Prototype This

Behind The

PYROPACK

Hackin’ the Firefighter

- 16-bit Micro Experimenter
- Stand Alone Data Logger
- Experiments With Alternative Energy
- Fuel Cell Polarization States And Efficiencies
- Vibration Monitor
- Hundreds Of Uses - Intrusion Alarm, Earthquake Detector, Motor Vibration Analyzer

www.nutsvolts.com
June 2010

U.S. $6.50 CANADA $7.50
Input Serial Data
Normal/Inverted Outputs for Buzzer or Relay

2x16 and 4x20 Serial Displays
Sta Green in mlk2
 investigations info
BassicX.com

3 wire hookup

Many popular Sizes
2x16, 4x20: Blue
Red, Green, White

Make your own custom characters
254 Backlight Levels
TTL user Outputs

Easy to use!
Priced from $34.95!

Serial LCD

BasicX.com
150W INVERTER
Converts vehicle's 12 volt power to household 110 volt.
Dual 110 volt outlets also has 12 volt outlet, iPod quick charge adapter, USB port to power recharge cell phones, digital cameras and mp3 players.
CAT# INV-150
$25.95 each

MINI VIBRATING MOTOR, PANCAKE STYLE
10mm diameter x 3mm thick mini-vibrator. Operates on 1.5 to 4.5Vdc. 21mm long flexible cable has two easily accessible solder spots for voltage connection. Motor has a thin rubber pad on one face and peel-off adhesive patch on other side.
CAT# DCM-373
$1.00 each

FERRITE SNAP-BEAD
TDK #2ZCAT1518-0730-O73-BK. For cables up to 7mm (.27") dia. Case has an eyelet on one end which can be used with wire-shield for extra fastening security. Case size 15mm dia. x 20mm long. Provides excellent absorption of high-frequency EMC.
CAT# FB-85
$1.00 each

24VDC 6.5A 150W POWER SUPPLY
Mean Well mRS-150-24, 197 x 98 x 38mm. Short circuit/overload/over-voltage protection. Adjustable output voltage. Led output indicator. UL, CEE, TUV, CE.
CAT# PS-24150
$26.95 each

24VDC IMPULSE COUNTER
Tamura Electric #E550 6-digit, panel-mount electro-mechanical impulse counter. Non-resettable. 24Vdc, 650mW. 10 CPS, Snap-mounts into 1" x 6" rectangular cutout. Black 1.1" x 0.87" plastic bezel. 1.36" behind-panel depth. 5' leads.
CAT# CTR-650
$1.35 each

HDTV COMPONENT VIDEO / AUDIO CABLE, 6'
High-quality Component Video and Stereo Audio cable. Color-coded, gold-plated RCA plugs molded on both ends.
CAT# CB-276
$8.50 each

50K LINEAR SLIDE POT, DUAL ELEMENT
Slide travel, 65mm. Center detent. Body size, 88 x 20mm. Threading mounting holes on 80mm centers. Solder lugs, 20mm long slider.
CAT# SPL-50K
$2.00 each

20 AMP BATTERY CLIPS
65mm, 20A insulated clips. Heavy-duty clip with screw. Vinyl insulating boots. Sold in pairs, 1 red, 1 black.
CAT# ALG-329
$2.00 per pair

3-18 VDC PIEZOELECTRIC BUZZER
Mini-piezo beeper. Emitted a medium, high-pitched tone when energized. 80dB, 12Vdc, 7mA, 4KHz. 13.8mm diameter x 7.5mm high. PC pin on 7.5mm centers.
CAT# SBZ-204
$1.45 each

Shop ON-LINE www.allelectronics.com
ORDER TOLL FREE 1-800-826-5432
MAIL ORDERS TO: ALL ELECTRONICS CORP.
14928 OXNARD ST., VAN NUYS, CA 91411-2610
FAX (818) 781-2553 - INFO (818) 904-0524
E-MAIL allcorp@allcorp.com

MANUFACTURERS - We Purchase EXCESS INVENTORIES. Call, Write, E-MAIL or Fax YOUR LIST.

QUALITY Parts
FAST Shipping
DISCOUNT Pricing
CALL, WRITE, FAX or E-MAIL
for a FREE 96 page catalog.
Outside the U.S.A. send $3.00 postage.

12VDC AUTOMOTIVE RELAY
Ford # P6STD FOAB-14B192-AAA. 12Vdc, 86 Ohm coil, S.P.D.T. Exact contact rating unknown. Probably 30A. 1.1" cube. Standard automotive relay, 0.25" QC terminals.
CAT# RLY-455
10 for $1.85 each
$2.25 each

12 VDC 58 RPM MINI-MOTOR
12Vdc gearhead motor. 58 RPM, @ 12Vdc, 20mA (no-load). 12mm diameter x 35mm long. Solder-lug terminals. 2mm diameter x 6mm long flanged shaft.
CAT# DCM-318
$12.95 each

NI-MH AA CELL W/ SOLDER TABS
1.2 Volt, 2300 mAh. Rechargeable Nickel metal-hydride.
CAT# NMH-AAT
$2.95 each

June 2010 NUTS1VOLTS 3
Let your geek shine.

Meet Dwight Eppinger, SparkFun customer and Interactive Marketing Manager at Colorado's Copper Mountain Ski Resort. Using SparkFun's LED matrixes and XBee modules, Dwight created a status board that updates the resort trail map signs on the condition of ski runs. From one computer, Dwight can instantly let ski patrol, Copper Mountain staff, and the people zipping down the slopes know which trails to hit.

Whether you're building a status system for an entire mountain or just wirelessly reaching across the room, the tools are out there. Find a new way to communicate, and let your geek shine too.

SparkFun Electronics
Sharing Ingenuity
WWW.SPARKFUN.COM

©2010 SparkFun Electronics, Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective owners. For the story on Dwight's project at crossinglinesandideas.blogspot.com. You can also read more about Copper mountain Resort at www.coppercolorado.com.
40 MHz - 1 GHz
Starting from $695

WaveAce™
40 MHz - 300 MHz

WaveJet®
100 MHz - 500 MHz

WaveSurfer®
200 MHz - 1 GHz

Experience the New LeCroy Oscilloscopes

Debug, verify, characterize, troubleshoot, analyze — oscilloscopes do it all, but LeCroy’s breakthrough oscilloscopes do more. More measurements, more math, and more time-saving tools to easily make measurements in even the most challenging situations.

LeCroy Authorized Distributors:

AVALON
Avalon Equipment Corp.
(888) 542-8256
avalontest.com

TREK EQUIPMENT
Trek Equipment
(888) 873-5374
trekequipment.com

STANLEY
Stanley Supply & Services
(800) 223-6370
StanleySupplyServices.com

TEQUIPMENT.NET
Tequipment.NET
(877) 742-8378
tequipment.net

KEMP
Kemp Instruments
(888) 619-2266
kempinstruments.com

MEUNIER
Meunier Elect. Supply
(900) 638-6437
meunierusa.com

To learn more about LeCroy’s full line of oscilloscopes, including the 30 GHz WaveMaster 8 Zi, the world’s fastest real-time oscilloscope, visit www.lecroy.com or call 1-800-5-LeCroy
Projects & Features

28 Implementing a Data Logger with the 16-bit Micro Experimenter
As we build on our Experimenter board, this time we’ll add a stand-alone data logging application.
By Thomas Kibalo

33 Shake, Rattle, and Roll Vibration Monitor
There’s a whole lotta shaking goin’ on, and now you can keep track of it.
By Ron Newton

40 The Projects of Prototype This!
Joe Grand takes a closer look at the electronic aspects of his different builds from the popular Discovery Channel show Prototype This! This month, get behind the PyroPack.
With Joe Grand

46 Experiments with Alternative Energy
Learn the fundamentals of renewable energy through this educational series. This month: Fuel Cell Polarization States and Efficiencies.
By John Gavlik

FunDamentals For Beginners

Just getting started in electronics? Try these simple demos to illustrate electronics principles and how components function in actual circuits!

38 Resistors
65 How a Speaker Works

Columns

10 TechKnowledgey 2010
Events, Advances, and News
Return of the memristor, home for Mac orphans, new Class-D audio amps, plus some other stuff you’ll find interesting.

14 Open Communication
The Latest in Networking and Wireless Technologies
Experimenting with Commercial Wireless Modules.

20 Q & A
Reader Questions Answered Here
Low voltage warning, alternator regulator, magnetic questions, Geiger counter, plus more.

52 PICAXE Primer
Sharpening Your Tools of Creativity
Using the AxMate Power and Programming Adapter.

58 The Design Cycle
Advanced Techniques for Design Engineers
ZeroG Goes USB.

67 Smiley’s Workshop
Programming + Hardware + Projects
AVR Memory — Part 1: Introduction.

Departments

DEVELOPING PERSPECTIVES 72
NEW PRODUCTS 76
SHOWCASE 78
ELECTRO-NET 81

NV WEBSTORE
CLASSIFIEDS
TECH FORUM
AD INDEX
SSH ENCRYPTED
SERIAL TO ETHERNET SOLUTIONS

Instantly network-enable any serial device
Works out of the box - no programming is required
Customize to suit any application with low-cost development kit
256-bit encryption protects data from unauthorized monitoring

Features:
10/100 Ethernet
TCP/UDP/SSH/SSL modes
DHCP/Static IP Support
Data rates up to 921.6kbps
Web-based configuration

$47
SB70LC
2-port serial-to-Ethernet server

$129
SB700EX
2-port serial-to-Ethernet server with RS-232 & RS-485/422 support

$149
CB34EX
industrial temperature grade 2-port serial-to-Ethernet server with RS-232 & RS-485/422 support and terminal block connector

NetBurner Serial to Ethernet Development Kits are available to customize any aspect of operation including web pages, data filtering, or custom network applications. All kits include platform hardware, ANSI C/C++ compiler, TCP/IP stack, web server, e-mail protocols, RTOS, flash file system, Eclipse IDE, debugger, cables and power supply. The NetBurner Security Suite option includes SSH v1 & v2 support.

