equipment
(888) 873-5374
trekequipment.com

Stanley Supply & Services
(800) 225-5370
StansleySupplyServices.com

Tequipment.NET
(877) 742-8378
tequipment.net

Kemp Instruments
(888) 619-2266
kempinstruments.com

Meunier Elect. Supply
(800) 638-6437
meunierusa.com

To learn more about LeCroy’s full line of oscilloscopes, including the 30 GHz WaveMaster 8 Zi, the world’s fastest real-time oscilloscope, visit www.lecroy.com or call 1-800-5-LeCroy
Projects & Features

32 Make the SmartStat-Plus
This MCU-controlled digital thermostat will monitor your furnace and AC air filter, and let you know if there’s a problem.
■ By Thomas R. Fox

39 Build Your Own Electronics Test Fixtures
Setting up test fixtures for your components will help you sort through your junk box quickly and speed your projects along.
■ By W. Hartley Roberts

42 The Projects of Prototype This!
Take a closer look at the electronic aspects of the different builds from the popular Discovery Channel show Prototype This! The first project is avrSimon — a modernized version of the popular memory game.
■ With Joe Grand

48 Experiments with Alternative Energy
Learn the fundamentals of renewable energy through this educational series. This month: Introducing the WindPitch Wind Turbine.
■ By John Gavlik

Columns

12 TechKnowledgey 2010
Events, Advances, and News
Topics covered include glitter power, an entry-level server, Psystar throws in the towel, plus some other stuff you’ll find interesting.

16 The Spin Zone
Adventures in Propeller Programming
If you’ve been waiting for BASIC to play with the Propeller, your wait is over!

28 Q & A
Reader Questions Answered Here
A doorbell light, soldering iron timer, revisiting the countdown timer and large clock, plus more.

54 Smiley’s Workshop
Programming • Hardware • Projects
Serial Communications Part 3. We’ll build an Arduino voltmeter and meet the FT232R.

60 The Design Cycle
Advanced Techniques for Design Engineers
Making a mesh of things.

67 Near Space
Approaching the Final Frontier
Sun sensor for data collection.
SSH ENCRYPTED SERIAL TO ETHERNET SOLUTIONS

Instantly network-enable any serial device

Works out of the box - no programming is required

Customize to suit any application with low-cost development kit

256-bit encryption protects data from unauthorized monitoring

Features:
- 10/100 Ethernet
- TCP/UDP/SSH/SSL modes
- DHCP/Static IP Support
- Data rates up to 921.6kbps
- Web-based configuration

Need a custom solution?

NetBurner Serial to Ethernet Development Kits are available to customize any aspect of operation including web pages, data filtering, or custom network applications. All kits include platform hardware, ANSI C/C++ compiler, TCP/IP stack, web server, e-mail protocols, RTOS, flash file system, Eclipse IDE, debugger, cables and power supply. The NetBurner Security Suite option includes SSH v1 & v2 support.
Going, going, gone ...

My local electronics parts supplier finally succumbed to economic pressure and replaced its modest parts inventory with cell phone batteries and accessories. It’s a sound business decision for the owner, but my prototyping costs just doubled because small orders from online suppliers are a costly affair. As I’ve mentioned in this column, it looks as though kits are the wave of the future of electronics experimentation — unless you’re good at teardowns.

Fortunately, there are several viable suppliers — including advertisers in this magazine — offering quality kits at affordable prices. Kits offer real savings in both time and money. If you turn to Digi-Key or other major parts suppliers, you won’t get a price break on a handful of components, and if you have to reorder a part you forgot on your first order, shipping costs can total more than the components.

Similarly, while I use online printed circuit board manufacturing services, custom boards are an increasingly expensive option. I’ve been using the all-in-one prototyping boards offered by several suppliers when possible. Some of the oddest and most useful boards are offered by SparkFun Electronics (www.sparkfun.com). I especially like their triangular 3D protoboards for robotics work.

Where the domestic kits market is apparently alive and well, I like to sample the offerings of overseas kit makers. One of my favorite kit suppliers is AnalogMetric (www.AnalogMetric.com), a Hong Kong-based firm that caters to the high-end DIY audio market. I’ve purchased several tube audio amp kits in the past with great results. My most recent purchase was a TDA1541A digital-to-analog (DAC) kit that takes a digital audio signal from a CD player, computer, or music synthesizer, and outputs a clean analog audio signal.

The unpopulated 2.5 mm PCB for the DAC kit is shown in Figure 1. As you can see, the labeling on the bullet-proof board is so extensive that kit building is virtually paint-by-numbers. It took an afternoon for me to assemble the kit and a few minutes for setup. Performance of the 16-bit DAC is comparable to my commercial recording gear, and the board layout is so clean that it’s a shame to hide it in an aluminum enclosure.

AnalogMetric kits — which range in price from $15 to well over $1,000 — aren’t for novice kit builders. While the boards can probably handle a few failed attempts at soldering, there is little handholding for the construction and testing process. It’s assumed that you can read a schematic, identify components, know when to observe component polarity, and know how to connect a power transformer to the line and the circuit board.

If you’re uncertain about the difficulty level of a particular kit, take a look at the photographs, full schematics, and documentation available on the AnalogMetric website. With many of the kits, you can either order an upgraded kit or order the base kit and add your own upgrades. For example, I ordered the basic DAC kit with an NE5534 op-amp, and replaced the amp with an AD797AN op-amp that I had purchased for another project.

The main downsides of dealing with an offshore company are the postage and shipping delay. I avoid the postage penalty with AnalogMetric by ordering bare kits without a power transformer. If you don’t have supply transformers in your junk box, then you should consider their toroidal transformers. They’re compact, well built, and — for pro audio components — relatively affordable.

Another of my favorite offshore kit suppliers is Oatley Electronics (www.oatleyelectronics.com), located down under. Oatley kits are great for beginners of any age, with starter kits such as simple LED illuminators. They also
make serious (but easy to build) and affordable kits for enthusiasts. For example, last year I wrote about Oatley’s sub-miniature tube-type headphone amplifier which I modified for use with my electric guitar.

I recently purchased the upgraded headphone amplifier kit — the K272 — which uses a pair of JAN6418 sub-miniature pentodes to provide stereo amplification. While the circuit diagram is not posted online, the circuit board layout and parts list is available. This should be enough information for you to decide whether it’s more economical to order the kit and pay postage from Australia or scrounge around for local parts. Regardless of cost, I’m hooked on their tube amplifiers.

While kits are a quick fix for the increasing scarcity of affordable components, for the long-run, I’m a big believer in teardowns. Not only are thoughtful teardowns a source of components, but they can provide insight into how devices are constructed. It’s one thing to open a shrink-wrapped bag of components and another to carefully remove components from a circuit board. By examining components in context, you can see how issues such as heat dissipation, fusing, component bypassing, and component density are addressed.

If you’re fortunate enough to live near a parts supplier, consider yourself lucky. If not, consider the myriad options available from kit suppliers just a few keystrokes away.

Did you know that if you’re a paid subscriber to Nuts & Volts, you can get the online version for FREE?

www.nutsvolts.com

Ardweeny: Way more exciting than being chased by zombie Mussolini in a Lamborghini, while eating zucchini fettuccine with a vodka martini.

Price: $9.95 SKU: KARDW

...As fun as that sounds... Ardweeny is the smallest Arduino™- compatible you can build yourself. Just solder the parts on the "Back-pack" PCB and mount it to the ATmega328. Hold the olive.

- Inexpensive • Ideal for Breadboarding • Fully Arduino compatible • Simple to build!

www.solarbotics.com 1-866-276-2687

PS: Better use your genie to put that meansie into a bikini. That’ll learn ‘em.

MADELL TECHNOLOGY

www.madelltech.com

- 20MHz Sweeping Function Generator
- Precision Stencii Printer
- Trinocular Microscope
- Automatic Pick and Place Machines
- XBox BGA Repair Package
- Hot Air Rework Stations
- ZD-9550 Orbital Shaker
- QK702ESD 3-in-1 Rework Station

Ph: 909-418-6951 Email: info@madelltech.com
READER FEEDBACK

BROKEN-IN SPEAKERS DON'T SOUND RIGHT

In reading your article on speaker break-in, I was compelled to write and inform you of a few facts on speakers, wire, etc. First of all, in each of the 45 years I have been an electronic technician — both in civilian life and military — I have run across many selling scams, pitches, etc. This has to be the No. 1 on the list. There is no such thing as breaking in speakers. They are what they will be (either new or used), of course, if they are subject to excessive voltage spikes; this would cause overheating of the voice coil or damage to the cone. In exception to that scenario, the speakers would sound the same across their lifetime. Now, a speaker will deteriorate due to cone aging (mainly foam surround) and this will cause sound problems. As far as wire (cable, power cords, etc.) needing break-in, this is also a bunch of BS. Cable and wire have NO break-in. It is what it is from day one. I also will mention these so-called oxygen free speaker cables ... another bunch of BS. Standard stranded wire of 16-18 gauge is entirely adequate, that is properly terminated with high QUALITY CONNECTORS. Anyone who says different is just trying to sell oats that have been through the horse.

Mike Jobe

Thanks for the note/feedback. I'm right there with you. It's amazing what some dealers try to get away with. But, as with telemarketing, apparently some people respond to the ads in the audiophile magazines.

DOUBLE-SPEAK ON SPEAKERS

I loved your editorial about breaking in speakers and cables. How do we know the breaking in of a speaker does not actually impair the "virgin" fidelity of a freshly manufactured speaker?

Bryan

Continued on page 77
ADVANCED TECHNOLOGY

SUPER MAGNET UNDER DEVELOPMENT

We often focus on research that produces the next world's fastest computer, world's fastest robot, and so on. But a bit less celebrated is work being done at the National High Magnetic Field Laboratory (www.magnet.fsu.edu) aimed at building the world's most powerful magnet. The Mag Lab — armed with a $2 million grant from the National Science Foundation and another $1 million from Florida State University — is on its way to building a device projected to generate a magnetic field of 32 tesla. To put this in perspective, note that the field strength of the Earth is only somewhere between 30 and 60 T, depending on how close to the poles you measure it; MRI machines create about 1 to 2 T. The key to the new design is a high-temperature superconductor called yttrium barium copper oxide (YBCO).

Being superconductive, the material can function without the friction created in resistive magnets, thereby saving huge amounts of electrical consumption. At the Mag Lab, the average cost to operate a resistive magnet is $774/hr which is about 40 times as much as a superconducting magnet. In addition, YBCO makes it unnecessary to use expensive cryogens like liquid helium to maintain superconductivity.

Although it's unlikely that you'll ever find one keeping your refrigerator door closed, the devices — which also create more stable magnetic fields than resistive magnets — offer plenty of advantages for engineering and research. According to Stephen Julian (a University of Toronto physicist and member of the lab's external advisory board), "This magnet opens up new possibilities for measurements that we have previously only dreamed of. With these new magnets, researchers will be able to stay at these very high magnetic fields for as long as they like. This will dramatically increase the quality of data for many measurements. We can look forward to breakthroughs in biomedical magnetic resonance imaging, studies of protein structure, semiconductor physics, and the physics of metals."

GLITTER POWER

We're not talking about David Bowie or T. Rex here. It's a concept recently revealed by the folks at Sandia National Labs (www.sandia.gov) that could "revolutionize the way solar energy is collected and used." Whereas today's collectors are pieced together from six-inch square wafers, the new design employs fairly common microelectronic and microelectromechanical systems (MEMS) techniques to produce glitter-sized cells that promise to be cheaper to produce, useful in a wider range of applications, and more efficient. A big advantage is that the glitter cells use 100 times less silicon than conventional cells to generate the same amount of electricity which could reduce production costs. Plus, because they can be integrated into things like clothing, you could even end up as a walking battery charger.

According to Sandia field engineer Vipin Gupta, "Photovoltaic modules made from these microsized cells for the rooftops of homes and warehouses could have intelligent controls, inverters, and even storage built in at the chip level. Such an integrated module could greatly simplify the cumbersome design, bid, permit, and grid integration process that our solar technical assistance teams see in the field all the time."
If you're in the market for an entry-level enterprise server, Sun Microsystems and Fujitsu have a deal for you. The latest product of their 20-year collaboration is the SPARC Enterprise M3000, described as a single-socket, highly reliable, mission-critical server powered by a quad-core SPARC64 VII processor. The processor runs at 2.75 GHz and offers faster system memory modules to deliver up to 23 percent better performance than the previous generation. Running the Solaris operating system, it is aimed at applications including database maintenance, customer relationship management (CRM), business intelligence and data warehousing (BIDW), and enterprise resource planning (ERP). Sun noted, "In addition, the enhanced SPARC Enterprise M3000 server improves the ratio of energy consumption to application throughput by up to 13 percent compared to the previous version, helping customers further reduce their environmental footprint."

Sun's website shows the base configuration starting at $14,795 which includes 4 GB of memory, twin 146 GB drives, and a twin-core processor. You'll pay big for accessorizing, though, as the quad-core, 32-GB version comes in at $38,795. A range of configurations is available. The machine is marketed with both Sun and Fujitsu nameplates, but they are identical inside. For details, see sun.com/sparcenterprise.

GLITTER POWER CONTINUED

It may sound like a challenge to assemble a collector from so many tiny cells, but contemporary pick-and-place assembly equipment can drop up to 130,000 of them onto a substrate's contact points in an hour's time. Given that a collector is likely to use in the neighborhood of 10,000 to 50,000 per square meter, we're in realistic territory. More advanced MEMS techniques could employ self-assembly to further lower costs.

The glitter cells currently operate with 14.9 efficiency which is reasonably competitive with off-the-shelf modules. Sandia reps also noted, "High-voltage output is possible directly from the modules because of the large number of cells in the array. This should reduce costs associated with wiring, due to reduced resistive losses at higher voltages. Other possible applications for the technology include satellites and remote sensing."
TEMP SENSOR TAKES THE HEAT

When performing heat-intensive applications such as drilling for oil deposits, you need to employ a range of sensors for things like pressure measurement, porosity evaluation, and so on. The problem is that you run into some extreme conditions of temperature, pressure, and shock that make life rough for sensor systems. Conventional pressure sensors can withstand temperatures of only about 80 to 125°C (176 to 257°F) which is below ambient temperatures encountered at great depths. But Germany’s Fraunhofer Institute for Microelectronic Circuits and Systems has developed a sensor that has been demonstrated to withstand 250°C (482°F) and, in theory, should survive 350°C (662°F), so you could even use it to, oh, test the internal pressure of the Thanksgiving turkey while it’s in the oven.

The secret is the use of a silicon oxide wafer instead of monocrystalline silicon which provides better electrical insulation and prevents leakage currents that cause most sensors to fail at high temperatures. Unfortunately, the sensors are still in the R&D phase and not yet commercially available. They have great potential for geothermal and automotive applications, so watch for their appearance after some further studies of performance and endurance have been completed.

KEYLESS KEYBOARD FINDS MULTIPLE APPS

Back when engineer Pete McAlindon was a grad student showing early signs of carpal tunnel syndrome, he began thinking about how someone might be able to type without actually typing. He started by thinking about a device that combined two eight-position joysticks, providing 8 x 8 = 64 positions, plus a shift key to double the number to 128 (which just happens to be the number of characters in the ASCII table). This epiphany led McAlindon to design the orbiTouch keyless keyboard which allows users to input conventional keystrokes by manipulating two grips without the need for painful wrist action. He eventually founded Blue Orb to market the device, and it has proven useful to people with a range of disabilities, including not only CTS patients but people with autism, cerebral palsy, and even — via a Braille overlay — the blind.

The kicker is that the technology behind orbiTouch has morphed into a software application called SwitchBlade Pro for people who are into online gaming on their PCs. Apparently, these folks are often plagued by numb fingers and clumsy movements that a standard keyboard creates. SwitchBlade maps all of the functions of a keyboard and mouse onto a standard game controller so you can use your Xbox, Playstation 3, Saitek P2900, or Logitech Dual Action unit on the PC. The website (www.switchbladepron.com) appears to offer a free demo download but when I clicked on the button, it took me directly to the “buy” page. Use of the product is by subscription and prices at $1.99/month or $19.99 annually. Note that if you pay for a year and get tired of it after a month, you lose: No refunds are offered. Incidentally, if you want the orbiTouch itself, don’t try logging onto www.blueorb.com; it will automatically switch you to the SwitchBlade site. You’ll need to use www.orbitouch.com and be willing to pay $399 for it.
PSYSTAR THROWS IN THE TOWEL

If you have been enjoying the David vs. Goliath battle between Apple and "hackintosh" builder Psystar, be advised that the drama could be at an end. Bowing to a court order decreeing them to be "hardcore copyright infringers," they have stopped selling the Open Computer clone boxes, as well as Rebel EFI—a software product that allows the Mac OS X to run on PCs. The dispute is based on Psystar's belief that, "If you purchase an off-the-shelf copy of OS X Snow Leopard, it’s your right to use that software anywhere you want, including on machines not built by Apple. Sounds fair enough. If I don't like my Ford, I have every right to yank out the engine and drop it into a Jeep. But David had no rock in his sling, as the OS X end-user agreement says, 'You agree not to install, use or run the Apple Software on any non-Apple-branded computer, or to enable others to do so.' You can visit their website (www.psystar.com), though, and buy a $15 t-shirt that reads, "I sued Psystar ... and all I got was a lousy injunction." You can also make a donation to their defense fund. Yeah, right.

MOBILE DEVICE PROLIFERATION PREDICTION

According to a report from the market intelligence gurus at IDC (www.idc.com), the worldwide number of mobile devices accessing the Internet was 450 million in 2009. Driven by the popularity and declining price of mobile phones, smartphones, and other wireless devices, IDC predicts that the number will surpass one billion by 2013. Over the next four years, IDC expects the fastest growing applications to include making online purchases, participating in online communities, and creating blogs. Accessing online business applications and corporate email systems will also grow rapidly as businesses move to empower their mobile workforce. China will continue to be the largest user, with 566 million in 2013 (vs. 359 million today), with the USA lagging behind with only 280 million (vs. 261 million now). I suppose this means I'll have to give up my princess phone soon. NV
Well ... good news! The team that developed SX/B (headed by Terry “Bean” Hitt) has taken the lessons learned from that product and created a BASIC language compiler for the Propeller: PropBASIC. So, if you’ve been holding off getting into the Propeller because you couldn’t use BASIC, you have no more excuses.

WHAT IS PROPBASIC, ANYWAY?

Beyond the obvious, of course, PropBASIC is a single-pass compiler that generates Propeller assembly code so that our programs run at the fastest speed possible. The output is one or more Spin files that can be downloaded to the Propeller. In version 1.0, the main program code is limited to a single cog. Don’t let this bother you — Propeller assembly is very powerful and processes that take several assembly instructions in other micros are handled with a single instruction in the Propeller. To top that, we have seven additional cogs available and PropBASIC lets us use them with tasks. In the future, it’s very likely that PropBASIC will adopt [Propeller whiz] Bill Henning’s LMM (large memory model) architecture, allowing the compiled output to run from the Hub RAM, breaking the 2K limit imposed by a cog.

For those that have used SX/B, PropBASIC will seem very familiar and you should be able to migrate many of your projects with just a few changes. If you’re coming straight from the BASIC Stamp (or one of its many work-alikes), you’ll find PropBASIC similar to PBASIC, though not directly compatible. Trust me, it’s not a problem; the learning curve is very small. Many of us — myself included — transitioned from the BASIC Stamp to the SX using SX/B. The transition from PBASIC to PropBASIC will be just as easy, and a lot of fun. Yes, you’ll have to get used to a slightly new way of doing things, but once you do you’ll wish you’d made the transition to a multi-core processor sooner!

HELLO, PROPBASIC

Every PC programming book, no matter the language it teaches, starts out with the now infamous “Hello, World” program. Starting simple is smart as it allows us to get the fundamentals in place before tackling the big stuff. In the microcontroller world, we tend to blink an LED. Trivial? Yes. Important? Yes! If we can’t blink an LED, then we certainly can’t expect to control a multi-axis robot using GPS input, now can we? Go ahead and connect an LED circuit as shown in Figure 1. If you have a Propeller demo board, that LED is in place.

FIGURE 1. LED circuit.
Nothing drives me nuttier than messy program listings — I hate them. An easy way to get a neat listing in the end is to start with a clean template. In the downloads file (available at www.nutsvolts.com), you’ll find template.pbas which is what I use to start most projects (I have a few other templates, based on different project types). Starting with template.pbas, I’ve created hello.pbas which we’ll work through to introduce the elements of a PropBASIC program. Of course, not all sections of the template are used for a simple LED blinker, but we’ll introduce them anyway, and then explore them later.

Again, if you’ve worked with SX/B, much of this will be very familiar. If you’re coming from the BASIC Stamp, there will be some new things to get used to. Trust me, you can, and when you do so many neat things will open up for your [perhaps postponed] projects.

All right, let’s go through it, section by section.

DEVICE SETTINGS

```
DEVICE P8X32A, XTAL1, PLL16X
XIN 5_000_000
```

We’ll start nearly every PropBASIC program with this “standard” setup; it declares the Propeller 1 (P8X32A), running with an external crystal, using a PLL multiplier of 16x. The external crystal frequency is 5 MHz which gives us a system frequency of 80 MHz (5 x 16).

There are, of course, options to the standard setup. For low power applications that are not timing-sensitive, we can select one of the RC modes. RCFast runs the chip at about 12 MHz while RCSlow runs the chip at about 20 kHz. To run in RCFast mode, we can reduce the setup to this:

```
DEVICE P8X32A
```

When no mode is specified, the compiler assumes RCFast; to use RCSlow, we must specify it in the DEVICE directive. In RC modes, the PLL is always 1x and the XIN value is ignored. Again, RC modes should only be used in programs that are not timing-sensitive, as the RC oscillator varies from chip to chip. RC modes would not, for example, be good to use when serial communications is a requirement.

That last statement probably caused you sharp folks to raise a Spock-like eyebrow. If RC modes are no good for serial communications, then how can the IDE reprogram the Propeller when no crystal is attached? Good question. The IDE actually times the Propeller as part of the download protocol and then adjusts the baud rate from the IDE to accommodate the individual chip. So, if you really have to use serial communications and need a low clock speed to reduce current consumption, you can do it but you’ll need to do a couple extra steps:

- Measure the clock speed in RC mode (with no FREQ specified). You can do this by measuring the width of an output pulse using an oscilloscope.
- Override the assumed RC frequency by using the FREQ directive instead of XIN (which doesn’t apply to RC modes, anyway).

Let’s say we create a program (see speed_test.pbas) to output a 10 ms pulse and on a ‘scope we measure — as I did — a pulse width of 9.06 milliseconds. This means that the processor is actually running a little faster than expected. We can calculate a scale factor for the assumed clock frequency by dividing the measured pulse width into the 10 milliseconds we expected.

\[
\text{scale} = \frac{10.0}{\text{measured}}
\]

\[
\text{scale} = \frac{10.0}{9.06}
\]

\[
\text{scale} \approx 1.099
\]

\[
\text{scale} = 10.0 / \text{measured}
\]

\[
\text{scale} = 10.0 / 9.06
\]

\[
\text{scale} \approx 1.099
\]

\[
\text{scale} = 10.0 / \text{measured}
\]

\[
\text{scale} = 10.0 / 9.06
\]

\[
\text{scale} \approx 1.099
\]
In my case, the scale factor works out to 1.1038. I had selected RCSLOW mode which has an assumed frequency of 20 kHz. With the adjustment, the top of my program is now:

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>P8x32A, RCSLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ</td>
<td>22_075</td>
</tr>
</tbody>
</table>

The FREQ setting will drive the compiler and in the end, we’ll have corrected timing for things like PAUSE, SEROUT, etc. Figure 2 shows the uncorrected output (without using FREQ) from my test; Figure 3 is after the FREQ setting has been added.

PROGRAM CONSTANTS

The next section of the template involves defining constants. There’s no mystery here with standard numeric and single character constants.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnTime</td>
<td>CON</td>
<td>250</td>
</tr>
<tr>
<td>OffTime</td>
<td>CON</td>
<td>750</td>
</tr>
<tr>
<td>IsOn</td>
<td>CON</td>
<td>1</td>
</tr>
<tr>
<td>IsOff</td>
<td>CON</td>
<td>0</td>
</tr>
<tr>
<td>Asterisk</td>
<td>CON</td>
<td>***</td>
</tr>
</tbody>
</table>

If a program will be using SERIN or SEROUT, then the baud mode constant is defined like a string.

| Baud | CON | "T9600" |

This definition can be used to drive SERIN and SEROUT in true mode (standard when using the programming port) at 9600 baud. Mind you, I’m just using this as an example. PropBASIC compiles to assembly and when running at 80 MHz, we can have very fast baud rates.

Constants are global in a PropBASIC application and can be used in multiple cogs (i.e., the main program and any tasks that run).

I/O PINS

<table>
<thead>
<tr>
<th>LED</th>
<th>PIN</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>PIN</td>
<td>16</td>
</tr>
</tbody>
</table>

Declaring I/O pins in PropBASIC is very much like PBASIC 2.5 and SX/B, while using the SX/B convention of allowing the pre-assignment of the pin state immediately after a reset. The options for a pin are INPUT (default), OUTPUT (same as LOW), LOW, and HIGH. In my programs that will communicate with a terminal program, I include these PIN definitions

<table>
<thead>
<tr>
<th>RX</th>
<th>PIN</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>PIN</td>
<td>30</td>
</tr>
</tbody>
</table>

Note the use of the HIGH option; I do this so that auto-generated start-up code places the TX pin in the idle state (output and high) for serial communications through the Propeller programming port.

PropBASIC allows the definition of a group of I/O pins, as well. For example, there are eight LEDs on the Propeller demo board, connected to P16 through P23. We can define these as a group using the following declaration:

<table>
<thead>
<tr>
<th>LEDs</th>
<th>PIN</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnTime</td>
<td>CON</td>
<td>250</td>
</tr>
<tr>
<td>OffTime</td>
<td>CON</td>
<td>750</td>
</tr>
<tr>
<td>IsOn</td>
<td>CON</td>
<td>1</td>
</tr>
<tr>
<td>IsOff</td>
<td>CON</td>
<td>0</td>
</tr>
</tbody>
</table>

In a pin group definition, the first number is the MSB pin of the group, the second is the LSB pin of the group. The order is important as it affects how bits will be presented at outputs or read when the group is set as inputs.