Information and Sales | sales@netburner.com
Web | www.netburner.com
Telephone | 1-800-695-6828

freescale
Alliance Member
The Microcontroller Debate

If you’re an experienced microcontroller experimenter, you probably have a favorite chip or configuration — maybe a Microchip PIC, a Parallax BASIC Stamp or Propeller, or an ATMEGA-based Arduino — and good reasons for your choice. Moreover, if you’ve worked with a particular microcontroller on several projects, you’ve no doubt developed a bag of tricks and workarounds that enable you to do just about anything you want. I’m sure you can defend your choice based on relative cost, performance, or ease of use.

However, if you’re just starting out in your exploration of microcontrollers, you have some decisions to make. Picking a microcontroller line is a big step, and one that deserves a bit of thought. The initial cost of the chip or board is typically trivial compared with the cost of accessories, books, and — most importantly — your time. You’ll have to invest time to learn how to properly configure the hardware, time to become fluent in the programming language, and time to get used to debugging the system.

Before I offer my advice, let me state that there’s no single best solution. Every product on the market has strengths and limitations. If you drop into the various forums on the web, you can read the myriad opinions why one particular microcontroller is better than all the others. The solution that’s best for you depends on your experience and what you expect to get out of working with a microcontroller.

In my opinion, if you’re new to microcontrollers, you can’t go wrong with the BASIC Stamp line of microcontrollers. A major strength of the Stamp is documentation — critically important to a novice. There are hundreds of articles and dozens of books devoted to the Stamp. Moreover, Parallax offers educational kits that include sensors and servos, and extensive documentation and source code for these peripherals. The Stamp boards are simple to set up and program. Even if you’ve never touched a microcontroller before, you can be up and running in less than an hour. The BASIC Stamp is still my microcontroller of choice if the application has to be ready yesterday.

Parallax also sells a higher-performance Propeller chip. I’ve used the Propeller on several projects, and it’s both powerful and relatively easy to program. However, I think a novice might have a rough time getting the most out of the cogs and other non-standard architecture of the Propeller. This unique chip also uses a non-standard language called SPIN. If your goal is to understand different microcontroller architectures, then the Propeller chip may be just the thing for you. However, knowledge of SPIN doesn’t readily translate to other microcontrollers on the market.

When I started developing semi-autonomous robots, I was forced to look for something more powerful than the Stamp, and turned to the ATMEGA line of processors. The cost for this step up in processing power, number of I/O ports, and other features was considerable. Instead of a simple USB connection between my PC and the Stamp, I had to purchase and learn to use a programmer. Then, there was the C compiler and the compile-run process instead of the instantaneous, interpreted Basic with the Stamp.

In retrospect, the progression from Stamp to bare ATMEGA microcontroller was fortunate. It allowed me to learn to use a variety of sensors and servos in an interactive environment. In the less forgiving, more time-consuming compiler environment, it would have taken me much longer to learn to use the hardware. I think the same analysis holds true for the PIC — which I consider a top-notch production chip that can go toe-to-toe with the ATMEGA.

I can’t speak from experience on the Arduino as a first microcontroller. However, it was designed as a painless introduction to microcontrollers, and it appears to be successful on that account. I’ve worked with the programming environment — which, by the way, is compatible with a Mac — and it’s solid and easy to use.

Moreover, there are dozens of add-on boards or shields, and multiple form factors to choose from. For example, I’ve used the Duemilanove — an ATMEGA328-based board — and it’s a pleasure to work with. I’m currently working on the LilyPad: a machine-washable, sew-on version of the Arduino from SparkFun (www.sparkfun.com) to try out some body network ideas.

If you’re deciding between the BASIC Stamp and Arduino for a beginner’s system, then relax. You can’t go wrong with either platform. However, if you want to learn or know how to program in C, then the Arduino is probably a better choice. On the other hand, if you’re comfortable with Basic and your focus is to learn about sensors, actuators, and other peripherals, then the Stamp may be a more efficient vehicle. I also think the Parallax-backed support forums are second to none — something to consider when you need help sorting out those input/output signals. NV
ADVANCED TECHNOLOGY

RETURN OF THE MEMRISTOR

In the July '08 issue, we reported the invention of the memristor at Hewlett-Packard Labs (www.hpl.hp.com) which they called the "fourth basic circuit element," along with resistors, capacitors, and inductors. At the time, it was thought to mainly provide a possible way to replace DRAMs with static ICs to lower power consumption and eliminate the boot-up process. However, HP recently announced that the concept has even more importance than originally believed. They have discovered that the device — in addition to use in memory storage — can perform logic functions. This implies that a memristor circuit could be used to perform computations in the device where the data is stored, thus eliminating the need for a CPU altogether.

Each memristor is composed of two layers of titanium dioxide connected by wire. As current is applied to one layer, the small signal resistance of the other layer is changed, and this may be used as a method to register data.

Pushing ahead with the technology, HP has created development-ready architectures for the ICs and believes that they could be on the market relatively soon. They also have figured out how to stack multiple layers of memristors in the same chip to make them highly compact. A spokesman projected, "In five years, such chips could be used to create handheld devices that offer ten times greater embedded memory than exists today, or to power supercomputers that allow work like movie rendering and genomic research to be done dramatically faster than Moore's Law suggests is possible." Memristors also use less energy and operate at higher speeds than things like Flash memory, and can store double the information in the same space. Also commenting on the development was R. Stanley Williams, HP senior fellow and founding director of the HP Quantum Science Research group: "Since our brains are made of memristors, the flood gate is now open for commercialization of computers that would compute like human brains, which is totally different from the von Neumann architecture underpinning all digital computers."

SO LONG, COPPER

Meanwhile, IBM is taking an entirely different approach to preserving Moore's Law with its "nanophotonic avalanche photodetector," so-named because an incoming light pulse triggers the release of a few charge carriers, each of which frees some others, and so on, until the original signal has been amplified several times. Until recently, existing avalanche devices could not be used to detect fast optical signals because the avalanche effect took too long to build up. However, the new device — said to be the fastest ever built — can receive optical data at a rate of 40 Gbps and simultaneously multiply them by ten. Plus, they operate with a supply of just 1.5V, so they could conceivably be powered by an AA battery instead of the 20V to 30V required by conventional devices. According to IBM, being based on standard silicon and germanium, it can be produced using standard chip manufacturing processes. The bottom line is that it may soon be possible to replace the copper wires between computer chips with light pulses. According to Dr. T. C. Chen, a VP at IBM Research (www.watson.ibm.com), "With optical communications embedded into the processor chips, the prospect of building power-efficient computer systems with performance at the exaflop level might not be a very distant future." For details, pick up a copy of the March '10 issue of Nature (www.nature.com).
COMPUTERS AND NETWORKING

LOW-END SSD ADDED TO LINEUP

Solid-state drives (SSDs) still can't compete with platter-based storage devices on a cost-per-byte basis, but the X25-V SSD from Intel (www.intel.com) edges a little closer at about a $120 street price for this 40 GB unit. The internal SATA (1.5 or 3.0 GB/s interface) drive is intended to enable "value segment" notebooks, as well as dual drive/boot drive desktops to include the advantages of solid-state computing at an entry-level price. A cited example of how you might make good use of the drive would be to configure it as your boot drive and load the Office suite on it, as well. Not only would your boot-up time be reduced, the Office applications would run up to 43 percent faster. The X25-V is actually "low man on the totem pole" of Intel SSDs; you can also get one with 80 or 160 GB total capacity for about $200 and $450, respectively. The unit is rated for 1.2 million hours MTBF, which is probably overkill unless you plan to use your laptop for another 137 years. It also works in temperatures up to 70°C (158°F), so even if you live in a mud hut in Death Valley, you're good to go.

NO IE FOR XP

The news is not so bright for folks who still cling to Windows XP and want an upgraded Internet Explorer. It recently became official that IE v. 9 will not support XP. But before waxing cynical, it should be noted that there is more at work here than just Microsoft's desire to extract money from your pocket. A spokesman explained that IE9's graphics acceleration depends on Direct2D and DirectX application programming interfaces, and support for them "cannot be extended to Windows XP." This puts Microsoft in the odd position of releasing an IE version that will run on fewer than a third of existing Windows machines. In any event, it appears that Firefox, Chrome, and even Safari will support XP for the time being, so you can keep on clinging.

HOME FOR MAC ORPHANS

When Apple (www.apple.com) dumped its traditional operating system in 2002 and went to the UNIX-based OS X, it showed some mercy toward Mac owners who had tons of money invested in software that ran only on System 9.x and earlier by packaging a "Classic" environment with it. But Classic doesn't run on Intel-based Macs, and as of OS X v. 10.5 (Leopard), it has been eliminated entirely. This leaves PowerPC Macs with the choice between never upgrading the OS or dumping all Classic software. However, there appears to be a solution for both PowerPC and Intel machines in the form of SheepSaver -- a free download from sheepshaver.cebix.net. It hasn't been tested here, and it appears to be somewhat less than seamless in operation, but many positive reviews of it can be found on the Internet. The website notes that it runs "with a varying degree of functionality" on Unix with X11, Mac OS X, Windows NT, and BeOS R4/R5. One small snag is that Intel Macs can't run it without downloading an image of the Power Mac ROM, but that doesn't appear to be difficult. The good news is that applications run at native speed, i.e., there is no emulation involved. So even if SheepSaver isn't perfect, if you have been orphaned by v. 10.5, it's probably worth a try.

INDUSTRY AND THE PROFESSION

PROGRAMMER GETS FOUR YEARS

In August '08, former Barclay's Bank programmer, Humza Zaman, was arrested for numerous offenses including money laundering, illegal computer access, identity theft, and wire fraud for his part in the theft of data from TJX (parent company of T.J. Maxx, Marshalls, et al.), BJ's Wholesale Clubs, and other retail stores. In April of last year, he pleaded guilty and now has been sentenced to four years in prison and fined $75,000. Zaman assisted ringleader Albert Gonzales in the pilfering of more than 130 million credit and debit card records and an estimated $600,000 to $800,000 in cash. Gonzales is presently awaiting sentencing but could get up to 17 years. Zaman has blamed his involvement on a lifestyle of partying and recreational drug use that required cash beyond his legitimate six-figure income. Hey, times are tough.

June 2010 NUTS&WOLTS 11
CIRCUITS AND DEVICES

ENTER THE 3D WORLD

If your goal is to become the ultimate couch potato, Panasonic is now offering a package of consumer products that may make your living room seem more real than reality itself—or at least a lot more desirable. Following up on its goal of ruling the world of three-dimensional entertainment, it now offers 3D Viera Plasma HDTV sets, a Blu-ray 3D disk player, a 3D camcorder, and (of course) the special glasses needed to absorb it all. Video options include screen sizes from 50 to 65 inches, and each TV comes with (only) one pair of Panasonic 3D eyewear. (The company also has built a 152 inch plasma display, but it isn’t included in the Viera lineup at this point.) The disc player can handle 3D media but is also compatible with various audio standards, and it upconverts standard definition video formats to 1080p. It also plays standard Blu-ray discs, DVDs, and CDs. Possibly the best part is the 3D camcorder which frees you from dependence on commercial products. Now you can record your own 3D movies with all of your friends and relatives sticking anything they want right into a viewer’s face. No prices were announced as of press time, but “cheap” probably won’t be an accurate description.

COMPOUND ANTENNA BOOSTS PERFORMANCE

In March, startup Dockon, Inc. (www.dockon.com) announced the availability of “the first commercially available compound PtM Loop (CPL) antenna for embedded product designs,” claiming that it increases radiation efficiency, intensity, directivity, and radiated power for a given input in a small package. The trick is that the CPL devices combine magnetic loop radiators with electric field radiators, whereas conventional antennas typically use only one or the other. According to Dockon, the simultaneous excitation of both radiators “results in an effective cancellation of reactive power, improving the overall performance and efficiency to approximately 90 percent.” The CPL can be manufactured with conventional PCB techniques and offers a bandwidth greater than 1 GHz. According to CEO Patrick Johnston, “After years of development, testing, and refinement of the development process, the CPL delivers on the promise of compound antenna technology in an easy to manufacture format. CPL is a revolution in antenna design offering a more powerful and efficient radiator over a wider bandwidth in smaller footprint than before possible.” Licensing to OEMs will begin soon, so look for it to appear in the next generation of wireless devices including mobile computing devices, industrial controls, automotive, aerospace, medical, military applications, and consumer electronics.

NEW CLASS-D AUDIO AMPS

Also designed as embedded components for smart phones, GPS units, and a range of other handheld devices are Analog Devices’ SSM2375 (mono) and SSM2380 (stereo) amplifiers. Both allow designers to employ fixed or programmable gain settings, and the latter incorporates an I²C interface that allows gain stages to be set from 1 to 24 dB (plus mute) in 47 steps without the need for external components. The programmable interface also allows independent L/R channel shutdown, a low EMI emission control mode, and programmable automatic level control functions. You get a 100 dB SNR, and Analog claims 93 percent power efficiency at 5V while running 1.4W into an eight ohm speaker. The SSM2375 provides five-level gain setting in 3 dB stages from 0 to 12 dB. Operating from a 2.5V to 5.5V supply, it delivers 3W continuous output with <1 percent THD when driving a three ohm load. The little guys are priced at $0.57 and $0.75 in quantities. For details, visit www.analog.com.
BY LOUIS E. FRENZEL W5LEF

EXPERIMENTING WITH COMMERCIAL WIRELESS MODULES

Wireless everything. That is what I am seeing more and more. Practically every electronic product these days has some kind of wireless component or function to it. That’s why it makes sense to learn more about wireless. As you are experimenting with electronic products, you may discover some devices you want to imbue with wireless capability.

Adding wireless functionality is easy these days. Transmitter, receiver, and transceiver chips are cheap and plentiful. Plus, these chips are incorporated into complete modules you can buy ready to use. Just add a battery, antenna, and some inputs or outputs. Recently, I was searching for some inexpensive modules to use in a college course lab as demos of basic wireless techniques. I found several, but I ended up with some products from Linx Technologies (www.linxtechnologies.com). This company has a wide range of chips, modules, and accessories that use low power, short range wireless in the ISM (industrial-scientific-medical) bands from about 300 MHz to 2.4 GHz. I chose the 900 MHz products.

Anyway, here is the result of my initial experimentation with these modules. Hopefully, this will encourage you to do some wireless experimentation yourself.

SOME WIRELESS BASICS

Most short-range wireless uses the FCC (Federal Communications Commission) designated license-free ISM bands. Some typical frequencies are 315 MHz, 433 MHz, 902-928 MHz, and 2.4 GHz. You can buy ready to use chips or modules for any of these bands. The 315 and 433 MHz frequencies are widely used in things like garage door openers and remote temperature gauges. The 2.4 GHz band is used for everything like WiFi, Bluetooth, ZigBee, cordless telephones, and even your microwave oven. I decided not to use that popular band. Instead, I went for the 902-928 MHz products. These offer good range and the antennas are short. Furthermore, this band does not have as much interference or suffer the effects of multipath fading that is common on the 2.4 GHz microwave band.

As for what is short range, it varies. It can be just a few feet or many hundreds of feet. If you have a clear line of sight between transmit and receive antennas with a gain antenna, you can probably extend that to a few miles. Most applications typically involve distances of less than 100 feet. The transmit power is usually low. A power level of zero dBm or one milliwatt is common, but you can get units with up to 100 mW of power if you need a longer range.

The key to ensuring that your wireless installation will work is to do some basic math and calculate the path loss and the range given the specifications of the devices you are using.

Path loss can be calculated with the formula that follows. Just plug in the frequency of operation and the range, and the result will be a path loss in dB.

Path loss in dB = 37 + 20 log f + 20 log d

The frequency f is in MHz and the range or distance is in miles. If the range is in feet, divide the number of feet by 5,280 to get miles. You can also use this formula:

Path loss in dB = 20 log (4π/λ) + 20 log d

Here the wavelength is in meters and the distance d is in meters.

Assume a frequency of 915 MHz and a range of 100 feet. That is 0.018939 miles. Use your scientific calculator to compute this.
\[dB = 37 + 20 \log (915) + 20 \log(0.018939) = 37 + 59.23 - 34.45 = 61.79 \text{ dB} \]

Note: The log of fraction gives a negative number that is the reason for the -34.45 number.

Next, find out what the transmit power is from the module specs. Power is usually stated in terms of dBm or decibels referenced to one milliwatt. Assume 2 mW or 3 dBm. Add the transmit power to the path loss (algebraically) to get the amount of power the receiver will receive at the distance you used.

Received power = 3 - 61.79 = -58.79 dBm

Finally, compare that to the receiver sensitivity figure usually given in -dBm. The larger the number, the better the sensitivity. A sensitivity of -100 dBm means the receiver can detect a signal that small. A sensitivity of -80 dBm is not as good as -100 dBm. That means that in terms of power, -80 dBm is greater than -100 dBm. So, if the received power is greater than the sensitivity figure, the signal will be received. Assume a receiver sensitivity of -70 dBm. Since the received power is greater than the sensitivity figure, you will have a good link.

Incidentally, this calculation assumes basic isotropic antennas with a gain of one. If you use a dipole or ground plane, the real power gain is 1.64.

THE WIRELESS MODULES

The wireless devices I bought were part of a whole package called the Master Evaluation/Development System, specifically the Linx Technologies MDEV-HP3-PPS-USB. It comes with two development boards: one for transmit and the other for receive. It also has two each of the transmitter modules (TXM-900-HP3-xxx) and receiver modules (RXM-900-HP3-xxx). The development boards have a USB port on them but you can also get a version for RS-232. Cables and programming software is included. Figure 1 shows the whole package.

Figure 2 shows the transmit block diagram. It uses a PLL frequency synthesizer programmed by an internal microcontroller for any of the 100 channels in the 902-928 MHz range. A 12 MHz crystal sets the precision and frequency increment at 250 kHz. You can select any of the existing frequencies by programming via the PC, or any of eight frequencies that can be set with a DIP switch on the transmitter development board. The PLL and its VCO act as a frequency multiplier to increase the output frequency into the 902-928 MHz range. Then, a power amplifier boosts the output signal to 0 dBm or in the -3 to +3 dBm range. An output filter gets rid of any pesky harmonics.