In PropBASIC 1.0, we can only assign a simple value to an output pin group. That means that this line:

```
LEDS = %100000
```

is legal, but ...

```
LEDS = 1 << position
```

is not. This is likely to be addressed in a future version. In the meantime, we can use one of PropBASIC’s temporary variables like this:

```
__temp1 = 1 << position
LEDS = __temp
```

SHARED VARIABLES

PropBASIC allows us to store variables and variable arrays in the Hub that can be accessed by any cog. Hub variables may be defined as bytes, words, or longs, or arrays of either type.

```
rxHead    HUB    Byte = 0
rxTail    HUB    Byte = 0
rxBuffer  HUB    Byte(64) = 0
```

Note that PropBASIC allows us to pre-assign values to Hub variables. If the pre-assignment option is not used, the variable (and all elements of an array) will be set to zero. Though they are variables, what we store in the Hub cannot be used in expressions like regular variables. There are two instructions — RDxxxx and WRxxxx — that are used to read and write Hub variables (the instruction used will be based on the variable size; you’ll see examples in a moment).

SHARED DATA

Along with variables, we can store shared data in the Hub, as well. With 32K of RAM, this allows for very large tables, and being in the Hub these tables can be accessed from any cog. Hub data can be declared as bytes, words, or longs using, respectively, the DATA, WDATA,
and LDATA directives.

```
| Zip4    | DATA 0 | %0001 |
|         | DATA 0 | %0010 |
|         | DATA 0 | %0100 |
|         | DATA 0 | %1000 |
```

As with Hub variables, we can access Hub data using the RDxxxx and WRxxxx instructions. For very large tables/data, we can incorporate external data using the FILE directive.

```
| SFX1    | FILE 0 | "BABY.WAV" |
| SFX1x   | DATA 0 |           |
```

DEFINING TASKS

In order for a PropBASIC program to use two or more cogs, we must define TASKs to handle the “background” processes. If you’ve ever programmed the BASIC Stamp, you know how frustrating it is to have to wait around for a serial byte to come in. In SX/B, we could use interrupts to create a background serial buffer, but that could be tedious and many didn’t try.

Well, in the Propeller we can simply spawn the physical serial input to another processor using Hub variables to hold everything. The TASK definition is simple but needs to be in place before the task can be started.

```
SERIAL_RX TASK
```

LOCAL (COG) VARIABLES

The variables we use in our program and in tasks are local to the cog and can only be defined as Longs. As with Hub variables, we can also declare arrays and pre-assign values. Here’s a typical example:

```
idx VAR Long
```

PropBASIC creates several local variables for use in the assembly code generated by the compiler, as well as for passing parameters back and forth to subroutines and functions. In the compiled output you’ll find five variables — __temp1 through __temp5 — that are used in the code generated for PropBASIC keywords. We can use these variables, but with some caution, as they may change if a keyword is used between accesses. I tend to favor using the __param1 through __param4 variables when I can. These are only used when passing parameters and do not get modified by the code generated for PropBASIC keywords.

DECLARING SUBROUTINES AND FUNCTIONS

I stated earlier that PropBASIC is a single-pass compiler which means it makes no attempt to optimize the output code. The good news is that we can learn Propeller assembly tricks by examining the output and minimize code space by using custom subroutines and functions.

In the early days of SX/B (and I’m betting it will happen in PropBASIC, too), some programmers ran themselves out of code space writing seemingly innocuous code. The PAUSE instruction, for example, is used in most programs. Let’s say we use PAUSE 100. The PASM output for that instruction is this:

```
mov _temp1, cnt
adds _temp1, _1mSec
mov _temp2, #100
_L001
waitcnt _temp1, _1mSec
djnz _temp2, #__L001
```

Okay, it doesn’t look like much but if that code is generated for every appearance of PAUSE, we can chew through the cog code space pretty quickly. This is easily overcome by encapsulating PAUSE in a subroutine. As I did in SX/B, my shell for PAUSE is called `DELAY_MS`.

```
DELAY_MS SUB 1
```

We only need to pass one parameter because the range of the 32-bit values of the Propeller variables allow for very long delays (two billion plus milliseconds is a looong time).

For those of you coming from SX/B, there is a slight difference in the FUNC declaration. In January, after SIRCS project, a Propeller forum member asked for a translation of that functionality to PropBASIC. You may remember that my SIRCS object could return the IR code bits, as well as the bit count. PropBASIC doesn’t care how many parameters are coming back from a function (typically just one), only how many parameters are passed to it, hence the definition is:

```
SIRCS_RX FUNC 0
```

THE MAIN PROGRAM

The body of a simple LED blinker program might look something like this:

```
PROGRAM Start
Start:
  FOR idx = 1 TO 3
    LED = IsOn
    DELAY_MS OnTime
    LED = IsOff
    DELAY_MS OffTime
  NEXT
DELAY_MS 1_000
GOTO Start
```

March 2010 NUTSIVOLTS 19
Let me explain the **PROGRAM** directive. In addition to indicating the starting point of our code, this directive provides the location for the auto-generated start-up code. In the Propeller, the start-up code is very simple, setting the I/O pin directions and states before jumping to the label indicated in the directive.

As you can see, the code is pure BASIC; every bit as easy to understand as PBASIC, SX/B, or any other variant we’ve ever dealt with.

FLESHING OUT SUBROUTINES AND FUNCTIONS

At the end of the listing is where we’ll place the working code for our subroutines and functions. For the **DELAY_MS** subroutine we defined earlier, the code is this simple:

```
SUB DELAY_MS
    PAUSE __param1
ENDSUB
```

As in any other language, one subroutine can call another. In my programs that need to send data to a terminal, you’ll find these two subroutines:

```
SUB TX_STR
    strAddr     VAR     __param2
    strChar     VAR     __param3

    strAddr = __param1

    DO
        RDBYTE strAddr, strChar
        IF strChar = 0 THEN EXIT
        TX_BYTE strChar
        INC strAddr
    LOOP
ENDSUB

SUB TX_BYTE
    SEROUT TX, Baud, __param1
ENDSUB
```

The second subroutine is simply a shell for **SEROUT**. The first is used to send a string to the serial port. When calling **TX_STR**, the address of the string is passed in **__param1** and captured by the routine. Since we’ll need **__param1** to send a character to **TX_BYTE**, we use **__param2** and **__param3** for internal work.

The reason I don’t just declare new variables is that everything exists in RAM when using the Propeller, so it’s a good habit to minimize variable declarations by using the **__paramx** variables when possible. A new variable that we don’t declare frees up space for an assembly instruction.

You probably noticed that the code uses **RDBYTE** to retrieve a character from the string. PropBASIC stores all strings — even those we declare inline — in the Hub RAM to conserve cog space. Of course, we create strings manually using the **DATA** directive:

```
DATA
Banner "PropBASIC!", 0
```

Function code often looks just like subroutine code except that it is enclosed in a **FUNC..ENDFUNC** block and uses **RETURN** just before **ENDFUNC** to send one or more parameters back to the caller. Here’s the PropBASIC version of the SIRCS receiver function that I mentioned earlier.

```
FUNCTION GET_SIRCS
    irCode     VAR     __param1
    irBits     VAR     __param2

    COUNTERA NEG_DETECT, IR, 0, 1
    COUNTERB FREE_RUN, 0, 0, 1

    Wait_Start:
        WAITPEQ IR, IR
        PHSA = 0
        WAITPNE IR, IR
        PHSB = 0
        WAITPEQ IR, IR
        IF PHSA < BIT_S THEN Wait_Start
        irCode = 0
        irBits = 0

    Check_Frame:
        IF PHSB > MS_044 THEN IR.Done
        Wait_Bit:
            IF IR = 1 THEN Check_Frame
            PHSA = 0
            WAITPEQ IR, IR
            irCode = irCode >> 1
            INC irBits
            IF irBits = 20 THEN IR.Done
            GOTO Check_Frame

    IR.Done:
        __temp1 = 32 - irBits
        irCode = irCode >> __temp1
        RETURN irCode, irBits
ENDFUNCTION
```

20 NUTSVOLTS March 2010
I think you’ll agree that this is pretty straightforward, and as it is ultimately compiled to pure assembly code, it runs full speed. So, if you’ve been wanting to experiment with other IR protocols — perhaps RC-5 — now you have some high-level code to start with (see sircs_rx.pbas).

I should point out, too, that PropBASIC includes some Spin and PASM keywords. In the SIRCS example, you can see that I’m using \texttt{WAITPEQ} and \texttt{WAITPNE} just as in PASM.

\section*{FLESHING OUT TASKS}

Since a task actually runs in a separate cog, its construction is a little more involved than a subroutine or function. In fact, as a task is its own program, we can — and sometimes must — declare subroutines and functions that run only within the task. All of those declarations and code elements will exist within the \texttt{TASK..ENDTASK} block.

Let’s create that “background” serial input task that I suggested earlier. What we want to do is have a cog monitor the RX line and when something comes in, write that byte to a circular buffer that can be accessed by another cog. To manage the buffer, we need two variables: a head pointer which is the next open position in the buffer to write; and a tail pointer which is the next position in the buffer to read. When the buffer is empty, the head and tail will be equal.

Here’s the code for that task:

\begin{verbatim}
TASK SERIAL_RX
 rxb VAR __param1
 hPntr VAR __param2
 DO
 SERIN RX, Baud, rxb
 RDBYTE rxHead, hPntr
 WRBYTE rxBuffer(hPntr), rxb
 INC hPntr
 hPntr = hPntr & $3F
 WRBYTE rxHead, hPntr
 LOOP
ENDTASK
\end{verbatim}

Yep, that’s the whole thing. Remember, tasks make use of \texttt{CON}, \texttt{PIN}, and \texttt{HUB} declarations, and we have all of those elements here. At the top of the loop we wait for a byte using \texttt{SERIN} — just as we’ve done in PBASIC and SX/B. The difference here is that the task will be launched into its own cog and waiting for a serial byte in that other cog won’t block the main program (unless we let it).

After a byte arrives, we retrieve the current value of the head pointer using \texttt{RDBYTE} and then use it as the offset into \texttt{rxBuffer} so that we can store the new serial input using \texttt{WRBYTE}. The local copy of the head pointer is incremented and ANDed with $3F to keep it within the legal range of the buffer. This value is then written back to the Hub for use by the caller.

There are a couple ways to start a task, though we normally use \texttt{COGSTART}.

\begin{verbatim}
COGSTART SERIAL_RX
\end{verbatim}

That’s all it takes. We may want to wait a few milliseconds before attempting to access data provided by the task; this allows plenty of time for the other cog to get up and running.

One final note on the \texttt{TASK..ENDTASK} block. The PropBASIC compiler will create a Spin file with the name of the task. This means we have to be a little careful with naming tasks so that we don’t overwrite regular Spin programs that may live in the same folder.

Okay, so now we have a means of receiving and buffering serial bytes. How do we use them in our main program? What we’ll do is create a function that retrieves a byte from the buffer.

\begin{verbatim}
FUNC RX_BYTE
 rxh VAR __param1
 rxt VAR __param2
 rxchar VAR __param3
 DO
 RDBYTE rxHead, rxh
 RDBYTE rxTail, rxt
 LOOP UNTIL rxh <> rxt
 RDBYTE rxBuffer(rxt), rxchar
 INC rxt
 rxt = rxt & $3F
 WRBYTE rxTail, rxt
 RETURN rxchar
ENDFUNC
\end{verbatim}

The upper loop retrieves and compares the values of the head and tail pointers; when these values are equal, the buffer is empty. As soon as they differ, we can use the tail pointer as an index into the buffer and grab a byte from it. Just as we did with the head pointer, we update the tail pointer and save it back to the Hub.

Since we took the trouble to write a background serial buffer, let’s free ourselves from not being blocked when the buffer is empty. Here’s a function that will return the number of bytes waiting in the serial buffer; if zero, the buffer is empty and we can skip calling \texttt{RX_BYTE} which would cause us to wait for something to arrive.

\begin{verbatim}
FUNC RX_CHECK
 head VAR __param1
 tail VAR __param2
 bufcnt VAR __param3
 DO
 RDBYTE rxHead, rxh
 RDBYTE rxTail, rxt
 LOOP UNTIL rxh <> rxt
 RDBYTE rxBuffer(rxt), rxchar
 INC rxt
 rxt = rxt & $3F
 WRBYTE rxTail, rxt
 RETURN rxchar
ENDFUNC
\end{verbatim}
RDBYTE rxHead, head
RDBYTE rxTail, tail
IF head >= tail THEN
 bufcnt = head - tail
ELSE
 bufcnt = tail - head
ENDIF
RETURN bufcnt
ENDFUNC

This should be pretty obvious; we’re returning the difference between the head and tail buffers. The buffer is circular and the tail chases the head, so we use IF..THEN to prevent returning a negative value when the head pointer has wrapped around past zero and is less than the tail pointer.

ASSEMBLY, ANYONE?

Most of us enjoy compilers because they make writing programs faster and keep us from the nitty-gritty details of assembly. Still, there are times when using assembly is helpful. In PropBASIC, we can include inline assembly using an **ASM..ENDASM** block, or one line at a time using \. PropBASIC generates very nice code so we won’t need to use inline assembly often, but it’s comforting to know that we can if we choose to do so.

LET’S WRAP IT UP

I can’t cover every aspect of PropBASIC in one issue, but I think by now you have an idea of what it is and how to get started with it. As with its SX/B predecessor, PropBASIC includes conditional compilation directives, and the ability to include external assembly and PropBASIC files. It really does have a lot of muscle for a first-generation product — and you can’t beat the price ($0).

THE FUTURE OF PROPBASIC

In a word: exciting. For those of us that use SX/B, we’ll tell you that it started out with very humble beginnings and grew into an extremely nice tool. PropBASIC 1.0 is light years ahead of SX/B 1.0 in terms of capability and will just get better. It’s natural that the language will expand as we all spend more time with it and offer suggestions to Bean, and the migration to LMM will let us create very large programs, yet still running at the speed of assembly.

So, if you’ve been waiting for BASIC to play with the Propeller, your wait is over. No more excuses because the compiler is free. Come on, jump on — the ride will be fun. I promise.

Until next time, have fun, and keep spinning and winning with the Propeller and PropBASIC. NV
Electronics industry guru Forrest M. Mims III has created yet another stumper. The Ultra Simple Sensors Company assigned its engineering staff to design a circuit that would trigger an LED when a few millimeters of water is present in a basement or boat. What is the water sensor behind the puzzle piece? Go to www.jameco.com/search5 to see if you are correct and while you are there, sign-up for our free full color catalog.
Digital Controlled FM Stereo Transmitters

- PLL synthesized for drift free operation
- Front panel digital control and display of all settings and parameters
- Professional metal case for noise-free operation
- EMI filtering on audio and power inputs
- Super audio quality, rivals commercial broadcasts
- Available in domestic kit or factory assembled export versions

For nearly a decade we’ve been the leader in hobbyist FM radio transmitters. We told our engineers we wanted a new technology transmitter that would provide FM100 series quality without the advanced mixer features. They took it as a challenge and designed not one, but TWO transmitters!

The FM30 is designed through-hole technology and components and is available only as a do-it-yourself kit similar to our FM25 series. Then the engineers redesigned their brand-new design using surface mount technology (SMT) for a very special factory assembled and tested FM35WT version with 1W output for our export only market!

All settings can be changed without taking the cover off! Enter the setup mode from the front panel and step through the menu to make all of your adjustments. A two line LCD display shows you all the settings! In addition to the LCD display, a front panel LED indicates PLL lock so you know you are transmitting. Besides frequency selection, front panel control and display gives you 256 steps of audio volume (left and right combined) as well as RF output power. A separate balance setting compensates for left/right differences in audio level. In addition to settings, the LCD display shows you “Quality of Signal” to help you set your levels for optimum sound quality. And of course, all settings are stored in non-volatile memory for future use!

Both the FM30 and FM35WT operate on 13.8 to 16VDC and include a 15VDC plug-in power supply. The stylish black metal case measures 5.55”W x 6.45”D x 1.5”H. (Note: After assembly of this do-it-yourself hobby kit, the user is responsible for complying with all FCC rules & regulations within the US, or any regulations of their respective governing body. FM35WT is for export use and can only be shipped to locations outside of the continental US or USA APO/FPO addresses or valid customs brokers for end delivery outside the continental US.)

Pocket Voice Changer

This little kit flashes six high intensity LEDs sequentially in order. Just like the K8030, it’s powered by 2 AA batteries with incandescent lights. Makes a great mini attention getter for signs, model trains, and at the touch of a button the volume, and at the touch of a button the steam whistle blows! Includes speaker. Runs on a standard 9V battery.

Digital Voice Changer

This voice changer kit is a riot! Just like the K8030, it’s powered by 2 AA batteries with incandescent lights. Makes a great mini attention getter for signs, model trains, and at the touch of a button the steam whistle blows! Includes speaker. Runs on a standard 9V battery.

DCitron Condenser Mic

This extremely sensitive 3/8” mic has a built-in mini phantom power supply! It’s a great replacement mic, or a perfect answer to add a mic to your project. Powered by 1.5VDC, and we even include coupling cap and a current limiting resistor! Extremely popular!

Sniff It RF Detector Probe

Measure RF with your standard DMM or VOM! This extremely sensitive RF detector probe connects to any voltmeter and allows you to measure RF from 100kHz to over 1GHz! So sensitive it can be used as a RF field strength meter!

Laser Trip Sensor Alarm

True laser purists over 500 yards! At last within the reach of the hobbyist, this neat kit uses a standard laser pointer (indicated) to provide both audible and visual alert of a broken path. A 5A relay makes it simple to interface! Breakaway board to separate sections.

Pocket Audio Generator

A perfect test source for stereo line inputs on any amplifier or mixer. Provides 500Hz, 1kHz, 10kHz, & 20kHz tones, plus 32 bit digital pink noise. Great to help you identify cables or left/right reversals! 16k FRC line level outputs. Uses 2xCR2025, not included.

Pocket Vu Meter

Hand held audio level meter that fits in your pocket! Built-in mic picks up music and audio and displays it on an LED bargraph. Includes enclosure shown. Runs on three 3V Lit-Ion button cell, not included. If you ever wanted an easy way to measure audio levels, this is it!

Pocket Vu Meter Kit

A perfect test source for stereo line inputs on any amplifier or mixer. Provides 500Hz, 1kHz, 10kHz, & 20kHz tones, plus 32 bit digital pink noise. Great to help you identify cables or left/right reversals! 16k FRC line level outputs. Uses 2xCR2025, not included.

Running Light Controller

Controls and powers 4 incandescent lights so they appear to “travel” back and forth (like the hood on KIT!). Great for the dance floor or promotional material attention getters, exhibits, or shows. Runs on 110-240VAC.

Digital TV Transmission Kit

A barking dog on a PC board! And you don’t have to feed it! Generates 2 different selectable barking dog sounds. Plus a built-in microphone senses noise and can be set to bark when it hears it! Adjustable sensitivity! Unlike the Saint, eats 2-8VAC or 9-12VDC, it’s not fussy!

Electronic Watch Dog

A barking dog on a PC board! And you don’t have to feed it! Generates 2 different selectable barking dog sounds. Plus a built-in microphone senses noise and can be set to bark when it hears it! Adjustable sensitivity! Unlike the Saint, eats 2-8VAC or 9-12VDC, it’s not fussy!

Learn More about Digital Controlled FM Stereo Transmitters
Vintage Battery Eliminator
Collectors across some great deals on antique battery-powered radios, but how to power them is a real problem. Many classic radios operated on batteries only, and in a series of three batteries for each radio were required!

The new ABC! Battery Eliminator gives you an easy way to replace all these batteries with a simple household AC power connection and resurrect your vintage antique radios! Provides an “E” filament, “B” plate, and “C” control grid supplies, which are all isolated from each other. Complete with aluminum case. Runs on 110-240VAC.

Passive Aircraft Monitor
The hit of the decade! Our patented receiver hears the entire aircraft band without any tuning! Passive design has no LO, therefore can be used on board aircraft! Perfect for airshow displays and that’s LOTS of ions! Includes 7 wind noise! The steady state DC voltage on board transmits all without any power. Generates negative ions along with a hefty blast of fresh air, all without any power. The steady state DC voltage generates 7.5V DC negative at 400VAC, and that’s LOTS of ions! Includes 7 wind tubes for max air! Runs on 12-15VDC.

Voice Activated Switch
Voice activated (VOX) provides a switched output when it hears a sound. Great for a hands free PTT switch or to turn on a recorder or light! Direct switching of relays or low voltage loads up to 100mA. Runs on 6-12VDC.

Touch Switch
Touch on, touch off, or momentary touch hold, it’s your choice with this lighting control. Actually includes TWO totally separate touch circuits on the board! Drives any low voltage load up to 100mA. Runs on 6-12VDC.

Uh!
R0630 U0630 D0630 A0630

Digital Message System
The third generation of Ramsey digital voice storage kits! Works with the latest digital voice storage technology. It provides up to 8 minutes of digital storage at a frequency response up to 3.5KHz. (Total message time and frequency response is dependent on selected internal sampling rate.) Once recorded, messages are available for playback-demand or automatic continuous loop. Standard RCA unbalanced line level output is provided for easy connection to any amplifier. Ampified speaker, mixer, or sound system. In addition, a standard 4-8 ohm speaker output is provided to directly drive a monitor speaker. Can be remote controlled via 3-wire BCD with our interface options. Check www.ramseykits.com for all options!

DVMS8 Digital Voice Message 8Ch Kit $99.95
DVMS8WT Assembled DVMS8 $149.95

Ultimate 555 Timers
This new series builds on the classic UTS kit, but takes it to a whole new level! You can configure it with easy-to-use jumper settings, drive relays, and directly interface all timer functions with onboard controls or external signals.

All connections are easily made thru terminal blocks. Plus, we've replaced the ceramic capacitor of other timer kits with a Mylar capacitor which keeps your timings stable over a much wider range of voltages! Available in through hole or surface mount versions! Visit www.ramseykits.com for version details.

UTSA Through Hole 555 Timer/Dsc Kit $24.95
UTSAS SMT 555 Timer/Dsc Kit $26.95

Passive Preamplifier
The famous RF preamp that’s been written up in the radio & electronics magazines! This super wideband preamp covers 100KHz to 1000MHz! Unconditionally stable performance. The famous RF preamp that’s been written up in the radio & electronics magazines! This super wideband preamp covers 100KHz to 1000MHz! Unconditionally stable performance.

Touch Switch
Touch on, touch off, or momentary touch hold, it’s your choice with this lighting control. Actually includes TWO totally separate touch circuits on the board! Drives any low voltage load up to 100mA. Runs on 6-12VDC.

Touch Light Show
Just like the big concerts, you can impress your friends with your own laser light show! Audio input modulates the laser display to your favorite music! Adjustable pattern & speed. Runs on 6-12VDC.

USB DMX Interface
Control DMX fixtures with your PC via USB! Controls up to 12 DMX channels each with 256 different levels! Uses standard XLR cables. Multiple fixtures can be simply daisy chained. Includes Light Player software for easy control. Runs on USB or 9V power.

Speedy Speed Radar Gun
Our famous Speedy radar gun teaches you doppler effect the fun way! Digital output that displays plays in MPH, KPH, or FPS. You supply two coffee cans! Runs on 12VDC or our AC125 supply.

Speedy Speed Radar Gun $69.95

3-In-1 Multipurpose Lab
The handiest item for your bench! Includes a RoHS compliant temp controlled soldering station and a digital multimeter, and a regulated lab power supply! All in one small unit for your bench! It can’t be beat!

LAB1U 3-In-1 Multipurpose Solder Lab $129.95

RF Preamplifier
The famous RF preamp that’s been written up in the radio & electronics magazines! This super wideband preamp covers 100KHz to 1000MHz! Unconditionally stable performance. The famous RF preamp that’s been written up in the radio & electronics magazines! This super wideband preamp covers 100KHz to 1000MHz! Unconditionally stable performance.

Touch Switch
Touch on, touch off, or momentary touch hold, it’s your choice with this lighting control. Actually includes TWO totally separate touch circuits on the board! Drives any low voltage load up to 100mA. Runs on 6-12VDC.

Touch Light Show
Just like the big concerts, you can impress your friends with your own laser light show! Audio input modulates the laser display to your favorite music! Adjustable pattern & speed. Runs on 6-12VDC.

USB DMX Interface
Control DMX fixtures with your PC via USB! Controls up to 12 DMX channels each with 256 different levels! Uses standard XLR cables. Multiple fixtures can be simply daisy chained. Includes Light Player software for easy control. Runs on USB or 9V power.

Speedy Speed Radar Gun
Our famous Speedy radar gun teaches you doppler effect the fun way! Digital output that displays plays in MPH, KPH, or FPS. You supply two coffee cans! Runs on 12VDC or our AC125 supply.

3-In-1 Multipurpose Lab
The handiest item for your bench! Includes a RoHS compliant temp controlled soldering station and a digital multimeter, and a regulated lab power supply! All in one small unit for your bench! It can’t be beat!

LAB1U 3-In-1 Multipurpose Solder Lab $129.95

Get The Catalog!
Get the new 2010 Ramsey Hobby Catalog! 96 value packed pages of the neatest goodies around with lots of new stuff! Order yours today on line or give us a call... Or download the PDF at www.ramseykits.com/catalog!
Global Specialties is also offering a new state-of-the-art 32 channel logic analyzer. The Model 3600 logic analyzer accurately analyzes, validates, and debugs digital signals while outperforming its higher priced competitors in both features and value. The Model 3600 operates as a stand-alone unit or can connect to the computer via USB interface. The 3600 also includes current limit and over-voltage protection, and comes complete with software, data pods, and logic grabbers.

With a retail price of $3,100, the Model 3600 offers the user a number of outstanding features and specifications which are usually seen in logic analyzers costing thousands of dollars more.

Global Specialties LLC, has added a new Z-80 microprocessor trainer to its family of electronic circuit trainers. Model GST-Z80 (with a list price of only $650) is a robust eight-bit microprocessor trainer designed to provide a solid foundation for microprocessor programming. Eight-bit technology is regarded as one of the best ways to begin learning microprocessor training. The GST-Z80 provides a broad foundation in the skills required for microprocessor programming and interfacing to computers. Students will learn to communicate between the trainer and microprocessor by instructing them how to use the GST-Z80’s serial monitor. The extensive user manual will guide students through practical experiments allowing them to progress to more complicated Z-80 based programs.