The modulation is FSK and you can achieve a data rate up to about 56 kbps. A 28 kHz low-pass filter on the data input filters the binary serial data to help restrict the harmonics and the sidebands, and to keep the frequency deviation down to less than 115 kHz. Incidentally, you can also modulate the transmitter with analog signals up to 28 kHz.

You can program the transmitter frequency using the software and USB port on the development board but I just used the DIP switch on the development board. This switch feeds an on-board encoder chip ENC-LS001. It takes the three-bit input code and serializes it into a simple protocol with start and stop bits that the transmitter sends out to the receiver. This eliminates the need for you to create a complex protocol, although you can do that if you want to.

The receiver block diagram is shown in Figure 3. It is a superheterodyne using a PLL synthesizer for tuning. The input from the antenna is frequency restricted with a SAW (surface acoustic wave) filter and applied to a low noise (RF) amplifier (LNA). The LNA block also includes a mixer that mixes the incoming signal with a signal from the frequency synthesizer to produce a first intermediate frequency (IF) of 34.7 MHz. The signal is filtered, then sent to another mixer along with a 24 MHz signal from...
the crystal oscillator. The mixer output is a 10.7 MHz second intermediate frequency (IF) signal that is filtered — limited to remove any amplitude variations — and sent to the quadrature demodulator where the signals are recovered. A slicer/shaper cleans up the digital signal.

A neat feature of this module is the received signal strength indication (RSSI) circuit. It is a calibrated output that indicates the level of the received signal. It generates a DC signal in the one to three volts range, corresponding to input power levels in the -40 to -110 dBm range. Using this feature lets you actually measure the signal level being picked up.

DEMONSTRATING THE MODULES

To get the boards ready for use, you plug in the transmit and receive modules, screw on the antennas, and install a nine volt battery in each. The battery drives a five volt regulator that supplies power to the modules.

Once you set the frequency on both the transmit and receive boards, are can demo them. Turn on the power switches. Then, press the yellow button on the transmit board that will sound the buzzer on the receive board with a beeping tone. The red transmit button causes a relay on the receive board to close. You can hear it click.

FIGURE 4. The Antenna Factor ANT-916-YG5-N Yagi antenna. It has a 50 ohm cable and N-connector. I had to buy two extra cables with different connectors to match up with the SMA connector on the transmit and receive boards.

The relay contacts have connectors on the receive board so you can hook them up to control some other device like a light or motor. The relay contacts can handle as much as five amps up to 30 volts DC or 120 volts AC.

As a next step, you can take the boards outside and test the range. I took the boards out in the street with my wife and tried to estimate the maximum range.

Keep the line of site path clear to get the best results. You should easily get several hundred feet. I got 300 feet before a hill cut my line of sight path. (I live in central Texas where it is called the hill country.)

For further experimentation, you can put obstacles between the transmitter and receiver. Walls, trees, cars, whatever. The units still communicate, but the obstacles add considerable extra attenuation to the path thereby shortening the range.

One other demo you can do is check out the RSSI voltage. Get a digital or analog multimeter and connect it up to the RSSI pins on the receiver board. Turn on the units and measure the RSSI voltage over a decent range. The output voltage is roughly linear from about 1.2 volts DC at -110 dBm received power to 2.7 volts at -40 dBm. You could calculate the received power using the formula above, then attempt to verify it with the RSSI reading for a given power and distance. Incidentally, the transmit power is nominally 0 dBm or 1 mW. The specs indicate a possible range from -3 dBm to +3 dBm so any errors will probably be in transmit power or range measurements.

One final thing I did was to buy an accessory five-element Yagi antenna (Figure 4). The antenna is made by Antenna Factor, and is available through Linx. It has a gain of 9 dBi (isotropic gain). It gets that gain by focusing the power in one direction so the effect is that of a transmitter power boost or improved receiver sensitivity. I used the antenna on the receiver. The effect was to greatly increase the range of transmission by a factor of three or more. Not bad. You can note that change on the RSSI reading.

That is all the time I had for the demos, but I do plan to do more. I particularly want to plot the Yagi antenna pattern by using the RSSI readings as I rotate the antenna horizontally. Should be interesting.

Wireless is fun to play with, but I do admit it is also frustrating at times. Things don’t always work as they should, as they seem, or as you want. Mostly, this is due to obstacles in the path like trees or walls, multipath signals developed from nearby reflecting bodies (cars, water tower, etc.), or you personally being too close to either the receive or transmit antennas. So, you need to experiment for best results. Once everything is set up correctly, the communications link is remarkably reliable, almost as good as a wire.
350 MHZ 2/4 CHANNEL DIGITAL OSCILLOSCOPE HMO 3522/HMO 3524

- 4 GS/s Real time, 50 GS/seq Random sampling, low noise flash A/D converter (reference class)
- 2 MPsa memory per channel, memory zoom up to 100,000:1
- MSO (Mixed Signal Opt. H03560/H03561) with 8/16 logic channels
- Vertical sensitivity 1 mV/50 mV/div. into 1 MO/50 O Offset control ±0.2...±20 V
- 12 div. x-axis display range
- 20 div. y-axis display range with VirtualScreen function
- Trigger modes: logic, video, pulsewidth, logic, delayed, event
- FFT for spectral analysis
- 6 digit counter, Autoset, auto measurement, formula editor, ratiometer
- Crisp 6.5" TFT VGA display, LED backlight, DVI output

3 GHZ SPECTRUM ANALYZER HMS3000/HMS3010

- Frequency range 100 kHz...3 GHz
- Amplitude measurement range -114...+20 dBm
- DAHDL -135 dBm with Pwmp. Option H03011
- Sweep time 20 ms...1000 s
- Resolution bandwidth 100 Hz...1 MHz in 3 steps, 200 kHz (-3 dB) additional 200 Hz, 9 kHz, 12 kHz, 1 MHz (-6 dB)
- Spectral purity -100 dBc/Hz (100 kHz)
- Video bandwidth 10 Hz...1 MHz in 3 steps
- Tracking Generator (HMS3010) - 20 dBm / 0 dBm
- Integrated AM and FM demodulator (int. speaker)
- Detectors: Auto, max., peak, sample, RMS, quasi-peak

PROGR. 2/3/4 CHANNEL HIGH-PERFORMANCE POWER SUPPLY HMP SERIES

- HMP2020: 1 x 0...32V/0...10A 1 x 0...5V/0...5A, max. 188 W
- HMP3020: 2 x 0...32V/0...5A 1 x 0...5V/0...5A, max. 188 W
- HMP4020: 3 x 0...32V/0...10A, max. 360 W
- HMP4030: 4 x 0...32V/0...10A, max. 360 W
- 188/360W power output realized by intelligent power management
- Low residual ripple < 150 µW due to linear post regulators
- High setting and read-back resolution of up to 1 mV/0.2 mA
- HMP4030/HMP4040: Keypad for direct parameter entry
- Galvanically isolated, earth-free and short circuit protected output channels
- Advanced parallel- and serial operation via V1 tracking
- EasyArb function for free definable VI characteristics
- Free adjustable overvoltage protection (OPV) for all outputs
- All parameters clearly displayed via LCD/glowing buttons

25/50 MHZ ARBITRARY FUNCTION GENERATOR HMF2525/HMF2550

- Frequency range 10 µHz...25 MHz / 50 MHz
- Output voltage ±5 V (into 500 Ω) DC Offset ±5 mV...±5 V
- Arbitrary waveform generator: 25 MHz, 14 Bit, 256 kpts
- Sine, Square, Pulse, Triangle, Ramp, Random
- Waveforms incl. standard curves (white, pink noise etc.)
- Total harmonic distortion 0.04 % (at 100 kHz)
- Burst, Sweep, Gating, external Trigger
- Rise time < 8 ns, in pulse mode < 500 ns variable-edge-time
- Pulse mode: Frequency range 100 µHz...12.5 MHz, 25 MHz, pulse width 10 ns...999 µs, resolution 5 µs
- 10 MHz Timebase: ± 1 ppm TCXO, rear I/O BNC connector
- Front USB connector: save & recall of set-ups and waveforms
- 3.5" TFT: crisp representation of the waveform and all parameters

1,2 GHZ/3 GHZ RF-SYNTHESIZER HMO8134-3/HMO8135

- Outstanding Frequency range 1 Hz...1.2 GHz / 3 GHz
- Output power -127...+13 dBm / -125...+13 dBm
- Frequency resolution 1 Hz accuracy 0.5 ppm
- Input for external time base (10 MHz)
- Modulation modes: AM, FM, Pulse, Φ, FSK, PSK
- Rapid pulse modulation: typ. 200 ns
- Internal modulator (sine, square, triangle, sawtooth) 10 Hz...150 kHz/200 kHz
- High spectral purity
- Standard: TCXO (temperature stability: ± 0.5 x 10⁻⁶)
- Optional: OCXO (temperature stability: ± 1 x 10⁻⁶)
- Galvanically isolated USB/RS-232 Interface, optional IEEE-488
- 10 configuration memories including turn-on configuration

HAPRO Electronics
Tel: +1-516-794-6080 · Fax: +1-516-794-1855 · sales@haproelectronics.com
www.hameg.com
For Dads and Grads!
We Put The FUN In Electronics!