The GST-Z80 trainer is designed for use with Microsoft Windows and includes hardware, software, computer interface cable, and experiments.

For more information, contact:
Global Specialties
Tel: 800-572-1028
Web: www.globalspecialties.com

The new Optim Engineering CBAIII (Computerized Battery Analyzer) provides more than a simple battery voltage or load tester. The CBA will test virtually any type or size of battery, any chemistry, and any number of cells up to 55 volts.

The CBA is capable of higher test rates than other analyzers — up to 40 amps or 150 watts, whichever is higher. With accessory amplifiers, you can test at up 2,000 watts.

Battery technology is advancing rapidly, giving rise to more battery-operated products (especially wireless devices). By nature, a battery degrades with time and use. The CBAIII provides an easy, inexpensive, and accurate way to determine the total amount of energy stored in a battery. The CBA uses a standard PC with sophisticated software to test in a safe and user friendly way. The software graphically displays and charts the battery capacity in voltage versus amp-hours, minutes, or watt-hours. It basically lets a computer do all the work.

The standard CBAIII with software is $149.95. Accessories include battery connection cables and holders, battery temperature probe, 500 watt 10X amplifier, a pro software upgrade, and pro calibration verified hardware.

For more information, contact:
Optim Engineering
Tel: 203-299-0233
Web: www.optimengineering.com
SHOWCASE

16-bit microcontroller with resident BASIC
- Host on virtually any platform or OS
- BY W/16 plus 16-channel 10-Bit ADC
- No software to install
- USB or RS232

Easy object-based programming using any terminal program!
* Educational discounts available
www.soBASICsoEasy.com

Battery rebuilding service
Dead Batteries? Don’t toss them. Send them to us - our rebuilds are better than original specifications.

Tools
- Multimeters
- DMMs
- Oscilloscopes
- Logic Analyzers
- Step Generators
- Frequency Meters

Radios
- AM
- FM
- SSB
- CB
- CB
- Ham

Visit www.primecell.com for important details
24-Hr Secure recorder tel: fax (914) 629 7900
Quotes email: info@primecell.com
Cunard Assoc. Inc. 9343 US RT 220 Bedford PA 15522

USB Oscilloscope for $169.50
- 8+ digital + 2 analog channels
- Oscilloscope - Generator - Logic Analyzer with UART, SPI, I2C and 1-Wire interfaces
- Great for PIC and AVR projects!

Open Source Hardware
- Arduino Duemilanove - MEGA
- Freeduino - Seeduino
- Arduino Shields - Ethernet - XBee

Zeroplus LAP-C 16032 Logic Analyzer
16-channel - 100MHz - USB 2.0
SPI - I2C - UART - 7-segment
2 Free additional protocols

Open Source Hardware
- Arduino Duemilanove - MEGA
- Freeduino - Seeduino
- Arduino Shields - Ethernet - XBee

Diligent FPGA Boards
- Xilinx Basys2, Nexys2, Spartan 3E Board
- PCC32, Cypress PSoC
- Academic pricing for qualified buyers

http://www.NKElectronics.com

USB Complete
The Developer’s Guide
New Fourth Edition
includes USB 3.0 & SuperSpeed!
Jan Axelsson
Lakeview Research
www.Lvr.com
504 pages $54.95
From the author of Serial Port Complete

DOORBELL LIGHT

Q First, I always enjoy your response to questions! I would appreciate your suggestion on how to replace a doorbell bulb with a couple of white LEDs. The bulb is connected across the pushbutton and is on until the button is activated. The operating X-former is 15 VAC. Would there be a problem with the inductive kickback from the doorbell solenoid?

— Ray Heller

A The usual doorbell circuit runs on 24 VAC so that is what I assumed in Figure 1. The resistor should be a half watt for reliable operation and the inductive kick from the solenoid should not be a problem.

MOTOR SPEED CONTROL

Q I am trying to control the speed of a small band saw motor. The motor specs are: 110 VAC, 3.5 amps, and 1,750 rpm. It is a capacitor start motor running at high speed for wood only. It is built into the housing so it is not practical to use a step pulley to change speeds. The saw is rigid enough to use on steel with the proper blade if it is slowed down.

— Charles Forman

A These small AC motors are designed to run in sync with the applied power. In order to change the speed, you have to change the drive frequency. That is not easy to do. Some high-end washing machines have a three-phase motor and controller; it can change direction and speed under the control of a microprocessor. I have one; it appears to be like a stepper motor but I have not figured out how it works.

I believe your motor could be controlled by a microprocessor. The method would be to rectify the input to DC and apply power using MOSFETs at the desired frequency. The capacitor would not be needed. The micro could provide the phase shifted signal to start or reverse the
I am looking for a cheap timer that will last for one hour, then power-off my soldering iron. I have a bad habit of leaving it on. I am guessing that a 555 would do the trick.

— Toby Norton

One hour is too long for a single 555, so a countdown circuit is needed; see Figure 2. IC1 is part of a onesecond astable; IC2 decodes the 12-bit counter to 3,600 counts and turns Q1 off at the end of one hour. To operate, you plug the control box into an outlet; plug the soldering iron into the control box outlet, push the reset button, and the iron will be powered for one hour. To calculate the decoding, subtract the largest binary number from the desired count that will leave a positive result. The binary bits are weighted: 1, 2, 4, 8, 16, ..., 1024, 2048, 4096, etc. This is the subtraction:

\[
\begin{array}{c}
3600 \\
-2048 \\
1552 \\
-1024 \\
528 \\
-512 \\
16 \\
-16 \\
0 \\
\end{array}
\]

You will need the Q12 output, plus the 11th and 10th, plus the 2^4 output (Q5). The output of IC2A is high until all inputs are high, then IC2A output goes low, turning off Q1 and stopping the clock. You might think that since 2048 = 2^11, then you would want to start with Q11. But Q11 goes high at 1024 and goes low at 2048. Q12 goes high at 2048 and stays high until 4096, or until the clock is stopped by the decoded outputs being high. I did not use the 555 reset because that makes the 555 output low (which would be another clock pulse and the count would continue).

Figure 3 is the Parts List.

WESTMINSTER CHIME SOUND

I am an avid Nuts & Volts reader who has been burning fingers on soldering irons since the early ‘60s. I was interested to see you using more and more microcontroller solutions and I have started experimenting with PICs myself (I am a software developer by day so the programming part is second nature).

I am hoping you can help me out. I have a PIC-based clock which plays the Westminster chime tune on the hour. The problem is that the “chime” notes are just constant amplitude square waves and I would like to make them sound more like real chimes. I have very little program space left but I do have a couple of unused I/O pins. I was hoping you could come up with something that would modulate the square wave amplitude with an envelope like a real chime. If need be, I can provide a trigger pulse at the beginning of each note.

— Keith Ujvary

I have a clock that does the Westminster chime and “bongs” on the hour. I connected my scope to the speaker; one of the waveforms is Figure 4. Note that the sloping top of the wave varies in amplitude; the waveform is quite complex and I don’t think that just reducing the amplitude of the square wave will sound good. I am not going to take my clock apart to see how it is done, but the patent explains it quite well; see www.patenstorm.us/patents/pdf/patent_id/4172359.html. There are other patents that may be of interest: 4358838 and 4271495, and others.

Good luck with your project.

IR TRANSMISSIVE PLASTIC

What type of plastic can pass the infrared ray for motion detectors?

— Sam Botros

Acrylic plastic is most often touted as IR transmissive (Plexiglas). It is available in black, but you have to

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>Mouser Part #</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>18 VAC CT 1A</td>
<td>41FJ010</td>
<td>8.28</td>
</tr>
<tr>
<td>D1, D2, D3</td>
<td>RECTIFIER, 100V, 1A</td>
<td>512-1N4004</td>
<td>0.07</td>
</tr>
<tr>
<td>C1</td>
<td>10 μf, 16V, 10%</td>
<td>81-GRM31CR61C106KA88</td>
<td>0.41</td>
</tr>
<tr>
<td>C2</td>
<td>1000 μf, 10%, 16V</td>
<td>140-HTML16V1000-RC</td>
<td>0.25</td>
</tr>
<tr>
<td>R1, R3</td>
<td>7.5K, 1/8W, 5%</td>
<td>291-75K-RC</td>
<td>0.40/10</td>
</tr>
<tr>
<td>R2</td>
<td>130K, 1/8W, 5%</td>
<td>291-130K-RC</td>
<td>0.40/10</td>
</tr>
<tr>
<td>IC1</td>
<td>555 TIMER</td>
<td>511-TS555IN</td>
<td>0.72</td>
</tr>
<tr>
<td>IC2</td>
<td>DUAL FOUR INPUT NAND</td>
<td>595-CD4012BE</td>
<td>0.40</td>
</tr>
<tr>
<td>IC3</td>
<td>12-BIT BINARY COUNTER</td>
<td>595-CD4040BEE4</td>
<td>0.43</td>
</tr>
<tr>
<td>RLY1</td>
<td>12V RELAY, 5A CONTACTS</td>
<td>817-VE-12H-K</td>
<td>2.15</td>
</tr>
<tr>
<td>SW1</td>
<td>MOMENTARY PUSHBUTTON</td>
<td>612-PS1057A-RED</td>
<td>1.62</td>
</tr>
<tr>
<td>Q1</td>
<td>100V, 2A MOSFET</td>
<td>844-IRF710PBF</td>
<td>0.47</td>
</tr>
</tbody>
</table>
specify IR transmissive because some black Plexiglas is not. Check out this URL: www.eplastics.com/Plastic/Plexiglass_Acrylic_Sheet_Infrared_Transmitting.

COUNTDOWN TIMER REVISITED

Last month, I presented a countdown timer for Robert Cuneo. There are some corrections to be made; see the schematic in Figure 5. The first problem was I didn’t read the datasheet carefully and assumed that digit #1 was seconds and digit 3 was minutes ... wrong! I had it backwards so had to re-do the schematic. Next, I realized that I had not followed the schematic layout and had put the seconds digi-switch in the middle, tens of seconds at the bottom, and minutes at the top. I wish I had not done that but I was thinking ease of layout instead of ease of use, and consequently did not accomplish either. That was not something that had to be corrected, so I continued. The intention was to have #1 of the digi-switch be the least significant bit (LSB) but I got it backwards so #4 is the LSB. I could have turned the switch around on the schematic but it would have scrambled the layout, so it is much easier to tell you to put the switch in

MAILBAG

Dear Russell:
In regards to my question in Nuts & Volts December ’09, page 25. Can I use a toroidal core for the 1.19 mH and the 1.33 mH? If so, how many turns and what core do I use?

— Kendrick Sellen

Response: RadioShack RF choke core #273-104 is readily available and suitable. The AI is 175 mH per 1,000 turns. For 1.19 mH, use 82.5 turns; for 1.33 mH, use 87.2 turns.
backwards if it makes a difference to you! More problems: When the start switch was pressed, the set time was loaded but when the start switch was released, the time immediately went to the next second and started counting from there. I realized then that the clock was low when stopped, so when the load input went high, the counter saw a clock pulse. The solution was to add R25 and move C2 so there is a 100 microsecond delay of the load release which allows the clock to go high first. This illustrates the utility of building a breadboard.

The schematic, layouts, and Gerber files are posted on the Nuts & Volts website (www.nutsvolts.com) for those who want to try building this countdown timer. You don’t have to mirror the top layer; I have already done that.

LARGE CLOCK REVISITED

Last month, I presented a program for Eric Fulton’s large clock. I was not able to program the Picaxe chip and test it so I contacted my eldest son, Wayne, who figured out how to load the drivers so I could program the 28X1 chip. After correcting the errors in the countdown timer, I took a look at the clock test circuit (see the schematic; Figure 6). Nothing was happening, so I poked around with the scope; everything was normal except pins 9 and 10 (RES and RES2) were low. It can’t work that way; it must be a defective chip or resonator, so I plugged in a new 28X1 (unprogrammed) to check for oscillation ... nothing. Next, I tried a 4 MHz crystal in place of the resonator ... still nothing. I thought maybe it needs to be reset. Ahha! The oscillator works as long as the reset is low but stops when the reset is high. It can’t work that way, so if anyone figures out what is wrong, please let me know. Use my email: russlk@yahoo.com and put Large Clock in the subject so I can find it in the spam folder. NV
Did you ever wonder what would happen if your furnace’s blower motor failed, belt broke, or something completely blocked your furnace’s air filter? Well, most furnaces would get hotter and hotter, and the thermostat won’t know it until it’s too late. If it wasn’t for the furnace’s built-in high temperature limit control, the furnace would keep going and going and not only destroy itself, but perhaps a fire. If this adjustable safety control happens to be set too high (or is faulty), damage can occur to your furnace before the safety control shuts it off.

A similar thing can happen to a central air system. Here, the worst scenario is perhaps a fried compressor motor.

(Note: A few systems also use a mechanical “Sail Switch” which is supposed to help solve this and other low air flow problems. However, they are used mainly with electric furnace systems and aren’t suited for use in established heating/cooling systems.)

The SmartStat-Plus presented here doesn’t just control the temperature, it continually monitors the air flow. This air flow information can be used to determine the relative dirtiness of the filter and is used by SmartStat-Plus to determine if there is a problem with the blower or filter. An option switch on the SmartStat-Plus will give it permission to shut off the furnace and/or A/C if the air flow gets too low. Other safety features include a system failure alert, a dangerously high room temperature alert, and a freeze alert/control.

Other than the filter monitor/alert system and the abundant safety features, the SmartStat-Plus differs from commercially available digital thermostats because it is custom programmable!

What does the wind chill factor have to do with SmartStat-Plus’ air flow sensor circuit?

Simply stated, they both depend upon the same heat transfer phenomenon. The explanation goes something like this: If an object is internally heated, the air is warmed next to it. If air movement displaces this air warmed by the object, the object will cool to near the air temperature. Once this warmed air is blown away, stronger air movements have no further chilling effect. This is why winds over 70 mph do not feel colder than 50 mph winds.

SmartStat-Plus’ air flow sensor board uses two LM34
temperature sensors: one LM34 is heated with a 1/4W, 100 ohm resistor that has 50 mA flowing through it and the other LM34 is unheated. When both are subject to a strong air flow, the temperature difference between the two is only a degree or two. However, when the air is calm, the temperature can exceed 20 degrees. Since the LM34 has a voltage output of 10 mV per degree Fahrenheit, the voltage difference between the two ranges from about 20 mV when there is good air flow, to greater than 200 mV with no air movement.

Of course, now that we know how to sense the air flow through the forced air heating/cooling system, we have to design a smart gizmo that can make sense out of the info and do what is necessary. An MCU-based gadget is a natural fit here. While there are many, many MCUs that would work here (I have designed with five other types in the past), I looked into using a PICAXE because I really enjoy designing with it. (It’s just plain fun to play ... I mean work with.) For some reason, the words PICAXE and Heathkit make me feel warm and cozy!

We’ll need an MCU with at least three A/D converters with a minimum eight-bit resolution. (The PICAXE 28X1 has four A/Ds with 10-bit conversion capability.) In order to have the PICAXE handle the inputs/outputs directly (which simplifies circuitry and firmware), we also are looking at a minimum of five outputs (assuming use of the inexpensive combination of the 74HC595/eight-bit shift registers/output latches and seven-segment LED display) and at least three digital inputs (more are needed to set options). The PICAXE 28X1 comes with more input and output pins than are needed. Because of this abundance of easy-to-use pins, I added several safety features (e.g., alerts for system failure, high temperature, freeze, and several options such as Celsius degrees and an adjustable hysteresis).

To show how easy it is to use the PICAXE 28X1 in a thermostat using an LM34 as a sensor, let’s look at a super simple thermostat. The circuit for this thermostat is shown in Figure 1 and the code is given in Listing 1. Notice there is no way to set this simple thermostat — it is preset for 72°F. While this circuit and code should be able to control a furnace to keep a house at 72°F, it is basically too simple and could possibly even damage a furnace because it could turn on and off the furnace too frequently (i.e., high cycle rate). With all that said, this circuit and code forms the heart and soul of the SmartStat-Plus so we will look at it to get the basics of SmartStat’s operation, along with the PICAXE’s Basic software. (You can download the source code for SmartStat-Plus itself from the N&V website at www.nutsvolts.com/index.php/magazine/downloads/ and also from www.magiclandelectronics.com.)

Referring to both Figure 1 and Listing 1, notice a relay circuit is connected to the 28X1 chip pin 28 which is Out 7; the output of the temperature sensor LM34 will be connected to chip pin 2. Chip pin 2 is the ADC0 input (Analog-to-Digital Converter). Since the power supply is set at exactly 5.12 volts, the 10-bit A/D converter measures voltage in steps of 5 mV (5.12/1024). Also, the LM34 produces an output of 5 mV per 1/2 deg F. This means every step of the A/D’s output corresponds to 1/2 deg F (5/18 deg C).

Notice the first line of code “Symbol Furnace=7”. The purpose of this line (like all the lines that use the Symbol

Listing 1

Referring to both Figure 1 and Listing 1, notice a relay circuit is connected to the 28X1 chip pin 28 which is Out 7; the output of the temperature sensor LM34 will be connected to chip pin 2. Chip pin 2 is the ADC0 input (Analog-to-Digital Converter). Since the power supply is set at exactly 5.12 volts, the 10-bit A/D converter measures voltage in steps of 5 mV (5.12/1024). Also, the LM34 produces an output of 5 mV per 1/2 deg F(10 mv/deg F). This means every step of the A/D’s output corresponds to 1/2 deg F (5/18 deg C).

Notice the first line of code “Symbol Furnace=7”. The purpose of this line (like all the lines that use the Symbol
command) is to make the code more programmer-friendly. Here we set the word “Furnace” equal to 7; from then on, Furnace will be interpreted as 7. So, when the PICAXE encounters the statement high Furnace it will switch its Out 7 pin ON which will turn on the furnace. (Remember, the Out 7 pin is connected to the PICAXE's chip pin 28; see Figure 1.)

The next line of code “Symbol Temperature=b1” does basically the same thing. It sets Temperature equal to b1. Here, b1 is an eight-bit storage location in the PICAXE which is normally referred to as a “byte variable.” The next line “SetTemp=b2” does the same except it renames the byte variable b2 to “SetTemp.” The “SetTemp=72” command line stores 72 at the PICAXE storage location b2. This is the temperature we have preset into the program.

Next, the program goes into the main Do loop. The

“readadc10 0, Temperature” command line tells the PICAXE to use its 10-bit A/D converter on the voltage at its ADC0 input (chip pin 2) and to put its 10-bit result at storage location Temperature (byte variable b1). The next line simply multiplies the result by 2 since (in the previous line) we were dealing with data of half degrees.

The next four lines provide the smarts (though very, very limited) for the thermostat. The if...then...else statements simply turn on the furnace if Temperature is less than SetTemp (which is 72). It will then turn the furnace off (or make sure it is off) if the temperature gets above 72. This provides a small (±1°F) hysteresis. The pause 1000 statement creates a one second delay in an attempt to slow things down, although this is not enough for a practical thermostat. The “loop” statement provides continuous looping here.

One obvious problem is that we assume everything is perfect and so we only take one temperature reading. In the SmartStat-Plus, we take 630 readings and then take their average.

The subroutine from the SmartStat's source code that does this is:

```plaintext
Code used to read temperature 630 times and take average
also converts to celsius

ReadTemperature:
SumTemp = 0
Temp = 0
for K = 1 to 63
    readadc10 0, Temp
    SumTemp = SumTemp + Temp
next K
CurTemp = SumTemp/63/2 MIN 0
for L = 1 to 9
    SumTemp = 0
    Temp = 0
    for K = 1 to 63
        readadc10 0, Temp
        SumTemp = SumTemp + Temp
    next K
    Temp = SumTemp/63/2
    CurTemp = Temp + CurTemp/2 MIN 0
next L
if CelsiusFlag = 1 then
    CurTemp = CurTemp - 32 * 5 / 9
end if
return
```

Notice this subroutine also calculates the Celsius temperature.

Notice from the SmartStat-Plus's schematic in Figure 2 that the 28X1 doesn’t directly control the relay that
controls the furnace or A/C. It merely lets another MCU (a PICAXE 08M) know that it “thinks” the furnace or A/C should go on. The 08M takes over from there and starts a delay routine (40 seconds for heat and five minutes for cool). Only after this delay is over will it actually switch on the control relay. While this delay can be designed into the 28X1 source code, I felt it was important enough to have a separate MCU handle the job. The source code for the 08M is also available for those interested in changing the default settings.

Building It

While the early designs of this project were tested on a solderless breadboard, it is recommended that it be constructed using a printed circuit board (PCB). For those who want to make their own main board, the patterns for it and the air flow sensor are available in the download package.

Pay close attention to the Figure 2 schematic while wiring the SmartStat-Plus.

For easier access, mount J1 through J8, SW1, and DIPSW1 on the foil side. For increased accuracy, use a small heatsink for SEN1 and make sure at least part of the heatsink is outside the case (if not the whole thing). Here’s a tip: SW2 and SW3 are tactile PC switches. Assuming you are going to mount the PCB to the back of a panel, you will need to drill holes in the panel and add to the length of the buttons. I used a 3/4” long 1/8” diameter piece of heat-shrinkable tubing.

Powering It

Since the air flow sensor uses about a quarter of a watt to function, it isn’t practical to power it with a battery. I used a small 9 VAC wall-watt that powers an adjustable 5V power supply. (See its schematic in Figure 5.) I then adjusted the power supply’s output for exactly 5.12V for optimum accuracy since the firmware assumes a 5.12V reference voltage.

Programming the Two PICAXEs

The programming port for the 28X1 is J4 and the port for the 8M is J5. If your computer has an RS-232 serial interface, connect pin 1 of J4 or J5 to pin 2 of a nine-way D female socket; pin 2 of J4 or J5 to pin 3 of the nine-way D female socket; and pin 4 of J4 or J5 (the ground pin) to...
pin 5 of the nine-way D female socket. If your computer only has a USB port, you will need a USB to serial adapter.

Source code for both the 28X1 and 08M are available in the download package and can also be obtained from www.Magiclandelectronics.com. The PICAXE Programming software is available as a free download from www.picaxe.co.uk.

ADDITIONAL FEATURES AND SETTINGS

- **Minimum Setting:** 10°F
 Maximum Setting: 94°F

The various options available with this thermostat can be set with the DIP SWITCH.

- **Position 1:** OFF — Fahrenheit degrees.
 ON — Celsius degrees.
- **Position 2:** OFF — Don’t shut off A/C if low air flow.
 ON — Shut off A/C if low air flow.
- **Position 3:** OFF — Don’t shut off heat if low air flow.
 ON — Shut off heat if low air flow.
- **Position 4:** OFF — Don’t shut off systems if system fail light or high temperature LED lights are lit.
 ON — Shut off both systems if any warning LEDs (other than freeze) are lit.
- **Position 5:** OFF — Hysteresis is 1°F (or 1°C).
 ON — Hysteresis is 2°F (or 2°C).

YELLOW LED: LOW AIR FLOW — Possible blower motor/belt failure. Note: This LED won’t go on until roughly five minutes after the furnace starts or roughly one minute after the A/C compressor starts.

ORANGE LED: SYS FAILURE — Indicates an apparent system failure. This goes on when there exists a 6°F temperature difference between actual temperature and set temperature.

RED LED: HIGHTEMP — Indicates a dangerously high temperature (over 95°F) exists in area.

GREEN LED: FREEZE POSSIBLE — Indicates a room temperature at or below 32°F. At this temperature, RLY3 will be energized and its contacts closed.

FAN Switch: This switch has two settings — FAN and AUTO. However, some systems don’t make the fan control accessible.

ALARM Switch: Put this switch ON if you want an audible alarm if the High temp LED lights.

Note: The SmartStat-Plus uses a 5 CPH (cycles/hour) maximum system rate (for both heating and cooling), a five minute compressor off-time, and a 40 second heater-off time. These features help extend the life of the systems. To set it to other rates, modify the source code. While SmartStat-Plus has a 5 CPH maximum system rate to protect the heating/cooling systems, it does have a built-in override if the temperature difference between what the user sets and the actual temperature exceeds 3°F (2°C). If you find this override taking place, this implies your situation has a combination of an oversized furnace (or A/C) and poor insulation. You can solve this problem by either getting a smaller furnace (or A/C) or adding insulation to save energy. It is best to do both.

FIGURE 3. Parts layout for the PICAXE controller board.

FIGURE 4. Parts layout for the air flow board.
temperature, the FURNACE/A/C ON LED should start to flash which indicates it is about to turn the furnace on. When this LED lights steadily, the furnace will be signaled to turn on.

Now, put the SYSTEM switch to the OFF position, connect the air flow sensor board, and turn to HEAT again. The display should show the temperature. Wait six minutes and then press both UP/DOWN switches simultaneously. The display should show AF (Air Flow) and then a number — this number is the relative air flow level. Since there is no air flow, the number should be below 50. Now, use a fan to blow at the sensor. The number displayed should rise to over 80. Press either the UP/DOWN button and the display should flash the pre-set critical air flow level. This critical level can be changed using the UP/DOWN buttons. After 10 seconds, the display will again show the temperature. If everything looks okay, then it’s time to install the SmartStat-Plus.

Installation

If you are replacing a heating/cooling thermostat, you should have enough information from Figure 6 to install it in most systems. Notice the little 24 VAC transformer in the schematic is part of your heating/cooling system.

Note: Some heat only systems do not have an external fan lead. In this case, leave G unconnected and eliminate the Fan switch.

Since SmartStat-Plus has the additional feature of an air flow monitoring/alert system, you will also need to place the air flow sensor board in an appropriate location. A convenient location is in a heating/cooling vent close to the thermostat. However, if you wish to monitor the dirt in the air filter, it is best to place it near the air filter itself.

If you don’t have whole house A/C or you only have whole house A/C (no furnace), you can leave out switch SW4. SW5 and SW6 are also optional, as is A1.

Final Thoughts

The source codes are supplied and there are connectors on the board which allow the software to be reprogrammed at any time so users can easily modify the SmartStat-Plus. For instance, some things that can be changed are the compressor off-time, heater off-time, CPH, hysteresis, DIP switch options, default settings, and more. The source code was purposely written so users don’t need to know the exact workings of the code in order to modify the SmartStat-Plus. Now you can keep your cool (and warm!) without worrying.
Parts List

<table>
<thead>
<tr>
<th>QTY</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D1-D3</td>
<td>1N4001 silicon rectifiers</td>
<td>1N4001</td>
</tr>
<tr>
<td>3</td>
<td>O1-O3</td>
<td>NPN transistor TO-92</td>
<td>PN2222A</td>
</tr>
<tr>
<td>3</td>
<td>SEN1-SEN3</td>
<td>LM34 temperature sensor</td>
<td>LM34D2</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>28X1 PICAXE</td>
<td>PICAXE-28X1</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>08M PICAXE</td>
<td>PICAXE-08M</td>
</tr>
<tr>
<td>2</td>
<td>U3, U4</td>
<td>74HC595 eight-bit shift reg/out latch</td>
<td>74HC595N</td>
</tr>
<tr>
<td>2</td>
<td>DIS1</td>
<td>.3” seven-segment common anode LED display</td>
<td>UA3051-12 (Jameco 334984)</td>
</tr>
<tr>
<td>1</td>
<td>LED5</td>
<td>Green T1-3/4 LED</td>
<td>LTL-307G (Jameco 697531)</td>
</tr>
<tr>
<td>1</td>
<td>LED9</td>
<td>Yellow T1-3/4 LED</td>
<td>LH73350/HO (Jameco 333622)</td>
</tr>
<tr>
<td>1</td>
<td>LED3</td>
<td>Orange T1-3/4 LED</td>
<td>BV158-15T4-ER (Jameco 197683)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>28X1 PICAXE</td>
<td>PICAXE-28X1</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>08M PICAXE</td>
<td>PICAXE-08M</td>
</tr>
<tr>
<td>2</td>
<td>U3, U4</td>
<td>74HC595 eight-bit shift reg/out latch</td>
<td>74HC595N</td>
</tr>
<tr>
<td>2</td>
<td>DIS1</td>
<td>.3” seven-segment common anode LED display</td>
<td>UA3051-12 (Jameco 334984)</td>
</tr>
<tr>
<td>1</td>
<td>LED5</td>
<td>Green T1-3/4 LED</td>
<td>LTL-307G (Jameco 697531)</td>
</tr>
<tr>
<td>1</td>
<td>LED9</td>
<td>Yellow T1-3/4 LED</td>
<td>LH73350/HO (Jameco 333622)</td>
</tr>
<tr>
<td>1</td>
<td>LED3</td>
<td>Orange T1-3/4 LED</td>
<td>BV158-15T4-ER (Jameco 197683)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>28X1 PICAXE</td>
<td>PICAXE-28X1</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>08M PICAXE</td>
<td>PICAXE-08M</td>
</tr>
<tr>
<td>2</td>
<td>U3, U4</td>
<td>74HC595 eight-bit shift reg/out latch</td>
<td>74HC595N</td>
</tr>
<tr>
<td>2</td>
<td>DIS1</td>
<td>.3” seven-segment common anode LED display</td>
<td>UA3051-12 (Jameco 334984)</td>
</tr>
<tr>
<td>1</td>
<td>LED5</td>
<td>Green T1-3/4 LED</td>
<td>LTL-307G (Jameco 697531)</td>
</tr>
<tr>
<td>1</td>
<td>LED9</td>
<td>Yellow T1-3/4 LED</td>
<td>LH73350/HO (Jameco 333622)</td>
</tr>
<tr>
<td>1</td>
<td>LED3</td>
<td>Orange T1-3/4 LED</td>
<td>BV158-15T4-ER (Jameco 197683)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>28X1 PICAXE</td>
<td>PICAXE-28X1</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>08M PICAXE</td>
<td>PICAXE-08M</td>
</tr>
<tr>
<td>2</td>
<td>U3, U4</td>
<td>74HC595 eight-bit shift reg/out latch</td>
<td>74HC595N</td>
</tr>
</tbody>
</table>

LEDs
- **DIS1**: 0.3” seven-segment common anode LED display
- **LED5**: Green T1-3/4 LED
- **LED9**: Yellow T1-3/4 LED
- **LED3**: Orange T1-3/4 LED
- **U1**: 28X1 PICAXE
- **U2**: 08M PICAXE
- **U3, U4**: 74HC595 eight-bit shift reg/out latch

Resistors
- **R1-R19**: 1/4W, 330 OHM
- **R20**: 1/4W, 100 OHM
- **R21**: 1/4W, 4.7K
- **R22, R23**: 1/4W, 22K
- **R24, R25**: 1/4W, 180 OHM
- **R26-R29**: 1/4W, 10K
- **R30-R32**: 1/4W, 1K
- **RN1**: Ten-pin 10K in-line resistor network

Capacitors
- **C1-C4**: 1 mfd 50V capacitor
- **C5, C6**: 10 mfd 25V axial electrolytic capacitor
- **C7, C8**: 1 mfd 50V capacitor

Hardware
- **J1**: 5 pin .100” male header (remove pin 4)
- **J2, J6-J8**: 2 pin .100” male header
- **J4, J5**: 4 pin .100” male header (remove pin 3)
- **SW1-SW3**: Three pole three position slide switch (eyelet terminals)
- **SW4**: Three pole three position slide switch (eyelet terminals)
- **SW5, SW6**: SPST slide switch (eyelet terminals)
- **DIPSW1**: Six position DIP switch

Miscellaneous
- **A1**: 6-12V piezo buzzer
- **RLY1-RLY3**: 5V DIP relay

Other
- **Power Supply, terminal strip, connectors, wire, case, etc.**
- Note: PICAXEs are available from www.sparkfun.com and www.phanderson.com
- Printed Circuit Boards—PCBs for the MCU, the air flow sensor, and the adjustable 5V power supply and sensors board are available from Magicland Electronics (www.magiclandelectronics.com).
Like many readers of *Nuts & Volts*, you probably have a need for test fixtures. Test fixtures allow you to rapidly test capacitors, resistors, diodes, transistors, etc. Test fixtures also provide a stable environment to replicate conditions for testing so that devices of a certain type can be compared. If you are troubleshooting circuits that are already constructed, a test fixture is probably unnecessary, although an assembly can test components under actual circuit conditions. There’s also the possibility you might need to remove components for testing out of the circuit.

Simple test fixtures can be designed that hold one component. One of the older connector styles — banana jacks and plugs — works very well for making test fixtures. Dual banana jacks have a spacing of .75” between the two connectors — standard across many products such as meters and generators. Pomona makes adapters with this spacing, as do many other manufacturers, so building test fixtures with this spacing is recommended. Although the frequency bandwidth of this attachment method is limited to low frequency use (under a MHz), for testing components out of circuit, fixtures using banana jacks are satisfactory and very easy to use. Figure 1 shows test clips made by Grayhill that allow quick insertion of two-lead components. A portable multimeter can be used with clips...
like these to test components as shown in Figure 2. Measurements can be made on resistors, capacitors, diodes, and inductors if the meter has appropriate scales.

Test Fixture Examples

A test adapter for attachment to coaxial connectors is shown in Figure 3. Adapters like this have an advantage in that they eliminate the need for a lot of lead length from the measurement. So more accurate results can be obtained. Figure 4 shows this adapter in action: A Tektronix LC130 capacitance meter is measuring a small capacitor. The marked value on the capacitor is 82 pF; the meter is indicating about 84 pF. Although the meter was zeroed before the measurement, the difference in reading could be from the component tolerance or the extra lead length of the capacitor. One side of the capacitor is at ground, so the lead length on that side is small. Meter calibration might be a factor, but for home use the tolerances are acceptable, and adapters like this really help.

A Simple Test Fixture

Fixtures quickly allow comparison of two devices to be constructed. Test adapters of this sort are often provided by manufacturers for their test instruments. Tektronix offered an adapter that would do this, but they are difficult to find and usually expensive. You can build a simple box with a switch and two connectors to serve this function. The fixture presented here is intended to permit attaching to a transistor/FET curve tracer.

A small plastic box is appropriate for this project. I used a blue plastic box to match the side cover colors used on older Tektronix instruments. Figure 5 shows the plastic box prepared for receiving components to attach to a curve tracer. Figures 6 and 7 show the components attached. (If you are using old stock components, be sure to clean the contacts before you try to solder to them. This is the voice of experience talking."

In Figure 8, the wiring has been completed. Since the emitters of the test devices are at ground, only the emitters and collectors need to be switched from one transistor to the other; a double pole double throw (DPDT) switch is required to accomplish this. The long lead lengths do not seem to present a problem in displaying parameter curves, because the curve tracer generator runs at 120 Hz. The schematic is in Figure 9.

The sockets used to construct this device were (new) old stock, and were built to provide

Obligatory Warning

If you acquire a curve tracer made by almost any vendor and perform testing on transistors, there will be the opportunity for the equipment to generate dangerous voltages. Since some curve tracers supply currents into the ampere range, combined with higher voltages, you must be careful not to exceed your limits. Happy testing!

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MFR PART #</th>
<th>DIST PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Box</td>
<td>Hammond 1591MBU</td>
<td>MOUSER 546-1591MBU BLUE</td>
</tr>
<tr>
<td>Switch (DPDT)</td>
<td>Mountain Switch MS-100737</td>
<td>MOUSER 1081MD1T2B3M1QEEVX (or equivalent)</td>
</tr>
<tr>
<td>Test Clips</td>
<td>Grayhill 02-0</td>
<td>ALLIED 9487397</td>
</tr>
<tr>
<td>w/Banana Jack</td>
<td>02-1 Emerson 1080753102</td>
<td>ALLIED 9481000</td>
</tr>
<tr>
<td>Banana Jack</td>
<td></td>
<td>MOUSER 5301080753102.</td>
</tr>
<tr>
<td>Transistor Sockets</td>
<td></td>
<td>www.mouser.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.alliedelec.com</td>
</tr>
</tbody>
</table>
connections for JEDEC TO-5 transistor packages and early in-line transistor configurations. They can be used later for long lead transistors (new stock) before they have been soldered. They can support JEDEC TO-18, TO-39, TO-92, and TO-100 packages, and other configurations. Lead diameter might be the only concern in using these sockets. If you build it and it doesn't work, check the usual suspects: cold solder joints, mis-wiring, or bad components. Your ohmmeter is your friend. Remember to check the switch contacts in relation to the bat handle before you wire.

Figure 10 is the completed test fixture. Although not very beefy, it is adequate for home use. You could construct a similar device for testing SCRs and power transistors with different sockets such as TO-220, a different switch, and a bigger box.

Figure 11 shows the test adapter in action on a 7CT1N plug-in installed in a 7000 series Tektronix oscilloscope. The transistor on the left is under test. Since Tektronix curve tracer models such as the 7CT1N and 575 have .75" spacing for input connectors, this fixture can perhaps be used on others.

Test Complete

You will find that constructing test fixtures like this help to speed your projects along. They help eliminate errors from creeping into component selection and testing. If you have a large junk box full of components to check, test fixtures are nice to have. Setting up test fixtures for resistors, capacitors, or diodes will help you sort the junk box quickly. **NV**
Prototype This, an engineering entertainment program on Discovery Channel, offered a view into the real-life process of designing and building unique prototypes. In this 13 episode series which was filmed over the course of 18 months and aired starting in October 2008, we set out to tackle the problems of today by creating crazy, one-of-a-kind inventions of tomorrow. I was the team’s electrical engineer and hardware hacker, and shared the screen with Zoz Brooks, a roboticist and software designer specializing in human-machine interaction; Mike North, a material scientist and mechanical engineer; and Terry Sandin, a special effects veteran. We were challenged to build things that had never been done before, looked cool on TV, and could be completed within the extremely tight financial and time constraints of television production. It was a fantastic adventure and great experience to say the least!

This quarterly series of articles will cover the electronic aspects of some of my favorite projects from the show. My hope is that you will be inspired, learn something new, or use my work as a building block for your own open source project. Let’s begin!

Launched in 1978 by Milton Bradley, the addictive, flying saucer-shaped memory game of Simon remains an icon of early electronic games. The premise is simple: Repeat the sequence of lights and tones. This article presents my Simon clone running on an Atmel ATtiny2313, an eight-bit AVR microcontroller (Figure 1).

My implementation of the game combines a number of basic microcontroller functions such as reading switch inputs and turning LEDs on and off, with more complicated ones such as using sleep modes to extend battery life and playing sounds. I’ve also designed in a few gameplay enhancements such as no sound mode, fast mode, no LED mode, and reverse mode. Details of the original Simon design can be found in US Patent #4,207,087 entitled “Microcomputer controlled game” (www.google.com/patents/about?id=MAIyAAAAEBAJ&dq=4207087).

Full engineering documentation (including source code and PCB Gerber plots) is available on my website (www.grandideastudio.com/portfolio/avrsimon/). If you don’t want to build the circuit from scratch, a kit is available from Parallax (www.parallax.com) and includes all of the necessary components, including a pre-programmed microcontroller and custom circuit board. The only additional items you’ll need to build the kit are a soldering iron, solder, wire snips, and a battery.

Hardware

Like the original game, avrsimon’s user interface is simple, comprising of four buttons, four LEDs, and a piezo
buzzer for playing sounds. Refer to the schematic (Figure 2) and bill of materials (Table 1) for specific component information.

The Atmel ATtiny2313 microcontroller (www.atmel.com/dyn/products/product_card.asp?part_id=4660) is an eight-bit microcontroller based on the AVR enhanced RISC (Reduced Instruction Set Computer) architecture. It features 2 KB of Flash, 128 bytes of in-system programmable EEPROM, 128 bytes of RAM, up to 20 MHz clock speed, 1.8V to 5.5V operation, and up to 18 general-purpose I/O pins all in a 20-pin package. Peripherals include two timers, four PWM channels, analog comparator, and a Universal Serial Interface/UART. It is a nice, low-cost part (around $2 in small quantities) suitable for many embedded systems projects.

One side of each button (SW1, SW2, SW3, SW4) is connected to Port B 1, 4, 0, and 3, respectively. The other side of the buttons are connected to ground. The internal pull-up resistor (with a value between 20K and 50K ohm, according to the ATtiny2313 datasheet) is enabled on each of the Port B pins, removing the need for four external resistors. The buttons are active low, so the microprocessor normally sees a high signal ('1') – due to the pull-up resistor – when the button isn’t being pressed. When a button is pressed, the microprocessor sees a low signal (0).

The cathodes of the four LEDs matching the four colors of the original Simon game (D1 red, D2 blue, D3 green, D4 yellow), are connected to Port D 0, 3, 1, and 2, respectively. A current-limiting resistor (R1, R3, R4, R2) connected to VCC is used in series with each LED to limit the amount of current allowed to flow through it which sets the brightness and prevents excessive current from damaging the LED. Like the buttons, the LEDs are active low and set up in a current sink configuration; meaning they will turn on when the output signal on one of the Port D pins is low (0). When we want to turn an LED off, we simply set the corresponding pin's output voltage to 0 (1). Each port pin on the ATtiny2313 can safely sink 20 mA which is well above what the LEDs on avrsimon require. When the red LED is on, it requires 1.3 mA, the green 3.0 mA, blue 0.13 mA, and yellow 3.2 mA.

One side of the piezo buzzer, LS1, is connected to ground and the other side is connected to Port B 2 via R6 — a current-limiting resistor. Instead of using the general-purpose I/O function as with the button inputs and LEDs, Port B 2 is used as its special function — Output Compare for Timer 0 — which outputs waveforms that will drive the piezo buzzer. Turning the game on and off is achieved with a simple slide switch used in an SPST configuration that connects and disconnects the battery supply from the
VCC bus of the circuitry. The system is powered with a single CR2032 3V lithium coin cell which is easy to obtain from any local drugstore, convenience store, or electronics outlet. The CR2032 has a very nice current capacity for its size (20 mm in diameter) of approximately 225 mAh, although the lithium battery chemistry works best for applications requiring very low current discharge (tenths of mA) over months or years of use. Its maximum recommended continuous discharge is 3 mA which is what avrsimon draws during gameplay. When the game is not being used and while the system is waiting for a button press to begin a new game, U1 is placed into a sleep mode and current consumption is reduced to a scant 19.5 uA. With typical gameplay of a few hours a day, a single battery should last over a month.

There are a few other discrete components used in this design: C1 is a standard bypass/decoupling capacitor connected close to the VCC input of U1. R5 is a pull-up resistor connected to the active-low /RESET line of U1 that keeps the microcontroller operating properly (e.g., not resetting) unless the pin is intentionally pulled low. P1 is the standard six-pin AVR In-System Programming (ISP) header. This is an optional part that is only required if you plan on making changes to the firmware and want to reprogram U1 while it is in-circuit.

Firmware

At the highest level, the operation of avrsimon’s firmware is straightforward:

Upon power-up, the hardware is initialized within the aptly named *hardware_init()* function which brings the system into a known state. The function configures the I/O pins (LEDs as outputs, switch pins as inputs), sets up the timers (Timer 0 is used for tone generation and Timer 1 for timeout counting used during gameplay), and enables the Pin Change Interrupt. Then, *simon_config()* is called which sets the gameplay mode based on the combination of pushbuttons SW1-SW4 held down during power-up. If no buttons are pressed during power-up, then the game will play in the normal mode. Other modes include no sound mode, fast mode, no LED mode, and reverse mode, and serve as an additional challenge for advanced users. Details of each special mode are discussed in the How to Play section of this article. After all configurations are complete, we move into the core *simon_game()* routine. Immediately after entering *simon_game()* the system is configured to enter a low-power sleep mode and to awake on a button press from any of the four buttons. Sleep mode is attained by calling a specific sequence of functions/macros which define the type of sleep mode we want to enter, configure the interrupts, and then go to sleep:

```c
// prepare to go to sleep/idle mode...
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
cli();  // disable global interrupts
sleep_enable();
sei();  // enable global interrupts
sleep_cpu();  // now go to sleep to save power
```

Sleep mode conserves a significant amount of power by shutting down all unused modules of the microcontroller and only keeping the absolute essential features awake. In our selected Power-Down Mode (SLEEP_MODE_PWR_DOWN), all clocks and oscillators (disabled) are all peripheral modules are turned off, and the only ways to awaken the device are via specific resets (external, watchdog, or brown-out), serial interface or INT0 external interrupts, or a Pin Change Interrupt generated on specific port pins. For more details on sleep mode implementations, see www.nongnu.org/avr-libc/user-manual/group__avr_sleep.html.

With avrsimon, when a button press is detected via the Pin Change Interrupt on Port B 0, 1, 3, or 4 (corresponding to SW3, SW1, SW4, SW2, respectively), the system springs to life and begins the game. The game itself is comprised of two core functions: *simon_play_moves()* and *simon_read_moves()*.

simon_play_moves() first pulls a number from *rand()* — a linear feedback shift register used as a pseudo-random number generator (http://en.wikipedia.org/wiki/PRNG) — which is seeded at the beginning of each game with the current value of U1’s Timer 1 counter and whatever

TABLE 1: avrsimon’s bill of materials.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BT1</td>
<td>Battery holder, CR2032 Lithium coin cell, SMT</td>
</tr>
<tr>
<td>1</td>
<td>C1</td>
<td>0.1 μF 50V 10% bypass capacitor ceramic axial, X7R</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>5 mm LED, red high-efficiency capacitor 2Ch, X7R</td>
</tr>
<tr>
<td>1</td>
<td>D2</td>
<td>5 mm LED, blue diffused, 300 mcd, 3.5V</td>
</tr>
<tr>
<td>1</td>
<td>D3</td>
<td>5 mm LED, green diffused, 19 mcd, 2.1V</td>
</tr>
<tr>
<td>1</td>
<td>D4</td>
<td>5 mm LED, yellow diffused, 29 mcd, 2.1V</td>
</tr>
<tr>
<td>1</td>
<td>LS1</td>
<td>Piezoelectric buzzer, 72 dB @ 25V sp, 4 kHz, PCB mount</td>
</tr>
<tr>
<td>1</td>
<td>P1 (optional)</td>
<td>Header, 3x2 vertical, male, PCB mount</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>1.0K ohm, 5%, 1/4W</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>3.3K ohm, 5%, 1/4W</td>
</tr>
<tr>
<td>3</td>
<td>R3, R4, R6</td>
<td>330 ohm, 5%, 1/4W</td>
</tr>
<tr>
<td>1</td>
<td>R5</td>
<td>10K ohm, 5%, 1/4W</td>
</tr>
<tr>
<td>4</td>
<td>SW1, SW2, SW3, SW4</td>
<td>SPST momentary pushbutton switch, 100 gf, PCB mount</td>
</tr>
<tr>
<td>1</td>
<td>SW5</td>
<td>SPDT slide switch, 300 mA, PCB mount, L = 2 mm</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>AVR microcontroller, DIP20</td>
</tr>
<tr>
<td>1</td>
<td>U1b (optional)</td>
<td>Socket, DIP20</td>
</tr>
<tr>
<td>1</td>
<td>PCB</td>
<td>Printed circuit board</td>
</tr>
</tbody>
</table>

Distributor/Part #:
Digi-Key, BU2032SM-HD-GCT-ND; www.digkey.com
Digi-Key, 1108PHCT-ND
Digi-Key, 160-1705-ND
Digi-Key, 67-1751-ND
Digi-Key, 160-1706-ND
Digi-Key, 160-1703-ND
Digi-Key, 490-4694-ND
Digi-Key, 3M9459-ND
Digi-Key, 1.0KQBKND
Digi-Key, 3.3KQBKND
Digi-Key, 330QBK-ND
Digi-Key, 10KQBK-ND
Mouser, 688-SKHHAJ; www.mouser.com
Digi-Key, EGI918-ND
Mouser, 556-ATTINY23131V10PU
Digi-Key, 3M545-ND
Parallax
The pushbutton was pushed to start the game. The number from \texttt{rand()} is limited from 0 to 3 (corresponding to one of the four possible LED colors on avrsimon) and then stored in U1’s internal EEPROM — a non-volatile storage container with individual byte addressing — at the memory address equal to the current length of the sequence. The game then plays the entire sequence that is currently in its EEPROM, continuously from address 0 until the end of the sequence is reached. For more details on EEPROM handling, see \url{www.nongnu.org/avr-libc/user-manual/group__avr__eeprom.html}.

The game then enters the \texttt{simon_read_moves()} routine which waits for the player to begin replaying the sequence. For each move in the sequence, the corresponding address of the EEPROM is read and compared with the player’s input. If the values do not match, then the player must have pushed the wrong button and the game will end via the \texttt{simon_failed_input()} function. If the values do match, then the player proceeds to the next move in the sequence. If the player successfully repeats the entire sequence, the game jumps back to \texttt{simon_play_moves()} to add another move to the sequence and repeats the process until the game is over.

Sound

Tone generation is based on the xyloduino project (\url{www.rocketnumbernine.com/2009/03/27/xyloduino-simple-arduinopiezo-organ/}) and modified to support arrays of octaves, notes, and durations in order to create melodies. Timer 0 — a hardware peripheral internal to U1 — is used as an eight-bit counter that will toggle the OC0A output pin (Port B pin 2) from low to high or high to low when the counter value (TCNT0) matches the value programmed into the Output Compare Register (OCR0A). The toggling of the output pin will generate a square wave at the desired frequency that is fed into the piezo buzzer LS1. The \texttt{play_note()} routine is passed the octave, note, and length of the sound. It configures the Timer/Counter Control Register (TCCR0B) and OCR0A accordingly, waits for the sound to be played, and then disables the counter:

```c
if (note)
{
    TCCR0B = pre[(int)octave];
    // set the prescaler depending
    // on what octave is selected
    OCR0A = note >> (octave%2); // there are two octaves for each
    // prescale setting, so adjust
    // accordingly
}
delay_ms(length);
    // play sound for specified length
TCCR0B = 0;
    // turn off sound
```

In order to play a melody, a sequence of notes stored in an array must be played one after the next:

```c
for (i = 0; i < STARTGAME_SND_SIZE * 4; i = i + 4)
{
    // octave, note, length
    play_note(pgm_read_byte(startgame_snd_p + i),
              pgm_read_byte(startgame_snd_p + i + 1),
              pgm_read_word(startgame_snd_p + i + 2));
    delay_ms(50); // pause in between notes
}
```

The four sounds generated on the original Simon were based on four primary notes of a bugle which sound “in tune” when played in any order. avrsimon closely mimics those notes (\url{www.waitingforfriday.com/index.php/Reverse_engineering_an_MB_Electronic_Simon_game}):

- Tone 1: Blue, 392 Hz (G note)
- Tone 2: Yellow, 330 Hz (E note)
- Tone 3: Red, 262 Hz (C note)
- Tone 4: Green, 196 Hz (G note)

Development Environment

avrsimon was developed on OS X using CrossPack for AVR (\url{www.obdev.at/products/crosspack/download-de.html}). Formerly known as AVR MacPack, the package contains the core compiler, debugger, and AVR-specific tools.
tools, and integrates seamlessly with Apple’s Xcode.

In-circuit device programming was achieved using an adafruit industries USBtinyISP interface (www.adafruit.com/index.php?main_page=product_info&cPath=16&products_id=46).

If you choose to modify avrsimon’s firmware, you’ll need to recompile the code and reprogram it into the microcontroller. To reprogram the microcontroller, hook up the USBtinyISP to P1 (insert and solder this optional six-pin male header onto avrsimon if you haven’t done so already), locating pin 1 by its square pad on the backside of the circuit board. Then, open a Terminal window and go to your /firmware/ directory. Finally, run the make install command which launches the avrdude application twice with different parameters: once to load the compiled Hex file into Flash memory and once to set the device’s configuration fuses (defined in the Makefile):

1) avrdude -c usbtiny -p attiny2313 -U flash:w:main.hex:i
2) avrdude -c usbtiny -p attiny2313 -U hfuse:w:0xd1:m -U lfuse:w:0xe4:m

For more information on Atmel AVR development, see:
- adafruit industries’ AVR Tutorial web page, www.ladyada.net/learn/avr/

How to Play

In a nutshell, avrsimon gameplay is as follows:
- Turn On
- Play Game
- Memorize and Repeat Pattern
- Score Given When Game Over

When you first power up the game, a start-up tune will welcome you. Press any of the pushbuttons to start playing. The game will generate a sequence of lights and sounds that you are to repeat, starting first with a single element. After the sequence has been presented, simply press the button(s) corresponding to the LED that was illuminated and repeat the pattern. The sequence length will increment each time you successfully repeat the pattern, making the game increasingly more difficult as you go. The maximum sequence length is 255.