Electrocardiogram ECG Heart Monitor
- Visible and audible display of your heart rhythm!
- Bright LED "Beat" Indicator for easy viewing!
- Re-usable hospital grade sensors included!
- Monitor output for professional scope display!
- Simple and safe 9V battery operation!

Every June we celebrate the special place our father's hold in our hearts; so why not show your dad how much he means by helping him take care of HIS heart? As we age, heart problems become more and more of a concern, so make sure your father knows you're thinking of his health. And face it - dad has enough ties in his closet so this father's day avoid the clichés and give him something he can really use!

Use the ECG/EKG to astound your physician with your knowledge of ECG/EKG systems. Enjoy learning about the inner workings of the heart while, at the same time, covering the stage-by-stage electronic circuitry used in the kit to monitor the traces. The third model EKG/ECG pick-ups allow for easy application without the cumbersome harness normally associated with ECG monitors.

The documentation with ECG/EKG covers everything from the circuit description of the kit to the circuit description of the heart! Multiple "beat" indicators include a bright front panel LED that flashes with the actions of the heart as well as a sound alarm. This alarm signals normal, high or low readings. The kit is designed to be assembled on a simple JPanel and can be used in small medical offices, clinics, athletic centers or in your own home. The kit is designed to be assembled on a simple JPanel and can be used in small medical offices, clinics, athletic centers or in your own home.

The fully adjustable gain control on the front panel allows the user to control the range and display every time! 10 hospital grade re-usable sensor patches are included with the matching custom case set included. Additional parts are available in 10-packs.

Operates on a standard 9VDC battery (not included) for safe and simple operation. Note, while the ECG/EKG monitors display your heart rhythms and functions, it is intended for hobbyist usage only.

If you experience any cardiac symptoms, seek proper medical help immediately!

ECG/EKG Monitor Kit With Case & Patches

Pocket Vu Meter
Hand held audio level meter that fits in your pocket! Build-in microphone and audio input and displays it on an LED bargraph. Includes enclosure, 3V battery, and step-up cables. Works with 3V Li-Ion button cell, not included. If you ever wanted an easy way to measure audio levels, this is it!

Pocket Audio Generator
A perfect test source for audio line inputs on any amplifier or mixer. Provides 50Hz, 1kHz, 1kHz, 1kHz, & 2kHz tones, plus 32 digital noise. Great for testing or building audio cables or left/right stereo! Stereo RCA line level outputs. Use 2xCR2025, not included.

Mini LED Light Chaser
This little kit flashes six high-intensity LEDs sequentially in order. Just like the KB0302 to the right does with incandescent lights. Makes a great mini attention getter for signs, models, trains, and even RC cars. Runs on a standard 9V battery.

Digital Voice Changer
This voice changer kit is a native! Just like the expensive units you hear the DJ's use, it changes your voice with a multitude of effects! You can sound just like a robot, you can even add a vibrate to your voice, 1.5W speaker output plus a line level output. Runs on a standard 9V battery.

Running Light Controller
Controls and powers 4 incandescent lights. They appear to "travel" back and forth (like the head on KITI). Great for the dance floor or promotional material attention getters, exhibits, or shows. Runs on 112-240VAC.

Steam Engine & Whistle
Simulates the sound of a vintage steam engine and whistle! Also provides variable "engine speed" as well as volume. With the touch of a button the steam whistle blows! Includes speaker. Runs on a standard 9V battery.

Laser Trip Sensor Alarm
True laser provides over 500 yards! At last you have the reach of the hobbyist, this neat kit uses a standard laser pointer (included) to provide both audible and visual alert of your presence. Don't rely on it simple to interface! Breakaway board to separate sections.

Liquid Level Controller
Not just an alarm, but gives you a LED display of low, middle, or high levels! You can also set it to sound an alarm at the high or low condition. Provides a 2A 12VAC rated relay output. Runs on 12-14VAC or 12-16VDC.

Electret Condenser Mic
This extremely sensitive 3/8" mic has a built-in FET preamplifier! It's a great replacement mic, or a perfect answer to add a mic to your project. Powered by 3-15VDC, and we even include coupling cap and a current limiting resistor! Extremely popular!

Sniff RF Detector Probe
Sniff RF detector probe connects to any voltmeter and allows you to measure RF from 100kHz to over 1GHz! So sensitive it can be used as a RF field strength meter!

Broadband RF Preamp
Need to "pick-up" your counter or other equipment to read weak signals? This preamp has low noise and provides 25dB gain from 1MHz to well over 1GHz. Output can reach 1000mW! Runs on 12 volt AC or DC or the included 110VAC PS. Assemb.

Electronic Watch Dog
A barking dog on a PC board! And you don't have to feed it! Generates 2 different selectable barking dog sounds. Plus a built-in microphone and switch, can be set to bark when it hears a sound! Adjustable sensitivity! Unlike the Saint, eats 2-8VAC or 9-12VDC, it's not fussy!

Stereo Ear Super Amplifier
Ultra high gain amp boosts audio 50 times and it does it in stereo with its dual directional stereo microphones! Just plug in your standard earphone or headset and plug in the source. Incredible gain and perfect stereo separation!

Broadband RF Preamp
Need to "pick-up" your counter or other equipment to read weak signals? This preamp has low noise and provides 25dB gain from 1MHz to well over 1GHz. Output can reach 1000mW! Runs on 12 volt AC or DC or the included 110VAC PS. Assemb.
LOW VOLTAGE WARNING

Q I am looking for a low voltage warning system for an antique Delco light plant. The Delco light plant has two 12 volt and one eight volt lead acid batteries in series for a total of 32 VDC. As the voltage drops from running the lights, you start the plant and charge the batteries back up. The problem is if you let the voltage drop too low, you don’t have enough battery power to start the plant again. I would like a warning system to incorporate an LED strip and buzzer. Fully charged, all LEDs are on and the buzzer is off. As the battery voltage drops, each LED goes off until they are all off at which time the buzzer comes on (approximately 28 volts) to get your attention. I would like the voltage points to be adjustable by replacing resistors.

— Bill Blackburn

A The LM3914 bar graph driver was made for this application; it has the voltage divider, comparators, and current source output to light 10 LEDs. The resistors are not adjustable but you can adjust the upper and lower voltage of the display. The LM3914 has linear increments, but if you prefer, the LM3915 has logarithmic increments.

The battery has 16 cells of nominal 2.1 volts, giving 33.6 volts nominal; the full charge voltage will be 36.8 volts. At 28 volts, the battery is fully discharged with 1.75 volts per cell. In Figure 1, resistors R1 and R2 divide the battery voltage down to 12.6 volts nominal and 10.5 volts at full discharge.

Pins 7 and 8 of IC1 comprise an adjustable voltage regulator. The high end of the internal voltage divider is connected to the output (pin 7) and the low end is connected to R7. R9 is first adjusted to give 12.6 volts at pin 7, and then R7 is adjusted for 10.5 volts at pin 4. When the battery is fully charged, the voltage at pin 5 will be 12.6 volts or higher, and all the LEDs will be lit. When the battery falls below 28 volts, all the LEDs will be out and the buzzer will sound. The solid-state relay is normally closed when not energized and open when energized. Figure 2 is the parts list.

ENERGY COMPUTATION

Q I am trying to find the energy in an inductor but my math is obviously wrong. I won’t be offended if I find that I have been taking a completely
ridiculous approach. I used real parts that I had. That’s where the values came from. The first inductor allows .0583 amps to flow when 17.00 volts RMS @ 60 Hz is applied through a Fluke 27 (a 1% digital meter).

\[
\begin{align*}
R &= \frac{E}{I} \\
X_L &= 17.00/0.0583 \\
X_I &= 199.3 \text{ ohms} \\
X &= 2\pi f L \\
X/(2\pi f) &= L \\
L &= 0.529 \text{H}
\end{align*}
\]

I set the current at .04 amps with a constant current (to ground) circuit.

1 volt/1 henry = 1 amp/1 second
1V/.529H = .04A/time
\[
\text{time} = 0.2116 \text{ seconds}
\]

If the current rise in an inductor is a ramp, the average current is .02 amps; .02 amps x .02116 seconds = 423 uamp-seconds involved in the magnetic field.

When the constant current is shut off, the inductor sends its energy through a fast diode (500 nS) to a 0.1 \mu F capacitor.

\[
(1 \text{amp} \times 1 \text{second})/1 \text{farad} = 1 \text{volt} \\
(0.02 \text{amps} \times 0.02116 \text{seconds})/0.1 \mu \text{F} = 4230 \text{volts}
\]

This is not what the scope shows, by quite a bit.

Second, I have a 24 volt DC relay that uses .0425 amps (activated) and has 565 ohms of DC resistance. This relay actually gets used in an air conditioner and I design controllers for air conditioners. This relay has significant resistance. I would like to know how that affects the equations; 12.03 volts @ 60 Hz sends 10.00 mA through the coil without making the contacts close. This suggests 2.82 H, unlatched. When powered from a filtered DC source, the ripple is .64 V p-p and the AC current is .20 mA. If the V RMS of this ramp-looking wave is (V p-p)/4,

\[
Z = \frac{E}{I} \\
Z = 16/0.0002 \\
Z^2 = (R^2 + X_L^2)
\]

\[
X_L = 800 @ 120 \text{Hz} \\
L = 1.06 \text{H in the latched condition.}
\]

How much voltage will be developed into a capacitor that is connected from the collector to ground when the transistor is turned off? This depends on the size of the capacitor, so the answer must be an equation.

Third, a 24 VAC relay has 10.5 ohms of DC resistance and allows .258 amps to flow when 24 VAC is applied (60Hz); Z = 93 L = 245H.

When the relay is on, .258 amps RMS is flowing. When the triac turns off at zero volts of the AC line, the current is at its peak — 365 amps (give or take a bit for the DC resistance). How much voltage will try to get through the triac if it is in parallel with a capacitor?

— Chuck

\[
A
\]

You did not measure the resistance of the inductor, so if that was significant, the inductance calculated would be higher than actual. Assuming that the resistance is not significant, your calculations are okay up to the point of calculating the voltage on the capacitor. I don’t know where you used the average current, but you got the right answer: 423 X 10^-6. I would have used the peak current in the equation:

\[
E = \frac{1}{2} L I^2.
\]

\[
E = 1/2 \times 529 \times (0.04)^2 = 423 \times 10^{-6} \text{ (not sure what the units are; Joules?)}
\]

Your final calculation of voltage is the problem. The equation assumes constant current and the time is the discharge time. You used the charge time, and the discharge current is not constant. The equation to use is:

\[
E = \frac{1}{2} CV^2
\]

Solving for V: \[V = (2E/C)^{0.5} = (2 \times 423/0.1)^{0.5} = 92V\]

In your second problem, I would expect the latched inductance to be higher than the unlatched inductance. Measuring the AC current while holding the contacts closed would give a better measurement. Having found the inductance (your calculations are okay), calculate the voltage using the relation: \[E = \frac{1}{2} I L I^2 = \frac{1}{2} C V^2\] and solve for V:

\[
V = I^2 (L/C)^{0.5} \text{ where } I \text{ is the current flowing when the circuit is interrupted.}
\]

In your case, and using \[C = 0.1 \mu F, V = 138V.\]

This solution neglects the resistance, so the calculated voltage will be higher than actually experienced. If the resistance is low, the energy will bounce back and forth between the inductor and capacitor, getting smaller as the energy is used up in the resistor. At some value of resistance (critical damping), the current will just decay to zero. We define a quality factor: \[Q = X/R. \text{ Critical damping is when } Q = 1/2, Q \text{ less than 1/2 will not have oscillation and is where you want to be. If the inductor has low resistance, you may want to add resistance in}

BATTERY MONITOR PARTS LIST

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>20.0K, 1%, 1/4W</td>
<td>271-20.0K-RC</td>
</tr>
<tr>
<td>R2</td>
<td>12.7K, 1%, 1/4W</td>
<td>271-12.7K-RC</td>
</tr>
<tr>
<td>R3</td>
<td>2.7K, 5%, 1/4W</td>
<td>271-2.7K-RC</td>
</tr>
<tr>
<td>R4</td>
<td>220, 5%, 5W</td>
<td>285-220-RC</td>
</tr>
<tr>
<td>R5</td>
<td>1.2K, 1%, 1/4W</td>
<td>271-1.2K-RC</td>
</tr>
<tr>
<td>R6</td>
<td>511, 1%, 1/4W</td>
<td>271-511-RC</td>
</tr>
<tr>
<td>R7-R9</td>
<td>1K TRIM POT CERMET, 1/4W</td>
<td>81-P05W10020180</td>
</tr>
<tr>
<td>D1</td>
<td>15V ZENER, 1W, 5%</td>
<td>512-1N4744A</td>
</tr>
<tr>
<td>D2</td>
<td>5V ZENER, 1W, 5%</td>
<td>512-1N4733A</td>
</tr>
<tr>
<td>Q1</td>
<td>GP NPN, 2N3904</td>
<td>512-2N3904TA</td>
</tr>
<tr>
<td>IC1</td>
<td>BAR GRAPH DISPLAY DRIVER</td>
<td>300003 JAMSCO</td>
</tr>
<tr>
<td>IC2</td>
<td>LED BAR GRAPH DISPLAY</td>
<td>859-LTA-1000HR</td>
</tr>
<tr>
<td>BLZ1</td>
<td>6V PIEZO BUZZER, 65 dB</td>
<td>665-AJ1622WT65VR</td>
</tr>
<tr>
<td>RLY1</td>
<td>SOLID-STATE, 350V, 50 OHMS, NC</td>
<td>655-03VM-353A1</td>
</tr>
</tbody>
</table>

MOUSER.COM PART NUMBERS EXCEPT AS NOTED

June 2010 MUTSYVOLTS 21
series with the capacitor. X_l in this case is calculated using the frequency $F = \frac{1}{2\pi\sqrt{LC}}$.5.

I simulated the circuit and got a peak voltage of 140V, so it appears that there is not much energy lost in the resistance.

In your third case, the calculated voltage is 571 volts with $C = 0.1 \mu F$. My simulation shows 595V but if I put 620 ohms in series with the capacitor, the peak voltage is 500 volts and there is no ringing. I didn't calculate the Q but it should be about 1/2.

ALTERNATOR REGULATOR

Q I loved your circuit for an automobile generator voltage regulator from October '09. Do you have something similar for an alternator? Mine is an old General Motors Delco-Remy alternator (1967 Pontiac) with an external vibrating relay type regulator. One side of the alternator field coil is grounded to the frame and the other comes out to the F terminal. There is also an unused R terminal which was to be used with an idiot light, but this car has an ammeter.

I have a friend who would like to use such a circuit to charge a 24 volt battery, so any modifications to make the same circuit work in a 24 volt setting would be welcome.

— Mike Watford

I know I designed this before, but I didn’t put the schematic where I could find it so this one is new. In Figure 3, the transistors and diodes are rated to 100 volts in order to survive transients of the automotive system. D1 protects against reverse voltage and D2 catches the backswing of the field inductance when Q1 turns off. I used Darlington transistors to keep the power in the control circuit low. IC1 is a four volt (4.096V nominal) shunt reference. R7 is a thermometer to temperature-compensate the charger. My battery manual recommends 2.5 to 3 millivolts per cell; this is intended to do that. You will need to adjust R3 to get 13.8 volts at the battery. One way to do this on the bench is to apply 13.8 VDC to P1 and connect a 12 volt light bulb to the field output. Adjust R3 so the light just goes out.

— Bob Haskett

I have my doubts that flashing brake lights will be effective, and you should check with local ordinances that they are legal. In any system that I am familiar with, voltage is applied through the brake switch to the lights which are grounded. To use this circuit, you will need to cut the brake wire and splice in the circuit and ground.

In the circuit in Figure 5, the transistors are rated at 100 volts to survive the automotive environment. Some vehicles have five brake lights, so I designed for 10 amps current. Q1 will dissipate 20 watts in the worst case and R1 needs a heatsink for 10 watts, so a 30 watt heatsink is required. For a 50 deg C rise above ambient, a heatsink rated at 1.7 deg C/W should be used. Figure 6 is the parts list.

I think a 4 Hz blink rate would be optimum and will use a hysteresis oscillator. The CD4093 Schmitt-trigger

— George Ullom

ALTERNATOR REGULATOR PARTS LIST

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>PKG</th>
<th>MOUSER PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2</td>
<td>DIODE, 100V, 5A, SCHOTTKY</td>
<td>TO-92</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>Q1</td>
<td>PNP DARLINGTON, 100V, 5A</td>
<td>TO-200</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>Q2, Q3</td>
<td>NPN DARLINGTON, 100V, 800 mA</td>
<td>TO-220</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>D3</td>
<td>4.096V SHUNT REGULATOR</td>
<td>TO-92</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>R1</td>
<td>1K TRIMPOT</td>
<td>TO-220</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>R2, R3, R4</td>
<td>330 OHMS, 1/4W, 1%, METAL FILM</td>
<td>TO-220</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>R5, R6</td>
<td>20K, 1/4W, 1%, METAL FILM</td>
<td>TO-220</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>R7</td>
<td>10K, 1/4W, 1%, METAL FILM</td>
<td>TO-220</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>R8</td>
<td>15K, 1/4W, 1%, METAL FILM</td>
<td>TO-220</td>
<td>655-100V-1000E</td>
</tr>
<tr>
<td>R9</td>
<td>5K THERMISTOR</td>
<td>TO-220</td>
<td>655-100V-1000E</td>
</tr>
</tbody>
</table>

FIGURE 4
gate has 0.9 volts hysteresis, according to the datasheet so I computed the R-C values using the relation: \(\frac{dV}{dt} = \frac{I}{C} \). In this case, the voltage on the capacitor will ramp up and down in 0.25 seconds (4 Hz period).

\[
\begin{align*}
dV &= 0.9V \\
\frac{dT}{dt} &= 0.125 \text{ sec} \\
\text{Set } I &= 0.1 \text{ mA} = \frac{3V}{R3}, \text{ therefore } R3 = 30K (3V \text{ is } 1/2 \text{ the supply voltage}) \\
C &= \frac{I}{dV} = 0.1 \text{ mA} \cdot 0.125S/0.9V = 0.0139 \text{ mF}; 15 \mu F \text{ is a standard and close enough. I chose a tantalum cap for low leakage and temperature stability.}
\end{align*}
\]

I chose the 6.2 volt zener because it has a sharp knee and will hold a constant voltage over a wide current range. The five volt zener has high internal resistance and is not as stable. For improved temperature stability, you can put a silicon diode in series with the zener. The two temperature coefficients approximately cancel.