When your game is over, a short tune will be played, the correct LED in the sequence that you were supposed to have entered will be illuminated, and your score will be given by a series of blinking LEDs. The green LED corresponds to hundred; the red LED to ten; and the blue LED to one. For example, if you failed after a 13 element sequence, the red LED will first blink once and then the blue LED will blink three times.

avrsimon has a few optional twists to make gameplay more fun and interesting for advanced players. These special modes are selected by holding down one of the pushbuttons SW1-SW4 while first turning on the game (multiple pushbuttons can be held down at one time to create various combinations):
- **SW1: No Sound/Quiet Mode**
 - No sounds are generated while in this mode, making it perfect for gameplay late at night, in a library, conference session, or classroom.
- **SW2: Fast Mode**
 - This mode increases the speed of which the LED sequence is played and reduces the length of time allowed for you to repeat the sequence. Normally, you have five seconds to make a decision for each move. In fast mode, you’re only allowed two.
- **SW3: No LED Mode**
 - No LEDs are illuminated while in this mode. You’ll have to repeat the pattern based on sound alone.
- **SW4: Reverse Move**
 - This mode operates like a FIFO (First In, First Out) stack in which you have to replay the sequence in reverse order (instead of repeating the exact order that the game presents).

To revert back to game’s normal mode of operation, simply power cycle the unit. Enjoy the game!

Joe Grand is an electrical engineer, hardware hacker, and president of Grand Idea Studio, Inc. (www.grandideastudio.com), where he specializes in the invention, design, and licensing of consumer products and modules for electronics hobbyists. He can be reached at joe@grandideastudio.com.
New LCP2368 Controller
* Includes LPC2368 Microcontroller with 512KB Flash Memory
* USB, LAN, CAN, I2C, LCD Connections
* 6 Channel ADC and DAC On-Board
* SD Card Connector for Data Storage

Only $69.90

New Radio Data Transceiver
* Standard 433MHz PLL Based
* Range up to 300m
* Data Rates Up to 115K bps
* Works with Most Microcontrollers

Only $7.90

Expanded Range of Solar Cells
* Huge Range of Miniature Solar Cells
* Ideal for Projects and Experimentation
* Also in Stock Solar Regulators and Dual Battery Chargers

Starting From $1.20

We are your one-stop shop for Microcontroller Boards, PCB Manufacture and Electronic Components

www.futurlec.com

Save Up To 60% On Electronic Components
To continue our experiments with wind, this time I’m going to introduce you to the WindPitch™ wind turbine (Figure 1). It’s unique in that most wind turbines of this size are just a combination of a simple DC motor connected to a set of fixed propeller blades that maybe light an LED when they are spinning. Basically, they’re just a toy and possess no real educational value. The WindPitch is far more than that, however.

Like our Whirlybird™ wind turbine, the WindPitch has a small but powerful three-phase AC alternator and variable pitch blades (thus the name). The blades are actually designed to aircraft standards, so it is a superb electrical and mechanical teaching tool. Horizontal axis wind turbines (HAWTs) are currently the standard wind technology mechanism for grid-based electrical generation. You see them everywhere — generally with three blades that slowly rotate into the wind to make non-polluting power. What you don’t see from a distance are the myriad factors that go into modern HAWT design and construction. That’s what I want to show you now with the WindPitch, so let’s get started.

HAWT and VAWT Technologies

Previously, we worked with the Whirlybird wind turbine which is a VAWT (vertical axis wind turbine). The WindPitch is a HAWT since the axis of rotation of the propeller blades and the alternator shaft are parallel — or horizontal — to the ground. Unlike the Whirlybird, the WindPitch blades produce “lift” just like an aircraft wing or propeller (which is also a set of wings itself). This provides for a faster spin rate of the blades with the attendant increase in generated alternator power. Compare this with the “drag” blades of the Whirlybird that are basically pulled around by the wind with no speed amplification.

There is also the ability to adjust the pitch of the blades to match the particular wind conditions. Wind is generally of higher speed at higher altitudes (even just a hundred feet or so off the ground), so the ability to control the pitch angle of the blades into the wind becomes important. Modern commercial wind turbines can quickly adjust the blade pitch to accommodate slowly varying wind speeds, as well as sudden wind gusts or lulls. This is done to extract the maximum electrical power from the wind for any given condition and to protect the wind turbine from damage should it encounter a sudden wind blast that could send it spinning out of control (even momentarily).

Another thing a HAWT needs is a wind vane to keep the propellers pointed into the wind at all times. However, commercial wind turbines are generally installed into the prevailing wind to begin with, and use more sophisticated electronic and mechanical techniques to constantly adjust for minor changes in wind direction so a vane is not necessary. The WindPitch does have the traditional vertical wind vane.

A HAWT is typically mounted on a tower — unlike a VAWT that is...
generally mounted on the ground. The advantage of this is that the wind is stronger and steadier at higher altitudes and doesn’t suffer from surface interface that can both slow the wind speed and create turbulence. The drawback is that the tower itself must support all the weight of the turbine assembly, along with the forces generated by the spinning blades — not to mention its own weight and air resistance. The tower is also an obstruction to the laminar wind flow that can cause the blades to momentarily lose power and slow down as they rotate parallel to the tower. When spinning, this causes a pulsing action like a misfiring engine cylinder that disturbs the smooth blade turning action and imparts additional mechanical stresses on the whole thing.

The important thing to understand here is that the HAWT is now the commercial standard for “big wind” grid-based operations, mainly because the cost-performance ratio is higher than with an equivalent VAWT to generate the same electrical power. You will, of course, see successful examples of vertical axis machines for small wind applications for which they are perfectly suited (like for a house or small buildings; see the sidebar). Just like the choice between AC and DC electricity, one isn’t necessarily better than the other, and each variety of wind turbines (vertical, horizontal, or hybrid) has its own niche and should be viewed in terms of choice of application as opposed to better or worse. For the remainder of this section, refer to Figure 2 for an example of the major components that go into a commercial HAWT.

The WindPitch in a Nutshell

Figure 3 shows the major components of the WindPitch wind turbine. Generally, it consists of a three-blade propeller arrangement mounted to a hub where the blades can be manually adjusted for pitch by the hub mechanism (Figure 4). The hub then “pushes on” to the shaft of the three-phase alternator that is mounted at the inside-front of the streamline fuselage plastic housing. The hub along with the blades can be removed to change blade types; there can be anywhere from two to 12 blades (Figure 5).

The vertical wind vane is mounted at the opposite end of the fuselage to keep the blades pointed into the wind. The entire assembly is mounted on an aluminum pipe whose opposite end is inserted into a weighted base to keep the turbine steady with wind blowing across the blades. The small tab that protrudes from the bottom of the fuselage and inserts into the top of the pipe allows it to “wiggle” back and forth in a yawing motion to capture the changes in wind direction, while a small set screw holds it to the pipe so it doesn’t fly away. The most distinctive feature is the hub (Figure 6) that is designed to accommodate up to twelve blades and can also adjust the blade pitch. Once the blades are mounted into the hub, you are able to adjust the blade pitch simply by rotating what is called the Blade Pitch Controller. A
a pleasure to work with.

out device from top to bottom and is

place. Overall, this is a well thought

Lock secure the new pitch angle in

another couple of twists of the Blade

turbine is that the WindPitch sports

different from our Whirlybird wind

Figure 4

angle (see the sidebar) where air tends to

follow a curved surface as long as the

curvature isn’t too exaggerated or the

“angle of attack” (the steepness of the blade edge as it is presented to the moving wind) isn’t too great. If either happens, the laminar (smooth) airflow is disturbed and turbulence is created that can lead to a stall.

Propeller blades exhibit the same lifting and stalling characteristics as fixed aircraft wings. Helicopters are a prime example of propeller blades that are really rotating wings where blade shape and pitch control the motions

of the machine. However, in our case we are using the moving wind to spin the blades instead of powering the blades themselves; the effect, however, is still the same. Lift is generated to help power the blades in their spinning motion and, thus, impart more power to the three-phase alternator.

Blade Types

The WindPitch comes with three groups of distinct blades that are designated as BP-28, NACA 44, and NACA 63 types. NACA stands for the National Advisory Committee for Aeronautics which was created in President Woodrow Wilson’s days. In 1958, they were absorbed by (the then new) NASA – the National Aeronautics and Space Administration. The older acronym-based blade descriptions still remain to this day.

As I mentioned earlier, the WindPitch is not a toy, and the adherence to these blade standards is one example of its rigorous nature. Figure 9 illustrates the profiles of each of the three blade shapes that are generally distinguished by the amount of material used on their windward sides. Time and space limit any further discussion regarding airfoil shapes and characteristics; however, our experiments will demonstrate how each profile has its own set of behavioral characteristics that make it suitable for varying wind conditions.

Hub Assembly

As Figure 6 illustrates, a great deal of thought was devoted to the

The Coanda Effect

Though the Bernoulli Principle explains the source of lift in an aircraft wing, on or about 1930 a French engineer by the name of Henri Coanda (1866-1972) discovered another effect that plays an even larger role in producing lift. The Coanda Effect states that a fluid or gas stream will hug a convex contour when directed at a tangent to that surface. It can be demonstrated by placing the back of a spoon against a running stream of water. The pattern of the water will conform to the spoon’s curve. If you hold the spoon so that it is free to swing, you should be able to notice that the spoon is actually being pulled towards the stream of water. The same effect occurs with an airplane wing. If the wing is curved, the airflow will follow the curvature of the wing. Thus, wind turbine blades designed to aircraft standards also conform to the Coanda Effect.
Blade Pitch

Besides blade shape and the number of blades used, blade pitch is right up there on the list for how to best generate power based on wind speed. Blade pitch or simply pitch refers to adjusting the angle of attack of the blades of a propeller into or out of the wind to control the production or absorption of wind power. The hub allows up to a 90 degree pitch angle. For reference, a zero degree pitch angle [with the flat part of the blades parallel to the wind] is called the “stall angle.” In effect, the blades are acting as a complete barrier to the wind in this position. The other extreme is with the blades at a 90 degree angle with only their leading edge facing the wind. This is called furling or feathering, and presents the minimum surface area to the oncoming wind.

Blade pitch control is a feature of nearly all commercial horizontal-axis wind turbines. While operating, a wind turbine’s control system adjusts the blade pitch to keep the rotor speed within operating limits as the wind speed changes. Feathering the blades stops the rotor during emergency shutdowns or whenever the wind speed exceeds the maximum rated speed. During construction and maintenance of wind turbines, the blades are usually feathered to reduce unwanted rotational torque in the event of wind gusts.

In an aircraft blade, pitch is usually described as “coarse” for a high angle of attack and “fine” for a low angle of attack. The same is true for wind turbines. Blade pitch is normally described in units of distance/rotation (assuming no slip) and is much like the gearing of a car’s transmission. Low pitch yields good low speed acceleration, while high pitch optimizes high speed performance and economy. Because the velocity of a propeller blade varies from the hub to the tip (called Tip Speed; see the sidebar), the blade must be formed correctly in order for the pitch to remain constant along the length of the blade.

Number of Blades

Since most commercial wind turbines use three-blade propellers, you might automatically assume that three blades are the optimum number. In fact, the number of blades is a compromise based — once again — on wind conditions and aesthetics. The number of blades involves design considerations of aerodynamic efficiency, component costs, system reliability and aesthetics (see the sidebar). In addition, noise emissions are affected by the location of the blades upwind or downwind of the tower, and the speed of the rotor. Given that the noise emissions from the blade’s trailing edge and tip vary by the fifth power of blade speed, a small increase in tip speed can make a huge difference.

Wind turbines developed over

Tip Speed Ratio

Tip Speed Ratio is the ratio between the rotational speed of the tip of the blade and the actual velocity of the wind. High-efficiency, three-blade turbines have tip speed ratios of 5-7. The tip speed ratio determines how fast the wind turbine will want to spin and so has implications for the alternator that can be used. On the whole, a high tip speed ratio is better, but not to the point where the machine becomes noisy and highly stressed.

Figure 8. The blade shape and angle of attack determine wind flow and lift.

Figure 8 indicates that a certain wind speed is optimum to produce lift. The angle the blade forms to the wind is the angle of attack. This is why the angle of attack is so critical.

Figure 9. Wind Pitch blade types.
the last 50 years have almost universally used either two or three blades. Aerodynamic efficiency increases with the number of blades, but with diminishing return. Increasing the number of blades from one to two yields a six percent increase in aerodynamic efficiency, whereas increasing the blade count from two to three yields only an additional three percent in efficiency. Further increasing the blade count yields minimal improvements in aerodynamic efficiency and sacrifices too much in blade stiffness as the blades become thinner. We will do some experiments on this to confirm if the WindPitch exhibits behavior close to these same efficiencies.

System reliability is also affected by blade count, primarily through the dynamic loading of the rotor into the drive train and tower systems. While aligning the wind turbine to changes in wind direction (yawing), each blade experiences a cyclic load at its root end depending on blade position. This is true of one, two, three blades, or more. However, these cyclic loads when combined together at the drive train shaft are symmetrically balanced for three blades, yielding smoother operation during turbine yaw. Turbines with one or two blades can use a pivoting teetered hub to nearly eliminate the cyclic loads into the drive shaft and system during yawing.

Finally, aesthetics can be considered one of the biggest factors in determining blade count, since most people find the three-bladed rotor is more pleasing to look at as opposed to a one or two bladed rotor. All these are reasons why modern wind turbines use three blades.

The Three-Phase Alternator

Switching from blade theory and design to the WindPitch power plant, I mentioned at the beginning the WindPitch uses a three-phase alternator (Figure 10) rather than a simple DC motor. The primary advantages of alternators are no commutator and increased power output due to the three-phase architecture (refer to Part 7 for background on three-phase versus single-phase advantages).

The alternator is permanently wired in the STAR configuration, so I won’t be able to do any STAR versus DELTA comparisons, but with a three-phase alternator ALL the electrical power is delivered directly to the rectifier circuit with nothing lost through the mechanical and electrical resistance of a commutator. In the WindPitch, the alternator is inserted inside the plastic fuselage with its shaft protruding from the front and attaching to the rotor hub (Figure 11).

Number of Blades

Three-bladed turbines are not a magic number as these photos point out.

The 98 meter diameter (longer than a football field), two-bladed NASA/DOE Mod-5B wind turbine was the largest operating wind turbine in the world in the early 1990s. Like the Spruce Goose of the 1940s, it too is an exaggerated example of what can be done with a particular technology. Photo credit: Wikipedia.

The NASA Mod-0 research wind turbine at Glenn Research Center’s Plum Brook station in Ohio tested a one-bladed rotor configuration. Its odd looks probably contributed to its lack of popular acceptance even though its one blade may have proven effective for its design goals. Photo credit: Wikipedia.
The Full Wave Rectifier Circuit Board

The three wire output of the three-phase alternator is connected to a six diode, full wave rectifier board (Figure 12) that converts the three-phase AC voltage into unfiltered DC. This is the exact circuit that I showed you with the Whirlybird in Part 7 where you learned about the advantages of three-phase full wave rectification and how a three-phase full wave rectifier works. The rectifier diodes are mounted on a triangular circuit board that fits behind the alternator; the rectified DC output is available on two (positive and negative) spring-loaded connectors. Suffice it to say that the WindPitch wind turbine delivers a very powerful electrical output for its model size which, of course, is dependent on the wind applied to the blades. We will get into this in our experiments.

Wrap-Up

The experiments I have planned for the WindPitch will take another article to complete. The goal of this article was to introduce you to the theory and operation behind HAWT technology; so in that regard, here is a list of factors that affect the HAWT power output:

- **Blade Swept Area:** This was described in Part 7 with the Power Formula. Refer back to determine how to compute this value with the given blade area. I’ll cover it again in our next article when we experiment with the WindPitch.
- **Blade Shape:** This provides the aerodynamic lift that pulls the blades into the wind instead of just having the wind drag them around.
- **Blade Pitch:** This is the angle that’s best for startup and for maintaining optimum power output under varying wind conditions.

Figure 12, Full wave rectifier circuit board and schematic.

- **Number of Blades:** This determines the overall efficiency coupled with performance of the turbine.
- **Wind Vane:** This keeps the blades pointed directly into the wind at all times.
- **Three-Phase Alternator:** This is significantly more powerful and efficient as compared with a DC commutator-based motor.
- **Tower Height:** This is important in capturing smoother wind for better laminar flow across the blades which improves power output.

Next time, I’ll demonstrate some interesting experiments using the WindPitch. So, until then conserve energy and “stay green.”

Noteworthy

Website Changes: Our www.learnonline.com website is now strictly dedicated to online learning matters, so I’ve recently moved all of our REEL Power products and Experimenter Kits information to our new website at www.EnergyEducationLab.com. Please make a note of this.

Acknowledgements: This article is an original work by the author; however, credit for portions of it including selected text and images go to Wikipedia.

Credits: The WindPitch is a product of Jointiff, LTD and Horizon Fuel Cell Technology (www.horizonfuelcell.com). I want to thank MT Poon of Jointiff and Dane Urry of Horizon for their assistance and guidance in preparing this article.

Order online at:
www.melabs.com

Development Tools for PIC® MCUs

USB Programmer for PIC® MCUs

- **$89.95 (as shown)**
- RoHS Compliant
- Programs PIC MCUs including low-voltage (3.3V) devices
- Includes Software for Windows 98, Me, NT, XP, and Vista.

LAB-X Experimenter Boards

- Pre-Assembled Board
- Available for 6, 14, 18, 28, and 40-pin PIC® MCUs
- 2-line, 20-char LCD Module
- 9-pin Serial Port
- Sample Programs
- Full Schematic Diagram

PICPROTO™ Prototyping Boards

- Double-Sided with Plate-Through Holes
- Circuitry for Power Supply and Clock Large Prototype Area
- Boards Available for Most PIC® MCUs
- Documentation and Schematic

EPIC™ Parallel Port Programmer

- Starting at $59.95

BASIC Compilers for PICmicro®

- **PICBASIC™ Compiler** $99.95
- **PICBASIC® Pro Compiler** $249.95

Supports most PICmicro® MCU Families
Direct Access to Internal Registers
Supports In-Line Assembly Language Interrupts in PICBASIC and Assembly
Built-In USB, I2C, RS-232 and More
Source Level Debugging

See our full range of products, including books, accessories, and components at:

www.melabs.com

PICBASIC® Pro Compiler

- Pricing from $79.95 to $349.95

BASIC Stamp 1 Compatible

- Easy-To-Use BASIC Commands
- Windows 98/Me/2K/XP/Vista

PICBASIC™ Compiler

- Supports most 14-bit Core PICs
- Built-In Serial Comm Commands

March 2010

NUTSIVOLTS 53
Recap

This will be the last part of our mini series on serial communications between a PC and the Arduino. We will do two things this month. First, we will use what we learned in the last two articles about C# .NET programming to build an Arduino voltmeter that displays ADC data on the PC. Second, we will introduce the FT232R device that the Arduino board uses to mediate serial communications. For this device, we will learn how to use some of the extra FT232R pins, and we’ll look at how the Arduino uses this device to automatically reset the board.

Arduino Voltmeter

Using the Arduino Voltmeter

A word of warning for those who think running with scissors is a good idea. The Arduino voltmeter hooks directly to the Arduino analog input pin 0 which can measure up to five volts. **THIS CIRCUIT IS NOT PROTECTED IN ANY WAY.** It will not forgive you doing something stupid like trying to measure the voltage in the wall socket. If you survive such a Darwinian experiment, your hardware won’t and that could include the PC you’ve got your Arduino hooked up to (most USB ports are protected, but you can never be absolutely certain).

The Arduino Software

The Arduino voltmeter running on the PC (shown in Figure 1) is communicating with the following AVR_Test program running on the Arduino:

```c
// AVM_Test
// Joe Pardue December 17, 2009
// based on Tom Igoe’s example in the
// Arduino Serial.print(data) documentation
void setup()
{
    // begin the serial communication
    Serial.begin(19200);
}

// variable to hold the analog input value
int analogValue = 0;

void loop()
{
    // read the analog input on pin 0
    analogValue = analogRead(0);

    // print as an ASCII-encoded decimal
    Serial.print(analogValue, DEC);

    // print a terminal newline character so the
    // AVR Voltmeter
    // will know that it has received the full
    // string
    Serial.print(\n
    // delay 1 second before the next reading:
    delay(1000);
}
```

The PC Software

The Arduino voltmeter (AVM) source code in C# is provided in Workshop20Source.zip and requires Visual C# .NET.
Studio Express .NET to open and run it. [This can be downloaded from the Nuts & Volts website; www.nutsvolts.com.] The program is built from many of the components used for the Simple Terminal discussed last month. You access the Arduino by clicking the ‘Select Device’ menu item, which then opens the Settings dialog as shown in Figure 2.

The AVM uses the .NET Serial Port control Readline() function that returns a string, which is defined as a sequence of characters terminated by the ‘\n’ character. The Arduino sends the ADC value and then a ‘\n’ character (as shown in the source code) so that the AVM will interpret the input as a string. The AVM will then display the ADC value in the lower text window and convert that value into a voltage that it displays as a big fake red LED display in the upper window. The voltage is calculated from the ADC value using:

```csharp
// Calculate volts
myVolts = ((Double)myADC * VoltsPerADC);
```

Based on the constants:
```
static Double maxVoltage = 5.0;
static Double maxADC = 1023.0;
Double VoltsPerADC = maxVoltage / maxADC;
```

Voltage Across Resistance

Let’s use this with a circuit and play with Ohm’s Law. We put 10 of the 1K Ω from the Arduino Projects Kit on the breadboard so that they are each connected in series. Then connect one end of that series to +5V and the other end to the GND as shown in Figure 3 and Figure 4. [This arrangement of resistors is called a voltage divider.]

Figures 3 and 4 show the Arduino Analog Input pin 0 attached between the third and fourth resistors closest to the +5V end.

We know that

Ohm’s Law is

Voltage (V) is equal to

Current (I) times

Resistance (R):

V = IR

(And if ‘we’ don’t know this already, then take my word for it.)

We also know that we have five volts

and a total of 10K Ω resistance in our circuit, so we can use a little beginning algebra to calculate the unknown variable, current (I):

I = V/R
I = 5/10000 = 0.0005 amps

0.0005 amps is the same as 0.5 milliamps which we will usually show as 0.5 mA. So, we have 0.5 mA current running through each of the 10 resistors. Since each resistor is 1K Ω and we can solve Ohm’s Law for...
The voltage across each resistor:

\[V = IR \]

\[V = 0.0005 \times 1000 = 0.5 \text{ volts} \]

So, theoretically, we should be able to measure the voltage between the seventh and eighth resistor above 0V and it should conform to Ohm’s Law where the total resistance of the seven resistors is 7K \(\Omega \):

\[V = IR \]

\[V = 0.0005 \times 7000 = 3.5 \text{ volts} \]

I ran the Arduino voltmeter as shown in Figure 1 and got 3.47 volts.

Okay, 3.47 isn’t equal to 3.5, but it is about as close as we can expect with a setup like this. Our resistors only claim 5% accuracy, so each one can be plus or minus 50 \(\Omega \) and, again using Ohm’s Law we see:

\[R = \frac{V}{I} \]

\[R = \frac{3.47}{0.0005} = 6940 \Omega \]

And 6940 is actually pretty darn close since 5% of 7000 \(\Omega \) is 350 \(\Omega \) — our theoretical error — but we are only 60 \(\Omega \) off. Your results will vary a bit but should be within a similar range.

Building the Arduino Voltmeter in C# Express.NET

By this point in your PC-serial-GUI-development-using-C# career, and assuming you built the projects in the last two columns, you should be able to build the Arduino voltmeter GUI just by looking at Figure 1 and winging it. You may not have seen such things as how to make the textbox text white and the background black, but you should be familiar enough with our chosen tool that you can figure this out for yourself — especially since you have the original source code to look at. And if you think I just threw you into the deep end, well ... okay, I did. So start swimming because in the next section we are going to go off the high board.

Introducing the FT232R

As we’ve seen, the Arduino is not a single thing but a toolset that consists of (among other things): a hardware board, a PC IDE (Integrated Development Environment), and a communications link between them. Let’s take a look at the communications hardware that intermediates between the USB on the PC and the USART on the Arduino: the FTDI FT232R.

After all this time playing with the Arduino hardware, you might not have realized that the Due Milanove board has two microcontrollers on it. In addition to the general-purpose Atmel AVR ATmega328 that we’ve been spending all our time on, there is a special-purpose FTDI FT232R USB UART IC (www.ftdichip.com/Products/FT232R.htm) that controls our serial communications between the Arduino and the PC (see Figure 5).

I first discussed the FT232R in Nuts & Volts (before there even was a Smiley’s Workshop) in the Jun ’08 article: ‘The Serial Port is Dead: Long Live the Serial Port.’ That article discussed the concept of a Virtual Serial Port over USB using the FTDI chip FT232R on a breadboardable PCB — the BBUSB. This powerful little device is also the basis for my book *The Virtual Serial Port Cookbook* and an associated hardware projects kit available from *Nuts & Volts*.

The pins on the FT232R have at least two possible uses for each pin. Eight of the pins can be used as modem lines for converting USB to RS-232 style UART signals; these pins can also be used for GPIO (General-Purpose Input Output) as the eight-pin DBus. Four other pins can be used as the DBus or for special functions such as to blink LEDs when you have UART traffic as is done on the Arduino to blink the Tx and Rx LEDs. We will look at using some of the more accessible FT232R pins in both the modem and GPIO modes.

Let me repeat some praise
about the Arduino: It is a really good thing for beginners that you can use it without knowing anything about the FT232R (or bootloaders, or WinAVR, or AVRDude for that matter). We, however, are well beyond that beginner phase and are going deeper so that we can make our system even more useful. In addition to the USB pins, there are five other pins of the FT232R that the Arduino uses when communicating with the PC. They are: pin 1 TXD (transmit); pin 5 RXD (receive); pin 22 and 23 to blink the Tx and Rx LEDs; and pin 2 DTR (Data Terminal Ready). Check out Figure 8. That last one may be a bit of a surprise, but it is used off-label to reset the Arduino so that you can automatically upload code from the Arduino IDE to the AVR. The DTR pin resets the AVR so that the bootloader becomes active at the same time the Arduino IDE activates the program AVRDude to upload the code.