MAGNETIC QUESTIONS

1. In regards to N & V March ’10, page 30: What size wire do I use to wind 82.5 or 87.2 turns on the core of the RS 273-104? Can I round it off to the nearest turn?

2. Using the same RS 273-104 core, I need 2 IF transformers for 455 kHz. Can I do this on this core and how many turns will it need? IF transformers are getting hard to find and costly.

3. Again, using the same 273-104 core, I need a ratio detector or discriminator transformer. The driving tube will be 6BN11 or 6BW11. The secondary center tap in the middle and the two opposite ends go to the deflection plates of a 6AR8A.

1. Wire size does not matter, as long as it fits in the opening. Keeping in mind that the inductance varies as the square of the number of turns, you may want to round up or down. Without measuring the inductance, it is only approximate anyway; #16 wire or smaller will fit.

2. I rather doubt that this core will be good at 455 kHz and there is no data on it. You will be better off to salvage a transformer from an AM radio.

3. I don’t know how the 6AR8A discriminator works — that is up to you — but the transformer is shown in Figure 7. R1 simulates the 6BN11 plate resistance, and R2 and R3 load the transformer at resonance to widen the bandwidth. I did not simulate the resistance of the coil; I don’t think it will be significant. There are three identical coils of 360 uH each. Each one has 45 turns of #20 wire or smaller (#16 wire would take up all the opening with no room for insulation). I assumed that the tuning cap would be 365 pF variable as found in most AM radios.

GEIGER COUNTER

Many months ago, I saw an article in Nuts & Volts (I think) about building a Geiger counter. I’ve searched the past several years’ worth of issues but haven’t found it. Either I haven’t found the right issue or it was someplace else. Any ideas about the issue or how to build one?

I have an old “tube type” unit that doesn’t work — even after I replaced the 67 1/2 volt batteries with a bench supply. I’ve got a nice metal box, display meter, switches, etc., and a GM tube in a housing. I’d like to make something of this thing.

FLASHING BRAKE LIGHT PARTS LIST

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>PKG</th>
<th>MOUSER PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>PNP, 100V, 25A</td>
<td>TO-247</td>
<td>511-TIP96C</td>
</tr>
<tr>
<td>Q2</td>
<td>NPN DARLINGTON, 100V, 6A</td>
<td>TO-220</td>
<td>512-KSD560</td>
</tr>
<tr>
<td>IC1</td>
<td>QUAD NAND SCHMITT</td>
<td>DIP-14</td>
<td>696-CD4093BE</td>
</tr>
<tr>
<td>D1</td>
<td>6.2V ZENER, 1W</td>
<td>DO-41</td>
<td>512-1N4755</td>
</tr>
<tr>
<td>C1</td>
<td>15 µF 2%, 10V</td>
<td>RADIAL</td>
<td>74-1901.6V15</td>
</tr>
<tr>
<td>R1</td>
<td>10 OHMS, 10W, 5%</td>
<td>AXIAL</td>
<td>71-RH10-10</td>
</tr>
<tr>
<td>R2, R4</td>
<td>3.3K, 1/4W, 5%</td>
<td>AXIAL</td>
<td>291-3.3K-RC</td>
</tr>
<tr>
<td>R3</td>
<td>22K, 1/4W, 5%</td>
<td>AXIAL</td>
<td>291-22K-RC</td>
</tr>
<tr>
<td>HEATSINK</td>
<td>60 DEG C/30W (1.7 DEG C/W)</td>
<td></td>
<td>568-7172</td>
</tr>
</tbody>
</table>

FIGURE 6

FIGURE 7
MAILBAG

Dear Russell:
Re: LED Laser, Jan '10, page 22.
I may be a little late on this, but while scanning through the Jan issue of Nuts & Volts I was alarmed by the first question in your column. The description of the "IR LED laser" bought on eBay was disturbing (as was the intended use, of 'cutting some plastics').

A laser is a laser — not an LED — and can be extremely dangerous. A 30W IR laser (which is probably in the 808 nm range) can easily cause permanent damage to your eyes in an instant and should be operated with great care. Likewise, laser ablation (and burning, which would certainly occur with this laser) of certain plastics (such as polycarbonate) can release harmful vapors.

A word of warning should be passed along to the person who asked the question — and maybe a mention of the dangers should be included in any future answers. I would hate to see a hobbyist damage his or her eyesight or poison him/herself as a result of playing around with a very cool but dangerous laser.

— Chris Fredricksen

Response: Thanks for the feedback, Chris. A word from the wise is always good.

Dear Russell:
Re: Large Clock, Jan '10, page 20. From my first glance at the code, there seems to be several errors.
1) One would have to hold the setting buttons in for possibly a full five minutes if the code was in the five Second delay loops (which it essentially always is) when you pushed them. BAD; impossible to really set.

Probably the easiest fix would be to use a one second pause loop nested in several counters so one could check for pushbutton access after each one second delay.
2) The incrementing code ... Let M=M+H in your main loop which is supposed to set just the minutes; it will also increment the hours since you already have the H in the M variable. Each loop will have H again. BAD.

I would suggest using a separate variable — say T — to combine the total minutes and hours, and present this to the display.

Let T=M+H
Let PORTC = T

3) Your minute total of 112 is wrong. Should be 12 times the 16 = 192. So the code should look something like:

FOR H=1 TO 12
'loop for 12 hours
FOR M=16 TO 192
'loop for 12 five minutes intervals
LET T=M+H
LET PORTC = T
FOR X=1 TO 360
'delay 5 minutes...360 one second loops.

use your pushbutton checking code with some changes to use T=M+H and just clean up the button checking.

PAUSE 1000

wait one second
NEXT X
NEXT M
NEXT H

Pushbutton checking code should increment either M or H and then put them together in T, and display:

SETMIN:
M=M+16
T=M+H
PORTC = T
IF PORTA PIN 0 = 1
THEN GOTO SETMIN
RETURN

I think the whole thing needs a major rewrite.
— Evan Wasserman

Response: Thanks for taking the time to analyze my code, Evan. I surely would have seen those errors if I had actually run the program. Mea culpa once again.

More feedback on the large clock program from Eric Fulton.

Dear Russell:
I programmed the 28X2 chip with your program, with a few changes. It runs on the edit program on my computer. As I'm new to programming, I hope it works. I added a magnetic switch to reset at 12:00 o'clock twice each day.

I added a set frequency M4 command; I changed the code of line 14 to: for M = 16 to 192; added LET M=M-H before next M; added GOTO for the time correction after next H; and added a sub-routine for the correction.

The 28X2 did not use port commands so I changed them to pin commands. Breadboarded it and it ran.

I think this program will work. I had no idea how to proceed until you helped. Thanks again.
— Eric L. Fulton

Response: Thanks for the feedback, but I think you should incorporate more of Eric Wasserman's suggestions.

Dear Russell:
Re: High Current LED Driver, Jan '10, page 22:
Thanks not only for your excellent article (I have already bought the parts), but also for the feedback. Such warnings cannot be stressed enough. Some of the precautions I take are:

1. I do not experiment without my laser protection goggles on.

2. Absolutely nobody can be in my vicinity when experimenting with a laser.

3. The laser is fixed on a table (not lying around so it can topple, pointing to where it can do little harm (non-reflective surface).

4. I use my webcam or digital video cam to look for output.

I hope this can assure you and your readers.
— Ron Wijngaarde

Dear Russell:
Re: Large Clock
can’t find a tube checker, just ohm the filaments; if the filament is good, it should do something. You did not mention a filament supply; these are probably 1.5 volt tubes (1R5, 1S4, etc.) but the filaments are probably connected in series; you will have to check that. There will be a high voltage supply producing 400 to 500 volts DC for the GM tube; if that is working and introducing a small signal to the amplifier produces an output but no clicking from the GM tube, then the GM tube is bad and you may as well start from scratch with a solid-state design and a new GM tube. This URL has some good information, including a schematic: www.circuitsarchive.org/index.php?file:geiger-counter.png.

Revisited, March ’10, page 31:

In looking at your code from March and researching the forum, try adding these parameters in your code before “start.”

```
#Picoax 28X1
SetFreq EM4 (or whatever speed you have selected)
```

Other SetFreq options: internal k31, k125, k250, k500, m1, m2, m4, m8, and internal em4, em8, em10, em16, em20.

I do not know if this will solve the problem or not, as I have never used an external crystal. Within a forum thread, this statement prompted the idea to use SetFreq to solve the matter: “Attaching a resonator won’t automatically cause the 28X1 to use the resonator, you need to tell it to use that with the SETFREQ command. As you are using a 4 MHz resonator, you would use a SETFREQ EM4’ command.”

— Terry Meyer

Response: Thanks for your input, Terry, I think you have found the answer. I will put that in my memory bank.

Dear Russell:

Re: Phono Preamp, April ’10, page 22:

I enjoyed reading your April column as usual. I do have a comment on the phono preamp circuit. You say this has a flat response; surely it should be designed to implement the RIAA equalization curve?

— Robert Atkinson G8RPI

Response: You are right, but not being an audiophile, I didn’t think of that. Also, I didn’t realize that the wide line parameter had changed which caused the lines not to reproduce in printing. Consequently, I have re-done the schematic with compensation (Figure A). The response is not exactly RIAA, but close.

SOLARBOTICS

EARN MORE MONEY

Get your dream job!