Okay, so why is it called DTR and not ‘reset?’ Well, that is because it is actually one of eight modem pins on the FT232R that are part of the concept of a virtual RS-232 serial port from a USB. Many serial ports on microcontrollers ignore all but two of these (RxD and TxD), and a few use a couple of other pins. It is rare to find any system that uses them all, so you’ll usually have extra pins to play with. If you read ‘The Serial Port is Dead ...’ article, this will all make more sense. For now, let’s just say that DTR has a long and interesting history but for our purposes it is a pin that we can use in the modem mode to toggle from the PC using old-fashioned serial port commands (in our C# example, we set this pin to 1 with serialPort1.DtrEnable = true; and to 0 with serialPort1.DtrEnable = false), thus providing a signal to the AVR reset pin that will force the AVR to jump to the bootloader so that we can upload a program.

There are also other modem pins (see Figure 6) available on the FT232R that with a little effort you can get at on the Arduino board. Four of these are easy to use since they are brought out on the X3 connector shown in Figure 5. A table of these pins is shown in Figure 6. [FYI, the pinouts for the FT232RL used by the Arduino are different from those shown in the ‘Serial Port’ article which uses the FT232RQ.]

In case this isn’t entirely clear, let me repeat: We can use some of the FT232R pins in the modem mode for off-label uses such as using DTR for resetting the Arduino, or we can use the pins for general-purpose I/O. When we use them in the modem mode to communicate between the PC and the Arduino they can only be used for input or output as shown in the table. However, when used in the bus mode, they can either input or output (but not serial communications). NOTE: YOU CAN’T USE BOTH THE MODEM AND BIT-BANG MODES AT THE SAME TIME.

Accessing the FT232R Pins

Before proceeding with these experiments, I strongly suggest you remove the ATmega328 from its socket to protect it from possible damage (use a small flathead screw driver and gently pry it up a little on each end until it pops out). All of the FT232R pins can be accessed the hard way by directly attaching wires to the FT232R pins (tiny wire, microscope, fine-tipped soldering iron, patience of Job — (not Steve, but the Old Testament guy). Since we aren’t either Job, I suggest we forgo the temptation and limit ourselves to probing the pins individually as we test them. We can probe the FT232R pins using the schematic shown in Figure 9. And by probe, I mean a random piece of wire as shown in Figure 10, where I use the RTS output to light up an LED.
Modern Mode

Using the Pin Change Tester Application

In order to light up that LED, you’ll need some PC-side software that lets you set and clear the RTS line. I wrote a little program in C# as shown in Figure 11 that lets you toggle the output on RTS and DTR while also reading the input on the CTS, DSR, DCD, and RI lines. You will find the Pin Change Tester C# source code in the Workshop20Source.zip file. I didn’t generate this as a separate application so you will have to run it in Microsoft Visual C# Express Edition which is okay since you want to see the code anyway, don’t you? Plug your Arduino into the PC USB port, then run the Pin Change Tester program. Use the Settings menu item to open the port as shown last month for the Simple Terminal.

Bit-bang Mode

To test the FT232R pins in the bit-bang mode, we will once again go to the ‘Serial Port’ article and use the Bit-bang Test program. The C# source code is included in the Workshop20Source.zip file, not as an application but as a project that you can open in Visual Studio .NET Express. You can repeat the probe tests you did previously, but this time each pin is not forced to be an input or output but can be used as either (depending on how you set the pin in the D bus block on the program). Click the button as shown in Figure 12 to set each pin as either input or output. If you select input, then the associated LED at the bottom will become active and will either light up or dim down, depending on the state it is reading. If you set it for output, then you can click the on/off buttons in the middle row to turn the associated pin on or off, allowing you to use your probe as shown in Figure 10 to light up an external LED. Also notice that the D0 and D1 pins are the same as the TX and RX, and are brought out on the Arduino female header pins 0 and 1, so these are the easiest to access.

Cool! I just got my first Vista BSOD (Blue Screen Of Death). I was running the bit-bang test code and then tried to open the same device in Developer Terminal just to see what would happen. Now I know that my laptop with dozens of programs open can burn all the way down to the foundations and with a simple restart, it can survive. However, I almost didn’t when my system crashed (I’m sure my blood pressure went off the charts while doing this), I was waiting to see how much work I’d lost). End of story: I saved everything right before I did the tests with my C# programs because I had a slight fear that maybe the idiot who wrote the code (me) might try something dangerously stupid. Moral: Before using any of my code, make sure you have backed everything up, saved your recent work, have your heart medications handy, and have the time to wait for Windows to figure out how to come back from the dead.

Okay, having a BSOD is a terrible way to end a workshop, but sometimes you have to face the fact that this stuff can get weird quickly. If, however, you have come to embrace the weirdness and want to look deeper, then you might want to get the Arduino Projects Kit and the Virtual Serial Port Cookbook and associated projects kit available from Nuts & Volts.

NV
4-WIRE STEPPER MOTOR W/ GEARS
Sanyo #B00224. 4-lead, 12Vdc stepper motor.
11.6 Ohm coils. 42mm diameter x 23mm body. Mounting flanges with holes on 50mm centers. 3mm dia. x 13mm long shaft. Prepped with 18mm diameter, 20 tooth gear. 8° leads.
CAT# SMT-125 $2.50 each

ULTRABRIGHT WHITE LED
Luxeon(R) III Star #LXL-LW3C Compact, energy efficient, ultra-bright white LED. Rated for up to 1400mA operation. This Lambertian pattern emitter creates a cool, fully dimmable, 5500K white light. Operates on 3.7 - 3.9 Vdc. Creates a cool, fully dimmable, ultra-bright white LED. Rated @ 400mA. UL, UL E.O. Rated 7A. 125V. UL, CSA.
CAT# LCAC-400 $25.00 each

FERRITE SNAP-BEAD
TDK #2CAT1518-0730-BK. For cables up to 7mm (0.27") dia. Case has an eyelet on one end which can be used with a wire-tie for extra fastening security. Case size 15mm dia. x 18mm long. Provides excellent absorption of high-frequency EMC. CAT# FB-85 $1.00 each

24VDC 6.5A 150W POWER SUPPLY
Mean Well #RS-150-24. 197 x 98 x 38mm. Short circuit/overload/over-voltage protection. Adjustable output voltage. Led output indicators. UL, CSE, TUV, CE. CAT# PS-24150

24VDC 350W MOTOR
High-performance 24 Vdc motor for electric scooters and bicycles. Schwinn, GT, Mongoose, Izip (Currie Technologies). Standard on other electric bikes as well. 350 watts, 2600 RPM. 22 Amps. 4" diameter x approximately 4" long. Three-hole mounting flange - 0.25" diameter holes on approx. 3.9"centers. 3/8" (8mm) dia. outer shaft, 10mm dia. inner shaft, equipped with an 11 tooth sprocket. 24° long lead.
CAT# DCM-1353 $20.00 each

SPDT KEY SWITCH
S.P.D.T., on-on, keyswitch. Key removable in both positions. Rated 3A 250V. 19mm threaded bushing mount. Good-looking chrome bezel. Nice, snappy feeling when switching from one position to the other. All switches are keyed alike. Includes one key.
CAT# KSW-29 $5.75 each

10-CONDUCTOR, 3" JUMPER
3" ribbon jumper cable. 10 leads, stripped and tinned, on 0.1" centers. RoHS compliant. CAT# RJ-310

SOLAR CELL
Output: approximately 3 Volts @ 40 mA. 60mm square x 2.5mm thick epoxy-encapsulated silicon photovoltaic cell. Solid, almost-unbreakable module with solderable foil strips on backside. Ideal for solar-powered battery chargers and other projects.
CAT# SPL-61

12 VDC 1.5A SWITCHING POWER SUPPLY
Input: 100-120Vac, 50/60Hz. Output: 12Vdc 1.5A. 6" cord. 2.1mm coax power plug. Center positive. UL. CAT# PS-12151

125V. UL, CSA. NIMH BATTERY PACK
Philips SJ841917. 2.4V, 830mAh rechargeable battery pack for many Panasonic cordless phones. Individual cells are 1.2V, 830mAh and are slightly longer than standard AAA cells, 48mm long x 10mm dia.
CAT# NMH-830 $1.75 each

ENCASED PIEZO ELEMENT, PC MOUNT
Murata #PKM22EP-40. 22mm diameter x 8mm plastic case. PC pins on 10mm centers. 4KHz resonant frequency. Piezo element inside case is 20mm diameter.
CAT# PE-57 $75.00 each

Shop ON-LINE www.allelectronics.com
Making a Mesh of Things

Just as FedEx was delivering electronic parts for a future Design Cycle column, a man with a couple of healthy pipe wrenches appeared behind the delivery representative. The wrench-laden stranger identified himself as an employee of my natural gas supplier. As it turned out, Chris placed a box of SMT parts in my hand and the gas company’s wrench handler left me with a brand new gas meter. All of this may seem routine. However, my new gas meter no longer requires a pair of human eyes to ogle its needles. Before any of us called them “network nodes,” electronic devices participating in a network were normally connected to each other with wire. Some folks with pointy hats also joined the networking fray, connecting their network devices together with RF. Even with RF, ancient network nodes usually could not depend on their neighbors to help them get their messages back to base. I can’t speak for my new gas meter, but as far as getting a message back to headquarters, I’ll bet it has the ability to get by with a little help from its “friends” in the neighborhood. This friendly association is called mesh networking. Thank goodness Ringo didn’t have a clue about mesh networking. Can you imagine the lyrics, “I get by with a little help from my mesh.”

VEMESH

Today’s mesh topologies have already left wired networks in the dust. Point-to-point RF networks are also being chocked out by mesh networking. There is more than a handful of mesh networking variants out there right now. With that, our attention this month will focus on the Diversity Path Mesh topology which is a product of Virtual Extension. Diversity Path Mesh technology appears to use “bad” network methods to its advantage.

Every node in a Diversity Path Mesh wireless network is analogous to an ant. No ant in the colony is unique except as to what it has been programmed to do. I’ll bet that ants don’t have names or numbers assigned to them physically and neither do VEmesh Nodes. As you will see, nodes in a Diversity Path Mesh wireless network depend on neighbor nodes and the overall network application just as ants in a colony depend on each other and the queen.

A major portion of the idea behind mesh networking is to eliminate wire. Yet another portion of mesh networking is all about servicing wireless remote sensors and wireless remote sensor networks. The presence of sensors sometimes requires the presence of sensor controls. So, if we sum all of the parts, a wireless mesh network can be defined as a means of wirelessly controlling and monitoring a remote sensor network.

When I work with any type of radio equipment, the first question that comes to mind is the effective range of the equipment I will be using. Many of us think the range of a radio set is totally dependent on the power of the transmitter. Not so. There are a multitude of factors that affect the range of a wireless mesh network node. On the transmitter side, range depends on the efficiency of the antenna system and the environment that the wireless network node must exist within. Walls, metal doors, buildings, terrain, and any type of metal structures are all potential range busters in a wireless mesh network topology. Even vegetation is a range-hampering concern at the frequencies used by most networks. In addition to...
having sensitive front end circuitry, receiving nodes in a wireless mesh network must also be able to cope with propagation path cross talk and radio frequency interference caused by Earthly phenomena or other magnetic wave emitting devices competing for the same RF air space. Believe it or not, range in a wireless mesh network is also affected by the way the data is encoded and transmitted.

VEmesh is based on Diversity Path Mesh technology. If we were asked to define Diversity Path Mesh, the words would go like this. Diversity Path Mesh is a multi-hop bi-directional communications method that was specifically developed for wireless sensor networks that operate in the unlicensed frequency bands.

Recall that I mentioned that Diversity Path Mesh seems to use “bad” network practices to its advantage. Instead of routing data through the network, Diversity Path Mesh floods the network with data. Flooding occurs when a transmitting node transmits the same message to every node in the network that is within range. Thus, in a Diversity Path Mesh wireless network every node in range receives the same message. With every node receiving the same data, there is no need to include any routing data in the transmitted message. No routing information in the packet results in a smaller message. The absence of the requirement for physical addressing also results in a reduction of complexity in the node’s hardware design. Since every node receives the same message and there are no routing tables to maintain and update, Diversity Path Mesh network nodes can be added and removed with zero disruption to data transfer within the network.

Despite the advantages of flooding, simultaneous retransmissions can result in collisions that must be reconciled with additional retransmissions, which must be corrected with more retransmissions, and so forth. When transmission corrections overtake data throughput, the network falls into chaos resulting in what is termed a storm. Diversity Path Mesh eliminates chase-your-tail transmission storms in the network by relaying messages to surrounding nodes in predetermined controlled time slots. The multiple identical transmissions in a Diversity Path Mesh-based wireless network are summed at the receiving node in the receiver’s demodulator. The summing of the identical incoming messages results in an increase of the received signal strength. With every node in the network using this coordinated simulcast method, multiple transmission paths to the destination are created.

These methods bring increased reliability to the network in that there is no single path of failure. Dead spots in a wireless mesh network are also eliminated due to the creation of multiple transmission paths. As you have probably already ascertained, the nodes are the network. Thus, physical routers and routing information within the data packets are eliminated. With no routing requirement, an unlimited number of nodes can be inserted and removed at any time without network disruption, data throughput is high, and internodal range is enhanced due to the use of simultaneous parallel paths. Is this too good to be true?

VEMESH 101

I just happen to have a Gateway and some VEmesh nodes from which we can assemble our own test network. To expedite our testing, the VEmesh nodes I have are evaluation versions which are loaded with supporting hardware and firmware specifically installed to facilitate an easy to set up test network configuration. For instance, the output power of the evaluation nodes is fixed at 10 mW. In reality, the output power of a VEmesh Node can range from -10 to +20 dBm (0.1 mW to 100 mW). The nodes also contain a toggle switch array in the guise of a four-position DIP switch which allows a quick way to change the operating mode and address of the node. You already know that Diversity Path Mesh network nodes don’t have unique addresses. So, VEmesh Node addressing is only used in a specific evaluation mode. The other extras found on a typical evaluation node are shown graphically in Figure 1.

The VEmesh Gateway is responsible for corralling all of the data and command messages for processing by the management application. The VEmesh Gateway does exactly what its name implies. All messages that flow out of the management application find their way through the Gateway first. The same is true for any messages that are within the network.
inbound from the wireless sensor network nodes — the Gateway sees it first. A message can be data, a command, or a response to a command.

While a VEmesh Gateway’s job is to interface wireless sensor network traffic to a host management application, the VEmesh Node is born to do the down and dirty work. VEmesh Nodes interface directly to a sensor or sensor array, and are responsible for relaying data between nodes and to and from the host management application.

Almost any type of sensor communications interface can be adapted to a VEmesh Node. The evaluation nodes in our possession are limited to UART and USB interconnects. UART-enabled VEmesh Nodes are designed to interface to a sensor’s output via the Node’s RS-232-based interface. The Nodes with a USB portal are intended to be connected directly to a PC USB port which is emulating a standard PC COM port. The protocol of choice is RS-232 EIA serial data transfer using TTL logic levels. The VEmesh evaluation Nodes and Gateway are preprogrammed for a baud rate of 19200 bps.

The heart of a VEmesh Node is under the lens in Photo 1. I figure the radio IC is to the far right of the shot as I can trace paths from the UART interface directly to the Texas Instruments part on the left.

THE VEMESH NODE HARDWARE INTERFACE

The VEmesh Node’s UART interface consists of a UART_RXD input, a UART_TXD output, and a UART_CTS output. The aforementioned UART signals are located on the Node’s J10 connector as pins 4, 6, and 8, respectively. Pin 10 of J10 is the UART interface ground connection. A macro view of J10 is shown in Photo 2.

All of those USB discussions we’ve had in past Design Cycle offerings have paid off in that we already know how the FTDI FT232RQ USB interface IC you see in Photo 2 works. In this case, the USB interface is used to turn the VEmesh Node’s UART interface into a USB interface that is supported by a PC COM port. The inclusion of the USB interface allows us to use a terminal emulator program such as Tera Term Pro to imitate the output of a sensor that would normally be attached to the VEmesh Node. The evaluation firmware loaded on the Nodes and Gateway is coded to allow the transmission and reception of one to 20 ASCII characters. The end of the ASCII string is delimited with a Carriage Return (0x0D) and Line Feed (0x0A) character pair. ASCII character transactions allow us to use Tera Term Pro to send data via a PC keyboard and receive results in human readable form.

VEMESH EVALUATION OPERATIONAL MODES

There are two VEmesh Node operating modes that we can select with the four-position toggle switch array. Standard mode is as close to a real-world VEmesh wireless
network as we can get with the evaluation Nodes and Gateway. The second mode is called Echo mode which exists for evaluation purposes only.

Echo mode demands that a VEmesh Node retransmit (echo) any message it receives from the Gateway back to the Gateway. The echoing of the message is done in lieu of transmitting any sensor data the addressed Node may have queued. This is where the USB PC connection comes into play. The terminal emulator program running on the PC is used to transmit an ASCII character string and display the results echoed by the addressed VEmesh Node.

Just in case you’re wondering why Echo mode is not part of a standard VEmesh wireless network, recall that VEmesh Nodes do not have physically assigned addresses. Thus, it is up to the host management application to uniquely identify the Nodes in the network using their data streams. The Gateway and Nodes are not aware of any embedded addressing information as messages are simply passed from node to node, to gateway, and finally to the management application. This implies that the addressing information must be embedded into the message and is only meaningful to the host management application. Since the addressing information is not hard-coded into any VEmesh Node, we must emulate an embedded address that would normally be inserted into the sensor-initiated message transmitted by a Node. We do this with hexadecimal patterns we click into the toggle switch array.

If you apply a binary address pattern to the four toggle switches in the toggle switch array, you will end up with addresses 0 through 15 (0x00 through 0x0F hexadecimal). Address 0 (zero) is not really an address as when selected, the VEmesh Node on which it resides enters Standard mode. Our Node in Photo 2 is set to echo the message addressed to VEmesh Node 9.

PUTTING ECHO MODE TO THE TEST

To test the Echo mode operation, I installed the Windows XP FTDI VCP (Virtual COM Port) driver and the Tera Term Pro terminal emulator application on a Lenovo S10 Netbook. Following the software install, I plugged the VEmesh Node you see in Photo 3 into one of the Lenovo Netbook USB ports. I attached the Gateway to a second similarly equipped Lenovo S10 and started a Tera Term Pro session for the USB-installed VEmesh Gateway. At this point, both the Node and Gateway activity LEDs began to flash, indicating that they were synchronized and in contact with each other.

The syntax for Echo mode is to send the selected VEmesh Node address followed by an ASCII string terminated with a CRLF (0x0D 0x0A) sequence from the VEmesh Gateway. I did just that using a Node address of 9 followed by 12 ASCII characters and a CRLF sequence. I received the response you see in Screenshot 1.

GO AHEAD ... PRESS THE BUTTON

The Data Burst Pushbutton on the VEmesh Node is programmed to send the hexadecimal state of the sending node’s toggle switch array and a canned message to the Gateway. To test the operation of the Data Burst Pushbutton, we must put the Node into Standard mode. Nothing needs to be done to the Gateway. Placing the Node into Standard mode is accomplished by powering down the Node, setting the toggle switch array to address

SCREENSHOT 1. The VEmesh Node address (9) and my ASCII message were echoed by the VEmesh Node pictured in Photo 3.
zero, and repowering the Node.

After powering up the Node in Standard mode, the VEmesh Node and Gateway activity LEDs resume their synchronous blinking cycles. Recall that the Gateway and Nodes in the network exchange data using predetermined timing. The blinking of the nodes’ indicator LEDs is representative of the synchronized data exchanges. The idea behind the Data Burst Pushbutton is to demonstrate how a node can break the data exchange sequence and send its message immediately. The Data Burst Pushbutton evaluation mode worked as designed as you can see in

SCREENSHOT 2. This message was transmitted by our VEmesh Node in Standard mode. The zero in the “alert message” indicates the state of the VEmesh Node’s toggle switch array. Looks like somebody didn’t run this through the old spell checker.

I’m sure you have some practical uses for a VEmesh wireless network. After all, it’s now part of your Design Cycle. NV

All in a day’s work

ProtoMat® Benchtop PCB Prototyping Machine

ProtoMat® Benchtop PCB Prototyping System

What would your day look like tomorrow if you could cut yourself free from the board house and produce true, industrial quality PCBs right at your desk? LPKF’s ProtoMat benchtop prototyping systems are helping thousands of engineers around the world take their development time from days and weeks to minutes and hours. In today’s race to market, it’s like having a time machine.

www.lpkfusa.com/pcb
1-800-345-LPKF

“Can’t beat an LPKF system for prototyping. We do up to three iterations of a design within a day.”
Leonard Weber
Agilent

SOURCE
VEmesh
Lemos International Co., Inc.
www.lemosint.com

CONTACT THE AUTHOR
Fred Eady can be contacted via email at fred@edtp.com and the EDTP Electronics website at www.edtp.com.
Integrated Ideas & Technologies, Inc.
6164 W. Seltice Way • Post Falls, ID • 83854 • USA
Ph (208) 262-7200 • Fax (208) 262-7177 •
www.iitmetal fab.com

* Quick
* Affordable
* Precise
* No Minimums

24 hour turn time based on quantity and finish requirements
www.canakit.com
- Over 200 Kits & Modules to choose from!
- Easy Worldwide Online Ordering
- Fast Delivery & Same Day Shipping
FM Transmitters • Timers • Audio Amplifiers • Motor Controllers

Serial LCD & LED
www.melabs.com

BiPOM Electronics, Inc.
Your One Source for µController Systems
ARM/μPC/68K/MOS/STAMP and others

GadgetPC ARM7 USB
Computer with Linux

BiPOM.com
Embedded Web Server

superbrightleds.com
Component LEDs - LED Bulbs - LED Products
Super Bright LEDs Inc. St. Louis, Missouri USA superbrightleds.com

Technicians, Engineers & Programmers
Find Jobs Fast
Upgrade your Resume with new Skills & new Projects
www.csilibrary.com
Helping you add special SkillsFX to your resume
Project Ideas, Project Add-on’s & Hands-On training

iTelegraph
www.criticalvelocity.com/it
Send Morse code to your friends using your vintage telegraph set
or the built-in sounder over the Internet!
- Arduino compatible, Open Source Kit
- Hack it for other Internet applications!
Kits, Arduino compatible shields and more!

www.PowerProducts.com

USB Add USB to your next project—it’s easier than you might think!
- USB-FIFO • USB-UART • USB/Microcontroller boards
- RFID Reader/Writer • ZigBee Ready Transceivers

www.dlpdesign.com
Absolutely NO driver software development required!

GPS MADE SIMPLE
LinX Technologies
AM/FM Broadcasters • Hobby Kits
Learning Kits • Test Equipment
...AND LOTS OF NEAT STUFF!

Sheet Metal Fabrication
Complete Fabrication Center
Integrated Ideas & Technologies, Inc.
Precision Laser, Waterjet, Plasma, Machining, Forming, and Welding Capabilities
www.iitmetalfab.com

Pololu Robotics & Electronics
3095 E. Patrick Ln. #12, Las Vegas, NV 89120
www.POLOLU.com 1-877-7-POLOLU
Motor, servo, and robot controllers
or Sensors

Choose your preferred format:
print or digital media.
We have just what you’re looking for!
12 magazine bundle $57.00
12 issues on CD-ROM $24.95
Order today 800 783-4624
or online at www.nutsvolts.com

For the ElectroNet online, go to
www.nutsvolts.com
click Electro-Net

ELECTRONET
March 2010
Let’s see what happens when a near spacecraft collects data without regard to the sun’s position. The three images below were all taken at similar altitudes but at different sun angles. The chart on the next page is of the sky’s brightness (in three different colors) and contains data collected throughout a near space mission.

During a typical near space mission, the near spacecraft rotates at an irregular speed and direction. The speed and direction is not predictable since many factors influence the balloon’s rotation like changing wind speed and balloon shape. Normally, rotation is ignored and the flight computer collects data based on mission elapsed time or altitude. Data spikes are removed later (if possible) from the spreadsheet to smooth out the data. With the advent of digital cameras and large memory cards, near space missions record tremendous amounts of pictures to work around the problem — if you take 200 photos, some of them are bound to be good.

However, I prefer to record data when the camera or sensor is pointed in the proper direction. The way to do this is to carry a sun sensor just like real spacecraft. Space-rated sun sensors are too heavy and complex, however, to justify their use on an amateur near space mission. Therefore, I developed a lightweight substitute. Its current software reports the sun’s position in quadrants (90 degree units) which is good enough for many near space (and other robotic) uses.

THEORY OF OPERATION

The sun sensor takes advantage of the light sensitive properties of cadmium sulfide (CdS) cells (a.k.a.,

This image was taken when the camera was pointed towards the sun (the sun is located just above the right side of the picture). The sun’s light brings out atmospheric layering but wipes out most of the details in the clouds.

This image was taken when the camera was pointed away from the sun. Because the clouds hide most of their shadows, much of the cloud’s shapes are not as apparent.

This image was taken when the sun was located 90 degrees away and out of the field of view. Cloud shapes and some structure to the atmosphere are apparent.

SUN SENSOR FOR DATA COLLECTION

During a weather balloon’s ascent, its near spacecraft will spin unpredictably. This is acceptable if you want to observe in every possible direction, but it’s not so great if the sun’s position is important to the data you want to collect. The sun sensor presented here is just the ticket for data collection that’s sun sensitive. So, this month’s article discusses a design I developed for near space use.
photocells or photoresistors). Photons of light give electrons bound to the CdS molecule the energy they need to jump to another molecule. The more intense the light, the greater the energy available to the electrons, and the easier it is for them to make the jump. The easier it is for electrons to jump, the lower the resistance of CdS.

Pairing a light sensitive resistor with a fixed resistor in a series circuit creates a light sensitive voltage divider; in other words, a circuit that produces a voltage related to light intensity.

With four light sensitive voltage dividers arranged in 90 degree arcs, the sun’s position (in one of those quadrants) can be determined by finding the highest voltage of the four voltage dividers. For that task, I selected the PICAXE-14M.

By default, the PICAXE-14M has five inputs on the left side of the IC (pins 3 through 7) and six outputs on the right (pins 8 through 13). However, only one of the inputs (input 4) is capable of analog-to-digital conversion (ADC). Fortunately, the DIRSC command allows the six portC I/O pins of the PICAXE-14M to be redefined.

DIRSC is a bit level command with each bit representing the input/output state of each portC I/O pin. The NearSys Sun Sensor uses the command

```
LET DIRSC = %00110000
```

to convert portC pins 0 through 3 into inputs (capable of doing ADC), and pins 4 and 5 into outputs.

The PICAXE digitizes the voltages of the four light sensor circuits with the following command. In the example here, x is the ADC I/O pin being digitized and it ranges from 0 to 3. CHx is the name of the byte-size variables in RAM that the results of A-to-D conversions are stored in, and it ranges from CH0 to CH3.

```
READADC x, CHx
```

The PICAXE-14M uses two additional byte-size variables during the comparison of quadrant readings. The first is VALUE and it stores the largest current ADC reading. The second is HEADING and it stores the number of the quadrant with the currently greatest ADC reading.

After digitizing all four quadrant values, the PICAXE-14M sets VALUE to the value in the variable CH0 and HEADING to 0. Then, the remaining three ADC readings (in variables CH1, CH2, and CH3) are compared to VALUE. When a greater ADC reading is found, VALUE is set to the new ADC reading and HEADING is set to the quadrant of the ADC reading. By the end of the comparisons, the variable HEADING contains the quadrant with the greatest ADC reading (called the solar quadrant). The PICAXE then generates a serial message at 1200 baud with the following format:

```
H, Heading
```

Heading is a one byte digit from 0 to 3 that indicates the current solar quadrant. The PICAXE-14M repeats the process after sending the message so that at anytime during the mission, the flight computer can listen to reports on the current solar quadrant.

BUILDING THE NEARSYS SUN SENSOR

There are two major steps to building a sun sensor. The first is to construct the printed circuit board (PCB) and solder its components. The second is to construct the sensor housing. Let’s start with the soldering. You’ll need the following electronic components to make the NearSys Sun Sensor circuit:

- PICAXE-14M
- 14-pin IC socket (300 mils wide)
- 10K resistor (1/4W)
- 22K resistor (1/4W)
- (2) three-pin straight male headers
- (4) CdS photocells
- (4) CdS-matching resistors (see directions for selecting these resistors)
— #24 AWG stranded wire (three different colors are recommended)*
— Heat shrink tubing for #24 AWG wire
— NearSys Sun Sensor PCB
— NearSys Sun Sensor code
Download the PCB pattern and code from the Nuts & Volts website at www.nutsvolts.com.

* Use at least two foot long wires

SELECTING THE CDS-MATCHING RESISTORS

In order to make each sun sensor quadrant as sensitive to light variations as possible, we need the voltage swing of each photocell circuit to be as great as possible. We can find the best resistor for each photocell (its matching resistor) by using the following procedure:

- Measure the dark resistance of the photocell by pointing the photocell away from the sun (and pointed towards a dark surface). Call this value D.
- Measure the light resistance of the photocell by pointing the photocell towards the sun. Call this value L.
- Calculate the geometric mean of the D and L values with the equation below. If you’re unfamiliar with a power of one-half, it means the square root. The closer the fixed resistor is to this calculated value, the greater the voltage swing of the photocell circuit.

\[M = (D \times L)^{1/2} \]

After selecting the four CdS-matching resistors, you’re ready to assemble your sun sensor PCB. There are four jumper wires in the sun sensor and the best wires for this purpose are cut resistor leads. So, form the leads of the resistors and solder them to the PCB. After cutting the leads, form the cut leads to make the jumper wires and solder them. Then, install the 14-pin IC socket and then a three-pin header. Bend the photocell leads to 90-degree angles where they can just hang over the edge of the PCB (see how the photocells are positioned in the parts placement diagram).

The next step is to create the sun sensor’s power and signal cable. Strip 1/4” of insulation from one end of each of the three wires and solder them to the PCB. Then, pass each insulated wire through the strain relief hole next to its solder pad. The wires terminate with a three-pin male header, so strip 1/4” of insulation from the ends of the wires and tin them. Slide heat shrink tubing over the wires and push them away from the tinned ends. Place the long end of the three-pin header into a receptacle (this keeps its three pins in their proper position during the soldering). Quickly tin the three short pins. Then, one at a time, place the wires in contact with the short side of the header pins, and quickly heat the tinned pin and wire with a soldering iron. After the solder cools, slide the heat shrink over the soldered connection and shrink (the proper order of the wires depends on the flight computer, but typically, they are ordered like the wires in a servo cable).

The last step is to test the sun sensor. First, check the bottom of the PCB for shorts. The rest of the test can be performed without the presence of the sun, as long as it’s performed in a room that has a single light source. Plug the sun sensor’s power and signal cable into a flight computer (or into a breadboard set up to provide five volts and ground). Start the PICAXE Editor and open the sun sensor code. In the code, comment out the SEROUT command and uncomment the DEBUG command. Plug the programming cable into the programming header of the sun sensor and download. After downloading, the PICAXE Editor’s debug screen will open. Verify that the Heading variable (byte B5) is set to the sun sensor’s solar
quadrant (that’s the quadrant currently pointed towards the sun or room light). Next, rotate the sun sensor and verify that the Heading variable changes as a new quadrant rotates towards the sun (or light).

BUILDING THE SUN SENSOR BODY

The sun sensor shown at the beginning of this article has a two-piece shell housing. Both halves (the top and bottom half) are made of 1/2” thick Styrofoam and are covered in aluminum tape. Ten-millimeter thick Cellfoam 88 is another good material for making the sun sensor’s housing. The top shell is essentially a lid while the bottom shell contains the sides of the sun sensor. The top and bottom shells are the same size octagons. The sides are tall enough to create a 1-1/2” tall housing and are hot-glue to the bottom shell.

The housing’s four diffusers are cut from ping pong balls. Use a circle template to draw perfect 1-3/8” diameter circles on the balls. Cut the circles from the ping pong balls using cuticle scissors and an Exacto™ knife to make the starting hole. Make slightly smaller holes in the quadrants of the sun sensor, centered where the photocells can look out. Use the Exacto knife to cut out these circles.

Place the completed PCB inside the bottom shell and measure how high it needs to be raised to center the photocells in the center of the quadrant openings. Cut some Styrofoam spacers to that thickness and hot-glue them into the bottom of the shell. Hot-glue a little foam rubber to the inside of the top shell to keep the PCB firmly in place once the shells of the housing are closed. (Alternatively, you can hot-glue the PCB to the bottom shell housing.)

Before gluing the top to the sun sensor housing, cut a small opening in it just large enough for a programming header to reach the PCB inside. That way, the sun sensor firmware can be updated without having to take the housing apart.

Cover the shells with a single layer of aluminum duct tape. Cut a Styrofoam plug for the programmer opening in the top shell and tape the cover in place (you can always remove the tape to expose the plug and programming header). Before sandwiching the PCB between the shell halves, mark the quadrants on the housing as 0, 1, 2, and 3 (the top silk pattern explains which quadrant is which). After labeling the quadrants, glue the shells together. Then, hot-glue the ping pong ball diffusers over the quadrant openings in the sun sensor.

To be effective, the sun sensor must be mounted on top of a module where it is in constant sunlight and never in the shadows. Therefore, I made a Styrofoam bracket to fit the top of a near spacecraft module. The bracket has two Popsicle sticks glued to it where the sun sensor attaches with a rubber band. The bracket and sun sensor are held to the module with additional rubber bands wrapped around the module’s hatch. Rubber bands are sufficient to mount the sun sensor since it and the bracket weigh so little.

READING NEARSYS SUN SENSOR DATA

A flight computer using the sun sensor uses the following code to read solar quadrant reports. This example was written for a BalloonSat Mini flight computer that had the sun sensor plugged into I/O port 4.

```
SYMBOL Heading = B1
Sun:
SERIN 4, T1200_4, ("H"), #Heading
```

The desired value of the Heading variable depends on where the camera or sensor are pointed. Since the quadrants are marked on the sun sensor housing, it’s easy to tell the proper heading and to code it into the flight computer’s program. The subroutine operating the camera or sensor uses an IF/THEN routine to decide if a picture should be taken or if data should be collected at that moment.

That’s it for making a nearsys sun sensor. Next time, I’ll update you with tests of the sun sensor’s capabilities and discuss an ultraviolet addition to my environmental test chamber.

Onwards and Upwards,

Your near space guide **NV**
Turn Your PC into a Real-Time Audio Spectrum Analyzer

Features
- FFT to 1048576 pts
- 24 bit, 192kHz
- 1/96 Octave
- Dual Channel
- 3-D Surface Plot
- Spectrogram Plot
- Digital Filtering
- Signal Generation
- RT-60, Leq, Delay
- THD, IMD, SNR
- DDE, Logging
- Vibration Analysis

SpectraPLUS 5.0
FFT Spectral Analysis System
Download 30 day FREE trial!
www.spectraplus.com
Starting at $295

PHS
Pioneer Hill Software
24460 Mason Rd
Poulsbo WA 98370
360 697-3472 voice
360 697-7717 fax
pioneer@telebyte.com

NEW! Orangutan SVP-1284 Robot Controller

Item #1327 & #1328
$99.95 and $89.95

Key Features:
- Wide input voltage range - 6-13.5 V.
- C/C++ programmable microcontroller - User-programmable Atmel ATmega1284PA AVR running at 20 MHz (128 KB flash, 16 KB SRAM, 4KB EEPROM).
- Built-in USB AVR ISP programmer (USB A to mini-B cable included).
- Two bidirectional motor ports - 2 A continuous/6 A maximum per channel.
- 8 servo ports - Use Pololu’s AVR C/C++ library to control up to 8 servos!
- 21 free I/O lines - Up to 12 can be analog inputs, optional dual quadrature encoder inputs, two hardware UARTs.
- Removable LCD - 16-character x 2-line, with backlight.
- Two step-down voltage regulators - Each capable of supplying 3A.
- Other fun stuff - Buzzer, 3 user pushbuttons, 2 user LEDs, and more!

The Orangutan SVP-1284 is available fully-assembled and as a kit.

The Orangutan SVP-1284 lets you program your robot in C/C++ with free AVR development software. Use Pololu’s AVR C/C++ library to easily make your motors go, servos turn, LCD print, and buzzer play - the Orangutan has all of these hardware features (and more) built right in!

Save 10% with coupon code NV24SRV8

Learn more at www.pololu.com/svp or call 1-877-7-POLOLU

March 2010 NUTS & VOLTS 71
Arrays, loops, and procedures. Interfaces and working with variables, programming skills, like designing user diary. You’ll develop real-world and a protected personal including a quiz program advanced projects, then moves on to more Basic Express Edition, and useful program in Visual writing a simple but started right away. This book will get you into electronics being designed microcontrollers are then you’ve found microcontrollers to program and a must have if complement to Vol 1 PICs Vol 2 continues where the first book left off. This book contains the collection of the next 12 articles that were published in Nuts & Volts magazines of 2007. A great compliment to Vol 1 and a must have if you’re entering the world of PICs and Programming. $29.95

Encyclopedia of Electronic Circuits, Volume 7 by Rudolf F. Graf / William Sheets
NEW IN THE BESTSELLING SERIES! ONE THOUSAND MORE LEADING-EDGE CIRCUIT DESIGNS!

Designed for quick reference and on-the-job use, the Encyclopedia of Electronic Circuits, Vol 7, puts over 1,000 state-of-the-art electronic and integrated circuit designs at your fingertips. Organized alphabetically by circuit type, this all-new collection includes the latest designs from industry giants such as Advanced Micro Devices, Motorola, Teledyne, General Electric, and others. $39.95

Beginner’s Guide to Embedded C Programming Volume 2 by Chuck Hellebuyck
In this “Volume 2,” Chuck takes the reader to the next level by introducing how to drive displays, how to use interrupts, how to use serial communication, and how to use the internal hardware peripherals of the PIC16F690 microcontroller such as SPI, PWM, and timers. When you have finished reading this book and completed the projects, you’ll be well beyond the title of Beginner! $39.95
The components that are added to the PICKit 2 that Chuck uses in his new book can also be purchased through the Nuts & Volts Webstore. $12.95

Programming and Customizing the Multicore Propeller Microcontroller by Parallax
Written by a team of Propeller experts, this authoritative guide shows you how to realize your design concepts by taking full advantage of the multicore Propeller microcontroller’s unique architecture. The book begins with a review of the Propeller hardware, software, and Spin language so you can get started right away. $49.95*
BOOK & KIT COMBOS

From the Smiley Workshop
C Programming for Microcontrollers
by Joe Pardue

Do you want a low cost way to learn C programming for microcontrollers? This 300 page book and software CD show you how to use ATMEL's AVR Butterfly board and the FREE WinAVR C compiler to make a very inexpensive system for using C to develop microcontroller projects.

Combo Price $99.95 Plus S/H

Virtual Serial Port Cookbook
by Joe Pardue
As talked about in the Nuts & Volts June issue, “Long Live The Serial Port”

This is a cookbook for communicating between a PC and a microcontroller using the FTDI FT232R USB UART IC. The book has lots of software and hardware examples. The code is in C# and Visual Basic Express allowing you to build graphical user interfaces and add serial port functions to create communications programs.

The Virtual Serial Port Parts Kit and CD
(also available, above right)

Reg. Price $ 114.90
Subscriber Price $109.95 Plus S/H

CD-ROMS

Catch up on 2003-2008 back issues
These CD-ROMS are PC and MAC compatible. They require Adobe Acrobat Reader Ver.6.

For more offers go to: www.nutsvolts.com

CD-ROMS
GREAT ARTICLES!
NixieNeon Clock Kit

Using Neon and Nixie bulbs, this clock displays the precision movement of time and is programmable to display “Time Chaos” at different intervals. The NixieNeon Clock then resets itself to the correct time in an eye-catching ballet of luminosity.

The PCB is 7.25”x 7.25” and consists of over 400 components.

- **Reg** $195.95
- **Sale Price** $159.95
- PCBs can be bought separately.

Nixie Tube Clock Kit

Cherry Wood Clock Case

Nixie tube clocks fuse the spirit, drama, and eerie beauty of cold war technology with modern inner works to create uncommon handcrafted timepieces.

- **Now with optional case choices!**
- **Get more info @** www.nutsvolts.com
- **Subscriber's Price** $148.95
- **Non-Subscriber's Price** $159.95
- Kit includes article reprint, complete instructions, and parts list.

Transistor Clock Kit

If you like electronic puzzles, then this kit is for you! There are no integrated circuits; all functionality is achieved using discrete transistor-diode logic. The PCB is 10”x1” and harbors more than 1,250 components!

- **For more info, see page 42, this issue.**
- **Reg** $225.95
- **Sale** Price $199.95
- PCBs can be bought separately.

3-Phase Wind Turbine Kit

The Whirlybird 3-Phase Wind Turbine Kit is one of the great projects from the series of articles by John Gavlik, “Experimenting with Alternative Energy.” In Parts 6 and 7, he teaches you how to produce the most electricity utilizing the wind.

- For kit details, please visit our webstore.
- **Subscriber’s Price** $75.95
- **Non-Subscriber’s Price** $79.95

Arduino Project Kit

From the Smiley Workshop

- **By Joe Pardue**
- **Subscriber’s Price** $79.95
- **Non-Subscriber’s Price** $84.00

16-Bit Micro Experiment Board

Ready to move on from eight-bit to 16-bit microcontrollers? Well, you’re in luck! In the December 2009 Nuts & Volts issue, we will introduce you to a new, “the 16-Bit Micro Experiment.”

The kit comes with a CD-ROM that contains details on assembly, operation, as well as an assortment of ready-made applications. New applications will be added in coming months.

- **Subscriber’s Price** $55.95
- **Non-Subscriber’s Price** $59.95

Phone Controller Kit

Build this controller circuit to operate multiple AC devices by phone via wireless transmitters!

This project offers the ability to control multiple electrical devices through wireless means by pressing associated numbers via a Touch-Tone phone.

For kit details, please visit our webstore.

- **Subscriber’s Price** $35.95
- **Non-Subscriber’s Price** $38.95

As seen on the Feb 2010 cover
ALTERNATIVE ENERGY SECTION

50 Green Projects for the Evil Genius
by Jamil Shariff

Using easy-to-find parts and tools, this do-it-yourself guide offers a wide variety of environmentally focused projects you can accomplish on your own. Topics covered include transportation, alternative fuels, solar, wind, and hydro power, home insulation, construction, and more. The projects in this unique guide range from easy to more complex and are designed to optimize your time and simplify your life! $24.95

Build Your Own Plug-In Hybrid Electric Vehicle
by Seth Leitman

A Step-by-Step Guide to Building a Plug-In Hybrid Electric Vehicle from the ground up

Build Your Own Plug-In Hybrid Electric Vehicle puts you in the driver’s seat when it comes to hitting the road in a reliable, economical, and environmentally friendly ride. Inside, you'll find complete details on the hybrid power-train and all the required components, including the motor, battery, and chassis. $24.95

Do you know how many watts (YOUR MONEY) are going down the drain from "THE PHANTOM DRAW?"

If you are interested in your own power usage we at Nuts & Volts Magazine believe that this is the best way to help you determine your electrical energy use in ON and OFF home appliances.

To order call 1 800 783-4624 or online www.nutsvolts.com $24.95 plus S&H

Renewable Energies for Your Home
by Russel Gehrke

Simple and Inexpensive Renewable Energy Solutions for Your Home.

It’s not always easy being green, and sometimes it costs more than you’d expect to get an eco-friendly home improvement project up and running. Renewable Energies for Your Home gives you sustainable home energy solutions that won’t drain your wallet or the power grid. Filled with step-by-step instructions and helpful photos and illustrations. $24.95

NEW!

Do-It-Yourself Home Energy Audits
by David Findley

Reduce your utility bill and your carbon footprint!

This new TAB Green Guru Guide offers complete details on assessing home energy efficiency, and offers 101 energy- and money-saving solutions. The author describes simple, no- and low-cost measures to identify problems and dramatically increase livability, efficiency, and expendable income each and every year. Information on energy grants, rebates, and tax credits is included. **$19.95**

YOUR DREAM ELECTRONICS LAB!

This value-packed resource provides everything needed to put together a fully functioning home electronics workshop! From finding space to stocking it with components, to putting the shop into action — building, testing, and troubleshooting systems. The best part is, this book will save you money — big time! Reg $29.95 **Sale Price $24.95**

Enter the world of PICs & Programming with this great combo!

Combo Price $155.00

For complete details visit our webstore @ www.nutsvolts.com

SPECIAL OFFER
Classifieds

Kits/Plans

High Quality
Electronic Kits & Modules

$29.95

Arduino Duemilanove

FM Transmitters
Timers
Audio Amplifiers
Motor Controllers
PIC Programmers

Custom Designs

www.canakit.com

New for 2010

Video Agc/Sync Processing Kit

All Board Mounted Parts

Instruction Manual CD

Choice of Non-programmed or
Pre-programmed AVR Microcontroller

www.ikelectronix.com

Electronic Kits

• Fun and Educational

• Discount White and Blue LEDs

• Quantity Discounts

www.bakatronics.com

QKITS.COM

50 Amp Pwm

1-888-GO 4 KITS

Faculty Opportunities

Positions Opening Soon!

Full-time, tenure-track Faculty

Salary: $54 333 - $60 000

Professor, Aircraft Maintenance Technology

Professor, Aeronautics

Professor, Electronics

Mt. San Antonio College

Visit our website for details

http://hbrs.mtassoc.edu

or call HR at (909) 594-5611 X4225

Help Wanted

Need an electronics troubleshooter to help me finish a project I started 18 years ago. He/She can review the chipwork (Intel 8751; will send schematic. I’ve built it; it works). I’m just outside of Washington, relearning viruses and attachments and such.

redaxtype@juno.com

Surplus

Electronic Parts & Accessories

Over 13,000 items in stock.

Cables
Connectors
Displays
Fans

Hardware
LEDs
Motors
Potentiometers

Relays
Semiconductors
Service Manuals
Speakers

Switches
Test Equipment
Tools

VCR Parts

Surplus - Obsolete - Used
electrical or electronic
find it here or sell it here!

No fees - no commissions - it’s free!

Books

Books

PIC® Microcontroller
sq-1.com

Stepper Motors
steppeirstuff.com

CNC
cncintro.com

SOLAR PRODUCTS/KITS

Battery Desulfators

www.wizbangplus.com

PCB Software

EXCLUSIVE U.S. DISTRIBUTOR

www.KELVIN.com

SOLAR PRODUCTS/KITS

Battery Desulfators

www.wizbangplus.com

PCB Software

EXCLUSIVE U.S. DISTRIBUTOR

www.KELVIN.com

Design/Eng Services

Circuit board layouts

Prototype assemblies

www.OSSPRELELECTRONICS.COM

Redesign your sketches or point into a quality pcb for a reasonable price. Visit us on the web or call Cypress Electronics at (208) 964-1099 (USA)

FlexRev

China Direct

Manufacturing

Turn Key or Subassemblies

Components, Enclosures, Keypads

$0.007 per soldering point
2 layer PCBs $0.14/in2
Small jobs welcome

www.FLEXREV.com

Professional Services

Richard N. Krajewski

Editor

201-659-0041

www.maxbottix.com

Robotics

MaxSonar-EZ1

High Performance

Ultrasonic Range Finder

- serial, analog voltage
- pulse width outputs
- lowest power - 2mA
- narrow beam
- very easy to use!

www.maxbottix.com

Looking for robots?

www.servomagazine.com

Classifieds Mar10.qxd 2/3/2010 10:53 AM Page 76
Let’s face it. Science dictates that when things get old, they wear out (decay). Rubber gets brittle, magnets get weaker, and so on. Things almost never get better with age.

I had an acquaintance who worked at the high-end stereo shop in town back in the ’90s. They sold amplifiers in the $5,000 to $10,000 range. For a mere additional $300 to $500, they would apply custom modifications to your new purchase. They would replace the power cord with one that had larger diameter wire, replace the filter capacitors with ones of larger value, and replace the bridge rectifier with one that had a larger current capacity. He told me, of course, that increasing these values would improve the amplifier’s response on peaks by reducing drop-off of the supply voltage. All true statements, technically.

I asked him about these amplifiers and he said they were the finest amplifiers on the planet made by the finest companies in the business. So I asked him, “Are you telling me that the finest companies in the business are making products with substandard line cords and inadequately sized power supply components? This contradicts your statement that these are the finest amplifiers on the planet.” He said they became the finest when the custom mods were applied. Snake oil! When I told him the brand of components I used, he said “Oh that’s not Hi-Fi. You have Mid-Fi!” Ha! A little knowledge is sometimes worse than none at all.

While the mods may deliver an improvement it is unlikely the human ear could hear it. It’s possible even instruments could not detect it. You would assume a high-end amp had adequately sized components by design. Unless you perform a strict double-blind listening test, you can never assume that an improvement is real. You know, put a blindfold on your eyes and put the component behind a screen. You are not even allowed to see the size of the speaker cabinet, the company logo, or any other details such as the size or color of the wire. This is so your mind is not tricked into selecting the bigger cabinet since bigger is always better, right? You can’t go wrong with science.
>>> QUESTIONS

LCD TV Displays
I have a Casio portable color LCD TV (handheld) that has been made obsolete by the new digital signals.
I would like to use the display in an upcoming project.
Can anyone direct me to where I could find information on driving color displays with a microprocessor?

#3101 TJ Treinen
Oklahoma City, OK

Convert Old Record Player To Record To USB
I have experience programming, soldering small projects, and wiring. I've built my own computer from parts. I have a stack of records from the '50s, '60s, and '70s, and two record players (never tossed the old electronics). I saw a device in a store that would record your records to USB. Can't I build my own? Any suggestions?

#3102 Sunny Russell
Kenosha, WI

Experiments With An AC Alternator
I have been experimenting with a 10,000 watt AC alternator. This is the kind that is usually called a generator that outputs 110/220 VAC for use as a backup power source. Although I have had a good deal of experience with electricity and electronics, I have yet to find a good explanation of how this type of alternator actually works. Every source I can find on alternators deals with automotive alternators which I assume are similar.
I have an application where I am using the variable speed from the gas engine that turns the alternator to create a variable AC voltage output. I know an alternator of this type has no permanent magnet so it needs to get up to some RPM before it generates ANY voltage at all. On mine, this kicks in somewhere between 35 and 50 volts AC.
Can someone explain how this type of AC power alternator actually works and do you think it is possible to excite the fields externally so the output voltage kicks in more consistently at low RPM?

#3103 Greg McMurry
Pacific Palisades, CA

DC Electric Motor
How does one find the wattage of a 24 VDC motor that has no name plate? I want to purchase a speed control for my electric bike, but they all want to know the wattage of the motor.

#3104 Frank Whelan
Lompoc, CA

Dimmers
What is the difference between an ordinary light dimmer and a ceiling fan speed controller? They look the same except one is twice the price.

#3105 Terry Stine
Peoria, AZ

PIC Generated Voltage
How can I use a PIC controller to generate the required voltage in a DC/DC converter with an LCD display or USB communication with a laptop?

#3106 Cornelius
via email

Anemometer Circuit
I'm looking for an anemometer circuit using the cooling effect on transistors. I found some on the Internet but they typically only measure low (<2 mph) wind speeds. A circuit with an analog output I can interface to a microcontroller would be great as I plan to add other sensors. Mechanical anemometers need to be calibrated which I'd like to avoid (and I'd rather build a circuit anyway).
I need an anemometer to measure "normal" wind speeds (up to maybe 50 mph). I'd like to install a wind mill next year to assist in powering my house but I want to log the wind speeds and frequency to determine if it's worthwhile installing the windmill.

#3107 Dave Berkebile
Wilton, NH

Stereo Headphone Volume Control And Left-Right Reversing
I want to build a stereo headphone control box for a home recording studio monitoring setup. It can be passive or active, but if it is active, it must have high quality circuitry, as should all the other components. It needs to have left and right channel volume controls, plus a low-noise switch (leaf switch?) to reverse the left and right channels so that I can quickly change the signals between left and right channels without removing the headphones. Can anyone offer a schematic and parts list?

#3108 Starliner
Preston, MD

>>> ANSWERS

[10092 - October 2009]

Flashing LEDs
I need a parts list and schematic to create flashing lights on small scale emergency vehicles to be used on a slot car racing layout.

#1 Figure 1 is a schematic using the venerable NE555 timer to simulate...
flashing emergency lights. The resistors R3 and R4 control the rate of charge while the discharging capacitor facilitates the switching between the red and blue LED.

Play with the capacitor value and the R3/R4 resistors to fine-tune the flashing oscillations. I think diffused LEDs would make a better effect than the clear ones I used, but I just had them laying around.

The NE555 is small (the LEDs are bigger, so hopefully you can get it to fit in your design.

See the circuit in action at www.youtube.com/watch?v=0-ljVi3VGe

Gian James
Boulder, CO

#2 Try using simple 3-5 VDC flashing LED[s]. Connecting two small-sized coin batteries together will provide a fairly long continuous life cycle. They can be purchased from vendors such as www.allelectronics.com.

They have an excellent supply of T1-3/4 and T-1 sizes in four colors.

John Mastromoro
Saint Johnsville, NY

However, if I reconnect the load — a 90 VDC brake — and have the output switching device open, the measured DC output voltage at the rectifier is approximately 30% greater than the disconnected output voltage.

The most likely explanation is that you have a capacitive load on the rectifier output when you are measuring the higher output voltage. You should measure 1.414 (V/2) times the input voltage minus diode drops with a well working peak rectifier. Since you are measuring close to this value, this is probably the culprit.

Walter Heissenberger
Hancock, NH

#1 Assuming you simply do not want to run a control wire between the auxiliary fan and the air handler, here's a solution.

X10 powerline control has been around for a long time. It's an old technology but in most cases will work just fine. You can get an X10 powerflash module PSC01 to plug into an outlet near the air handler. This device accepts a dry contact closure of up to 18 volts AC or DC on the control input. You could wire in your 24 VAC air handler fan control signal through a voltage divider to drop the voltage below 18V, or you could mount a vane switch inside the air handler. A vane switch is a small sensitive microswitch (one that requires very little pressure to operate the switch); install a sail on the switch lever. The sail is nothing more than a piece of lightweight thin cardboard or similar material. When the air "blows on the sail," the switch will click on. Either of these methods will cause the PSC01 to send an X10 command into the AC power line. At the other end, get an X10 appliance module AM466 and just plug the auxiliary fan motor into the module. The advantage of the vane switch is that your HVAC technician won't accuse you of causing problems with the system. But it's mechanical and more prone to failure than a direct connection.

Set the house code and unit code the same on both X10 units. Set the switches on the PSC01 to Mode 3 (only transmits a single house/unit code, on/off). Set to Mode A for up to 18 volts AC or DC control input or Mode B for dry contact control.

Of course, one side effect with the older X10 technology is that your...
neighbor might be using X10 too. If his house is close enough and on the same pole transformer, you could receive his signals. Just change to a house/unit code that he is not using.

Rick Swenton
via email

#2 I don't have the total solution, but an idea to start with. Rather than designing the wireless transmitter/receiver portion, one pre-existing solution you can piggyback off of is a wireless doorbell system you can get at the hardware store for less than $20. You can easily test if it will transmit through the floors.

You can replace the transmitter (doorbell button) battery with a cheap power brick to avoid changing batteries. You also need it for the rest of the circuitry to sense the air handler state and fire a relay to close the "button."

Then, you tap into the circuitry of the receiver/ringer to get the ringing signal to then pulse a relay circuit to the receiver/ringer to get the ringing "button."

When the power is on, the NC contacts will be open, turning the running time meter off.

When power goes off, the NC contacts close, making the meter run.

Rusty Carruth
Tempe, AZ

#3 When I was working, we had an APC UPS RM1500 that came with the software and cable to be able to interrogate it for its logs. It kept that kind of info for power outages and also surges and sags.

It may work for you.

Jim Russell
London, KY

#1 I used inexpensive dry transfer (rub-off) letters for a recent project, and was happy with the results shown in Photo 1.

I suggest you use masking tape to align the letters. Use a dull pencil to gently transfer every corner of each letter to your box; then press harder through a paper burning sheet to lock the letters down if you are happy with the results (or, use a hobby knife to gently scrape a letter off if you need to make a change).

For protection, I sprayed a couple of coats of a flat lacquer overcoat on the box after the lettering was complete. Dry transfer lettering is becoming harder to find, but a good source is Tower Hobbies at www.towerhobbies.com.

Richard Carlson
Fort Collins, CO

#2 I had this same problem with my mistralXG project (see N&V Feb/Mar 2009). After the article was published, I found a suitable Hammond case to use as an enclosure, but didn't want to resort to simple labels. I also wanted to add a logo to the case. After examining several alternatives — all too expensive — I found some vinyl printer stock that did the job. The vinyl has a special coating that takes inkjet ink very well and has a paper backing that reveals a sticky side when peeled off. The results were better than I hoped (Photo 2). You can see the results at www.grapevyne.com/pic.projects. I found a supplier on eBay who sold me a small pack (10 sheets or so) for a few dollars.

Steve Russell
Winchester, UK

Photo 1
Search for "dry transfer;" they offer sheets in a wide variety of colors, sizes, and fonts.

(Be aware that letters and numbers usually come on separate sheets.)
<table>
<thead>
<tr>
<th>Category</th>
<th>Ads</th>
</tr>
</thead>
</table>
| **AMATEUR RADIO AND TV** | Solarbotics/HVW 9
Technological Arts 27
Trace Systems, Inc. 22
XGameStation 27 |
| **BATTERIES/CHARGERS** | Ramsey Electronics, Inc. 24-25
Cunard Associates 27
SunPower 27
ExpressPCB 10
Futurlec 47
ExpressPCB 27
PCB Pool 41
Saelig Company, Inc. 47 |
| **BUYING ELECTRONIC SURPLUS** | Earth Computer Technologies 27
Jaycar Electronics 4
WeirdStuff Warehouse 27
electronixexpress.com 11
Digi-Key 23
LXIC 27
Ranold Electronics Inc. 24-25
PCB Pool 41
Saelig Company, Inc. 47 |
| **CIRCUIT BOARDS** | AP Circuits 65
Cunard Associates 27
Dimension Engineering 22
ExpressPCB 10
Futurlec 47
BaneBots 46
NetBurner 27
Integrated Ideas & Tech. 65
ExpressPCB 27
Saelig Company, Inc. 47 |
| **COMPONENTS** | Cana Kit Corp. 31
Jameco 23
Linx Technologies 71
Mouser Electronics 15
SparkFun Electronics 3 |
| **EDUCATION** | BaneBots 46
Command Productions 31
NKC Electronics 27
Technological Arts 27
XGameStation 27
Mouser Electronics 15
NetBurner 27 |
| **ENCLOSURES** | Integrated Ideas & Tech. 65 |
| **KITS & PLANS** | Cana Kit Corp. 31
DesignNotes.com, Inc. 27
Earth Computer Technologies 27
Jameco 23
Linx Technologies 71
Saelig Company, Inc. 47 |
| **MICROCOMPUTER/SURPLUS** | All Electronics Corp. 59
Surplus Gizmos 38
WeirdStuff Warehouse 27
BaneBots 46
Jameco 23 |
| **OPTICS** | Madell Technology 9 |
| **PROGRAMMERS** | Futurlec 47
microEngineering Labs 53 |
| **PUBLICATIONS** | Lakeview Research 27 |
| **RF TRANSMITTERS/RECEIVERS** | Abacom Technologies 41
Linx Technologies 71 |
| **ROBOTICS** | BaneBots 46
Fun Gizmos 27
HobbyLab 27
Lemos International Co., Inc. 65
Lynxmotion, Inc. 47
Net Media 2
Polarbotics & Electronics 71
Solarbotics/HVW 9
SparkFun Electronics 3 |
| **SATELLITE** | Lemos International Co., Inc. 65 |
| **SECURITY** | Technological Arts 27 |
| **TEST EQUIPMENT** | Circuit Specialists, Inc. 82-83
DesignNotes.com, Inc. 27
Dimension Engineering 22
Jameco 23
Lynxmotion, Inc. 47
Madell Technology 9
microEngineering Labs 53
Mouser Electronics 15
NetBurner 7
Net Media 2
Pioneer Hill Software 71
Saelig Company, Inc. 47
Trace Systems, Inc. 22 |
| **TOOLS** | Edsyn 11
Madell Technology 9
NetBurner 1 |
| **WIRE, CABLE AND CONNECTORS** | DesignNotes.com, Inc. 27
Jameco 23
SparkFun Electronics 3 |
| **AD INDEX** | Abacom Technologies 41
ActiveWire, Inc. 27
All Electronics Corp. 59
AP Circuits 65
BaneBots 46
Cana Kit Corp. 31
Circuit Specialists, Inc. 82-83
Command Productions 31
Cunard Associates 27
DesignNotes.com, Inc. 27
Dimension Engineering 22
Earth Computer Technologies 27
Edsyn 47
ExpressPCB 10
Fun Gizmos 27
Futurlec 47
General Circuits / PCB Cart 77
HobbyLab 27
Integrated Ideas & Tech. 65
Jameco 23
Jaycar Electronics 4
Lakeside Research 27
LeCroy 5
Lemos International Co., Inc. 65
Linx Technologies 71
Mouser Electronics 15
NetBurner 7
Net Media 2
Pioneer Hill Software 71
PCB Pool 41
Pioneer Hill Software 71
Polrbotics & Electronics 71
QKITS 27
Ranold Electronics Inc. 24-25
Saelig Company, Inc. 47
Solarbotics/HVW 9
SparkFun Electronics 3
Surplus Gizmos 38
Technological Arts 27
Trace Systems, Inc. 22
WeirdStuff Warehouse 27
XGameStation 27 |
2.4GHz 2 Camera Wireless System

- Channel-switch for multi-camera monitoring
- Night vision (Effective range: 100ft)
- Shell, Weather-proof structure for outdoor installation
- Built-in microphones for audio monitoring
- Up to 100m (328ft.) range in open space
- Includes 2 cameras w/Power supplies & 1 receiver w/power supply and remote control

Item # DUAL CAM SYSTEM
$98.50

LED Flashlight with On Board 4GB DVR

- Ideal for Law Enforcement, Post Fire Inspection, Facilities Maintenance, Security Companies & Many Other Uses!
- Monitoring & Recording concealed in a rechargeable flashlight
- This unit will function both as a flashlight AND a Digital Video Recorder and has a multitude of uses. It is equipped with a convenient USB interface for video data file transfer. You can record color video and then transfer it to a personal computer for viewing, includes two light levels for close-up or long distance recording. Also includes a AC adapter for charging the internal Li battery.

Item # FLASHLIGHT DVR
$189.00

USB Digital Storage Oscilloscopes

<table>
<thead>
<tr>
<th>Specifications</th>
<th>DSO2090</th>
<th>DSO2150</th>
<th>DSO5200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frames</td>
<td>2 Channels</td>
<td>2 Channels</td>
<td>2 Channels</td>
</tr>
<tr>
<td>Impedance</td>
<td>1M & 20M</td>
<td>1M & 20M</td>
<td>1M & 20M</td>
</tr>
<tr>
<td>Coupling</td>
<td>AC/DC/GND</td>
<td>AC/DC/GND</td>
<td>AC/DC/GND</td>
</tr>
<tr>
<td>Vertical Resolution</td>
<td>8 Bit</td>
<td>8 Bit</td>
<td>8 Bit</td>
</tr>
<tr>
<td>Gain Range</td>
<td>10M/500V, 9 Steps</td>
<td>10M/500V, 10 Steps</td>
<td>10M/500V, 10 Steps</td>
</tr>
<tr>
<td>DC Accuracy</td>
<td>±10%</td>
<td>±3%</td>
<td>±10%</td>
</tr>
<tr>
<td>Timebase Range</td>
<td>4ns - 1ns 38 Steps</td>
<td>2ns - 1ns 38 Steps</td>
<td>2ns - 1ns 38 Steps</td>
</tr>
<tr>
<td>Vertical adjustable</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Input protection</td>
<td>Diode Clamping</td>
<td>Diode Clamping</td>
<td>Diode Clamping</td>
</tr>
<tr>
<td>AC Input</td>
<td>Yes (1MHz-4MHz)</td>
<td>Yes (1MHz-4MHz)</td>
<td>Yes (1MHz-4MHz)</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Auto / Normal / Single</td>
<td>Auto / Normal / Single</td>
<td>Auto / Normal / Single</td>
</tr>
<tr>
<td>Trigger Slope</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Trigger Level Adj.</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Trigger Type</td>
<td>Rising edge / Falling edge</td>
<td>Rising edge / Falling edge</td>
<td>Rising edge / Falling edge</td>
</tr>
<tr>
<td>Trigger Source</td>
<td>CH1 / CH2 / EX</td>
<td>CH1 / CH2 / EX</td>
<td>CH1 / CH2 / EX</td>
</tr>
<tr>
<td>Probes Triggers</td>
<td>No Probes probes</td>
<td>No Probes probes</td>
<td>No Probes probes</td>
</tr>
<tr>
<td>Filter Size</td>
<td>10kHz-32kHz per ch</td>
<td>10kHz-32kHz per ch</td>
<td>10kHz-32kHz per ch</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>DC to 40MHz</td>
<td>DC to 60MHz</td>
<td>DC to 100MHz</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>100kSample Rate</td>
<td>100kSample Rate</td>
<td>200MHz</td>
</tr>
<tr>
<td>Sampling Selection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Waveform Display</td>
<td>50pc</td>
<td>50pc</td>
<td>50pc</td>
</tr>
<tr>
<td>Vertical Mode</td>
<td>CH1, CH2, Dual, Add</td>
<td>CH1, CH2, Dual, Add</td>
<td>CH1, CH2, Dual, Add</td>
</tr>
<tr>
<td>AutoMeasurement</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Channels</td>
<td>2 Channels</td>
<td>2 Channels</td>
<td>2 Channels</td>
</tr>
<tr>
<td>DSO1060</td>
<td>$559.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aardvark II Dual Camera Wireless Inspection Camera

- With Color 3.5" LCD Recordable Monitor
- Your Extended Eyes & Hands!
- RECORDS Still Pictures & Video
- See It! Clearly in narrow spots, even in total darkness or underwater.
- Find It! Fast. No more struggling with a mirror & flash light.
- Solve It! Easily, speed up the solution with extended accessories.
- Record It! With the 3.5" LCD recordable monitor, you can capture full pictures or record video for documentation.

Full specifications at www.CircuitSpecialists.com/Aardvark

The Aardvark Wireless Inspection Camera is the only dual camera video borescope on the market today. With both a 17mm camera head that includes three attachable accessories and a 9mm camera head for tighter locations. Both cameras are mounted on 360 flexible shafts. The flexible shaft makes the Aardvark great for inspecting hard-to-reach or confined areas like sink drains, AC Vents, engine compartments or anywhere space is limited. The Aardvark II comes with a 3.5" color LCD monitor. The monitor is wireless and may be separated from the main unit for ease of operation. Still pictures or video can also be recorded and stored on a 2GB MicroSD card (included). The Aardvark’s monitor also has connections for composite video output for a larger monitor/recorder and USB interface for computer connection. Also included is an AC adapter/charger, video cable and USB cable. Optional 3 ft flexible extensions are available to extend the Aardvark’s reach (Up to 5 may be added for a total reach of 18 feet).

Item # AARDVARK
$249.00

60MHz Hand Held Scopemeter with Oscilloscope & DMM Functions

- 60MHz Handheld Digital Oscilloscope with integrated Digital Multimeter Support
- 60MHz Bandwidth with 2 Channels
- 150MSa/s Real-Time Sampling Rate
- 50Gs/s Equivalent-Time Sampling Rate
- 6000-Count DMM resolution with AC/DC at 600V/800V, 10A
- Large 2.1 inch TFT Color LCD Display
- USB Host/Device 2.0 full-speed interface connectivity
- Multi Language Support
- Battery Power Operation (Installed)

With the DSO1060 YOU CAN!
You get both a 60 MHz Oscilloscope and a multi function digital multimeter, all in one convenient lightweight rechargeable battery powered package. This power packed package comes complete with scopemeter, test leads, two scope probes, charger, PC software, USB cable and a convenient nylon carrying case.

Item # DSO1060
$559.00
Your Power Supply Headquarters!!

We carry a LARGE selection of power supplies from bench top to variacs to single, dual and triple output to wall plug AC adapters to large and ultra large regulated power supplies.

Adjustable DC Power Supplies with Adjustable Current Limiting

Regulated linear power supplies with adjustable current limiting. The LED display shows both Volts & Amps. The current output can be preset by the user via a front panel screwdriver adjustment screw while the voltage is adjustable by a front panel multi-turn knob for precise voltage settings. Output is by front panel banana jacks and there is also a covered terminal strip for remote voltmeter sensing at the load.

- Utilizes SMD technology
- Pre-Settable Voltage & Current levels
- Front Panel On/Off Switch
- Large LED readout for Voltage & Current
- S+ & S- Sampling terminals

0-30 Volt / 0-10 Amp Adj. (CSI3010X) $198.00
0-30 Volt / 0-20 Amp Adj. (CSI3020X) $299.00
0-40 Volt / 0-10 Amp Adj. (CSI4010X) $269.00
0-60 Volt / 0-10 Amp Adj. (CSI6010X) $319.00
0-30 Volt / 0-10 Amp Adj. (CSI3001X) $198.00
0-120 Volt / 0-3 Amp Adj. (CSI120030X) $265.95

www.circuitspecialists.com/dcpower

Energy Saving Variacs

These adjustable Variacs from CircuitSpecialists are VERY popular. They can be used in science labs, by audiophiles (Great for old Tube Amplifiers), hobbyists, in film & video lighting applications. Units are adjustable from 0-130Volts

5Amp (TDGC2-0.5) $49.95
20Amp (TDGC2-2) $104.00
30Amp (TDGC2-3KVA) $119.00

www.circuitspecialists.com/variacs

HengFu Switching Power Supplies

Circuit Specialists carries a wide selection of HengFu switching power supplies. All models have overload, over voltage, over temperature & short circuit protection.

Hi-Power Enclosed Single Output

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th>Model</th>
<th>Price 1+</th>
<th>Price 5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>12/8A</td>
<td>HF1000W-SM-12</td>
<td>$299.00</td>
<td>$299.00</td>
</tr>
<tr>
<td>10A</td>
<td>24/42A</td>
<td>HF1000W-SM-24</td>
<td>$299.00</td>
<td>$299.00</td>
</tr>
<tr>
<td>15A</td>
<td>48V/15A</td>
<td>HF700W-S-48</td>
<td>$189.00</td>
<td>$174.00</td>
</tr>
<tr>
<td>15A</td>
<td>50V/11A</td>
<td>HF500W-S-48</td>
<td>$119.00</td>
<td>$119.00</td>
</tr>
<tr>
<td>15A</td>
<td>50V/21A</td>
<td>HF500W-S-24</td>
<td>$169.00</td>
<td>$149.00</td>
</tr>
<tr>
<td>15A</td>
<td>50V/24A</td>
<td>HF500W-S-12</td>
<td>$169.00</td>
<td>$149.00</td>
</tr>
<tr>
<td>30A</td>
<td>48V/6.3A</td>
<td>HF300W-S-48</td>
<td>$69.00</td>
<td>$61.00</td>
</tr>
<tr>
<td>30A</td>
<td>36V/8.5A</td>
<td>HF300W-S-36</td>
<td>$69.00</td>
<td>$61.00</td>
</tr>
<tr>
<td>30A</td>
<td>24V/12.5A</td>
<td>HF300W-S-24</td>
<td>$69.00</td>
<td>$61.00</td>
</tr>
<tr>
<td>30A</td>
<td>300W/12V</td>
<td>HF300W-S-12</td>
<td>$69.00</td>
<td>$61.00</td>
</tr>
<tr>
<td>30A</td>
<td>9V/33A</td>
<td>HF300W-S-9</td>
<td>$69.00</td>
<td>$61.00</td>
</tr>
<tr>
<td>30A</td>
<td>5V/60A</td>
<td>HF300W-S-5</td>
<td>$69.00</td>
<td>$61.00</td>
</tr>
</tbody>
</table>

Open Frame Single Output

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th>Model</th>
<th>Price 1+</th>
<th>Price 5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>15W</td>
<td>5V/3A</td>
<td>HF15W-SPL-5</td>
<td>$15.99</td>
<td>$13.59</td>
</tr>
<tr>
<td>15W</td>
<td>12V/1.3A</td>
<td>HF15W-SPL-12</td>
<td>$15.99</td>
<td>$13.59</td>
</tr>
<tr>
<td>15W</td>
<td>24V/0.85A</td>
<td>HF15W-SPL-24</td>
<td>$15.99</td>
<td>$13.59</td>
</tr>
<tr>
<td>15W</td>
<td>48V/0.32A</td>
<td>HF15W-SPL-48</td>
<td>$15.99</td>
<td>$13.59</td>
</tr>
</tbody>
</table>

Enclosed Dual Output

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th>Model</th>
<th>Price 1+</th>
<th>Price 5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V/10A/12V/4A</td>
<td>HF100W-DF-A</td>
<td>$39.00</td>
<td>$34.88</td>
<td></td>
</tr>
<tr>
<td>5V/15A/15V/2A</td>
<td>HF100W-DF-B</td>
<td>$39.00</td>
<td>$34.88</td>
<td></td>
</tr>
<tr>
<td>5V/24V/1V/1A</td>
<td>HF100W-DF-V</td>
<td>$39.00</td>
<td>$34.88</td>
<td></td>
</tr>
<tr>
<td>5V/1A/5V/8A</td>
<td>HF10W-DL-A</td>
<td>$15.95</td>
<td>$13.79</td>
<td></td>
</tr>
<tr>
<td>5V/1.8A/12V/5A</td>
<td>HF10W-DL-B</td>
<td>$15.95</td>
<td>$13.79</td>
<td></td>
</tr>
<tr>
<td>5V/1.8A/15V/5A</td>
<td>HF10W-DL-C</td>
<td>$15.95</td>
<td>$13.79</td>
<td></td>
</tr>
<tr>
<td>5V/1.8A/24V/3A</td>
<td>HF10W-FL-D</td>
<td>$15.95</td>
<td>$13.79</td>
<td></td>
</tr>
</tbody>
</table>

www.circuitspecialists.com/hengfu

Dual Output DC Bench Power Supplies

High stability digital read-out bench power supplies featuring constant voltage & current outputs. Short-circuit & current limiting protection is provided. SMT PC boards and a built-in cooling fan help ensure reliable performance & long life. All 3 Models have a 1A/5VDC Fixed Output on the rear panel.

- Output: 0-30VDC x 2 @ 3 or 5 Amps & fixed output @ 5VDC @ 3A
- Stepped Current: 30mA +/- 1mA

Item # Price 1+ Price 5+
CSIS003X3 0-30Vx2@3A $198.00 $193.00
CSIS005XIII 0-30Vx2@5A $259.00 $244.00

www.circuitspecialists.com/dc

POTRANS [Special Purchase]

150Watt 24V/6.5A Switchable Power Supply

- High efficiency
- High reliability
- Protection: Over-voltage/Over-current/Over-power/Short-circuit
- Output reverse protection
- VAC input range selected by switch
- 100% full load burn-in test
- EMI/RFI: FCC Part 15, Class A & CISPR.22 Class A

Item # CSI15024-1M $79.00

Programmable DC Power Supplies

- Up to 10 settings stored in memory
- Optional RS-232, USB, RS-485 adapters
- May be used in series or parallel modes with additional supplies
- Low output ripple & noise
- LCD display with backlight
- High resolution at 1mV

The CSI530s is a regulated DC power supply which you can adjust the current and the voltage continuously. An LED display is used to show the current and voltage values. The output terminals are safe 4mm banana jacks. This power supply can be used in electronic circuits such as operational amplifiers, digital logic circuits and so on. Users include researchers, technicians, teachers and electronics enthusiasts. A 3 ½ digit LED is used to display the voltage and current values.

www.circuitspecialists.com/csi530s

Item # CSI530S $79.00

www.circuitspecialists.com

Circuit Specialists, Inc. 220 S. Country Club Dr., Mesa, AZ 85210
Phone: 800-528-1417 / 480-464-2485 / Fax: 480-464-5824

Since 1971
The Digi XBee 802.15.4 modules are the easiest-to-use, most reliable and cost-effective RF devices we’ve experienced. The XBee modules provide two friendly modes of communication – a simple serial method of transmit/receive or a framed mode providing advanced features. XBees are ready to use out of the package, or they can be configured through the X-CTU utility or from your microcontroller. These modules can communicate point to point, from one point to a PC, or in a mesh network. Picking the right XBee module is best accomplished by choosing an antenna style (chip or wire) and power level (2 mW for up to 300 feet and 60 mW for up to 1 mile).

<table>
<thead>
<tr>
<th>Power Level</th>
<th>2 mW</th>
<th>2 mW</th>
<th>60 mW</th>
<th>60 mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>Chip</td>
<td>Wire</td>
<td>Chip</td>
<td>Wire</td>
</tr>
<tr>
<td>Price</td>
<td>$19.00</td>
<td>$19.00</td>
<td>$32.00</td>
<td>$32.00</td>
</tr>
<tr>
<td>Stock Code #</td>
<td>#32404</td>
<td>#32405</td>
<td>#32406</td>
<td>#32407</td>
</tr>
</tbody>
</table>

XBee modules may be used with our XBee adapters and the multicore Propeller chip (3.3 V). Non 3.3 V microcontrollers like the BASIC Stamp will need a 3.3 V power supply and signal buffer chip for communication to the XBee module.

Because the XBee modules have 2 mm pin spacing, we recommend one of our adapter boards for each module. Our adapter boards provide several advantages to the XBee modules such as breadboard-friendly standard 0.1 inch pin spacing, mounting holes, and easy-to-solder connections. Even if you are communicating point-to-point without a PC, we still recommend that you always have at least one XBee USB Adapter (#32400; $24.99) so you can easily configure and test each XBee module prior to putting it in a point-to-point application. Also, always have at least one of our affordable XBee Adapter Boards (#32403; $2.99) for each XBee module you purchase.

Order XBee RF Modules and Accessories at www.parallax.com or call our Sales Department toll-free: 888-512-1024 (Mon- Fri, 7am-5pm, PT).

Prices subject to change without notice. Digi and XBee are trademarks of Digi International. BASIC Stamp is a registered trademark of Parallax Inc. Propeller, Parallax and the Parallax logo are trademarks of Parallax Inc.