Be an FCC Licensed Wireless Technician!

Make up to $100,000 a year and more with NO college degree

Learn Wireless Communications and get your "FCC Commercial License" with our proven Home-Study Course!

- No need to quit your job or go to school.
- This course is easy, fast and low cost.
- No previous experience needed!
- Learn at home in your spare time!

Move to the front of the employment line in Radio-TV, Communications, Avionics, Radar, Maritime and more... even start your own business!

Call now for FREE info
800-932-4268 ext. 209
Or, email us: fcc@CommandProductions.com
MORE FLEXIBILITY, NEW FUNCTIONS, AND MAC OS X COMPATIBILITY

Front Panel Express has released a new version of their free design software: Front Panel Designer. This update can now run on Windows, Mac OS X, and Linux, has more design flexibility, and additional features. Additionally, manufacturing lead time has been reduced from seven to five days.

In the previous version of the software, making special shapes used to be an involved process. Now it is a simple file import. Before, users had to build custom shapes using a standard tool kit or send their designs in to have an engineer import them, but in version 4.0 a simple DXF file import does the trick. Front Panel Express has simplified and sped up the process of custom file imports by incorporating this feature in their CAD software. The import of DXF files makes the design of exterior and interior contours possible without restrictions, which means that the design of front panels is not limited to simple geometric shapes (as an example, see the screenshot). As with all Front Panel Designer features, the user can see an immediate price quote for their custom designs.

“Our customers let us know that they wanted to have more versatility and control over the design process. Now that we have given these to them, I am excited to see their new designs. The most unique ones will be featured in our monthly email newsletter,” says Diane Haensel, CEO.

Continued on Page 77

SHOWCASE

RF Specialists

VBA2016

$7.2ea · 1k

VBA2016

VBA2016

Compact size · No heatsink · Minimum external parts

VBA2016 10W x 2 (80)
THD+H: 0.07% (9W)
SNR: >90dB
Size: 25 x 15 x 3.8mm

url: http://www.v-module.com
email: sales@v-module.com

Do you know how many watts (YOUR MONEY) are going down the drain from "THE PHANTOM DRAW?"

The KILL A WATT meter is the best way to help you determine your actual energy draw in ON and OFF home appliances.

Only $29.95

To order call 1 800 783-4624
or online www.nutsvolts.com
IMPLEMENTING A DATA LOGGER WITH THE 16-BIT MICRO EXPERIMENTER

Previous *Nuts & Volts* articles have presented a series of demos with an overview of the 16-bit Micro Experimenter (Experimenter for short), its hardware features and C libraries for LCD displays, pushbuttons, and EEPROM and ADC operation. Now it’s time to roll up our sleeves and put together a real working application. This article will use what we’ve learned so far to build a stand-alone data logging application using the Experimenter.

A data logger is very useful in experiments where long-term logging of time stamped data is needed. Imagine collecting and storing temperature readings throughout your house every 10 minutes over a four week period; understanding heating and/or cooling efficiencies; or measuring the voltage output from a solar collector every hour over six months to identify the best placement. A data logger can help make all this happen. In the course of this article, we are going to introduce two more libraries for the Experimenter: the Real Time Clock Calendar (RTCC) and the Serial Port. They will be used with what we have learned so far to build the data logger. As stated in previous articles, all software will be kept to a general level of understanding using straightforward functional calls. However, some basic familiarity with C language syntax will be required. For starters, let’s look at the basic capabilities of the data logger that we will be building.

Data Logger Description

Figure 1 shows a notional data logging block diagram side by side with the actual Experimenter. We have the LCD configured for menus to allow the user to operate the data logger using pushbuttons. The RTCC (or clock) is used to set data and time of data capture, as well as rate of capture. The EPPROM (a full 32K x 8 byte non-volatile...
memory) functions as our storage. The I/O expansion bus is configured to accept an analog input signal and digitize it using the PIC24F ADC. This I/O expansion is also configured with a serial port to download data logger storage content to a PC. We will use the HyperTerminal program on the PC to see the data logger in action and store the results in files. Once data is stored in a PC file system, we are able to do analysis and data plotting using standard PC office tools (like excel spreadsheet programs).

There are several LEDs that run from the I/O expansion bus for data logger indication activities: a red LED flashes when storage is updated; and a green LED flashes once a second to indicate the RTCC clock has been set and is active.

Data Logger Operation

A data logging application allows for interaction with the operator for control and to view status changes. In our case, we are going to implement a menu driven system. In fact, all the functionality we need is implemented through a series of menus and action/status screens. The main menu has options to set up a data log, initiate a capture, and then view data all using pushbuttons SW1 to SW4. From here, a user navigates through the menus to where status screens reside. No matter where a user ends up, in all cases he/she can recover and work their way back to the Main Menu. As with any new instrument or appliance, the best way to get familiar with it is to try it. A data logger project is available off the Nuts & Volts website www.nutsvolts.com or KibaCorp site www.kibacorp.com complete with commented source code for this particular experiment. The menu driver for this experiment is contained in the MAIN.C function of the code.

What is the Data, and How is it Stored and Retrieved?

Okay, we understand the operation, but what is the data and how does the data logger store and retrieve it? The logger stores an analog value. It uses the ADC library (we learned earlier) and configures pin 1 of the I/O expansion bus to function as an analog input. Any analog input at this pin between 0 to +3.3 VDC will be converted to 10 bits and be represented as a decimal number from 0 to 1023. The logger will store this value along with the current date and time from the RTCC. Conversion can be set at different rates — the fastest being every 10 seconds and the slowest being once a year. All together, we end up with 16 ASCII characters for data, 16 ASCII characters for time, and four ASCII characters for a date — that’s a total of 40 characters of data per event.

To store this efficiently, we compress the 40 ASCII character data events into a smaller eight byte record using a few tricks. These “tricks” amount to replacing the month with numbers, using only the last two numbers of the year and decade, stripping each ASCII character of its most significant common four-bit header, and then retaining the remaining least significant four bits (nibble) and “packing” these nibbles into bytes. We have 32 KB of storage with our on-board Experimenter EEPROM. With this smaller eight byte record, we can store a total of 4,095 events or records in our EEPROM (reserving an

FIGURE 3. Data Storage and Retrieval.

FIGURE 4. Logging Rates and Capacity.

<table>
<thead>
<tr>
<th>Selected rate</th>
<th>Total Logging Time 4095 records</th>
</tr>
</thead>
<tbody>
<tr>
<td>ev 10s</td>
<td>11 hours</td>
</tr>
<tr>
<td>ev 1 min</td>
<td>28 days</td>
</tr>
<tr>
<td>ev 10 min</td>
<td>4 weeks</td>
</tr>
<tr>
<td>ev hr</td>
<td>6 months</td>
</tr>
<tr>
<td>ev day</td>
<td>12 years</td>
</tr>
<tr>
<td>ev week</td>
<td>95 years</td>
</tr>
<tr>
<td>ev month</td>
<td>>100 years</td>
</tr>
<tr>
<td>ev year</td>
<td>>100 years</td>
</tr>
</tbody>
</table>

June 2010 NUTSVOLTS 29
How Much Can be Stored?

Users get to select which logging rate they want and, as a result, incur a total logging time — if all total EEPROM is to be filled. When you examine all the supported RTCC rates and the total number of records that can be stored, the total logging time becomes quite impressive. We decided to cap the logging time to 100 years (after all, the RTCC is just a 100 year clock/calendar). For additional flexibility, the data logger (during logging operation) can be toggled on or off as needed to shorten logging times.

The Real Time Clock Calendar

The RTCC function is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The peripheral is optimized for low power usage in order to provide extended battery life while keeping track of time.

It features the 100 year clock/calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099. The hours are available in a 24-hour (military time) format. The clock provides a granularity of one second.

The RTCC internal register interface with the PIC24F microcontroller is implemented using the Binary Coded Decimal (BCD) format. This simplifies the software when reading and writing to the module, as each of the digit values is contained within its own four-bit value.

The RTCC module is clocked by an external real time clock crystal that oscillates at 32,768 kHz. The Experimenter comes with this crystal. The clock crystal connects to the PIC24F and works in conjunction with internal logic counters within the RTCC module to derive time (see Figure 6).

Using the RTCC Library

The Experimenter comes with an RTCC software library. The library contains a number of C function routines to initiate clock operations, set time/date, and read current time/date. We use all the clock functions for the data logger. In order to use the RTCC library, a #include RTCC.H must appear in your MAIN code, and the RTCC.C driver source code must be included as part of your project. We will also use an alarm setting function that works off of the RTCC to “alarm” or, in our case, to initiate a logging activity (more on this later).

- RTCCInit() — This function sets up the clock and initializes it to a default date and time.
• **RTCCSet()** — This function writes changed times and dates to the clock registers.
• **RTCCProcessEvent()** — This function grabs the current time from the RTCC and translates it into strings. It must be called periodically to refresh the time and date strings _time_str_ and _date_str_. Each string is 16 ASCII characters.

The above functions work directly with the RTCC without the advantage of using the LCD and pushbuttons, which would make working with the RTCC a lot easier. You could view the current clock setting on the display and selectively change fields and get instant feedback on the results. Because of this, I recommend that you use the following functions to set the clock and alarm instead. These functions make extensive use of the LCD and pushbuttons. To operate these, you must first call the library function RTCCInit(). The two functions we will discuss use the RTCC library, but reside outside of it in MAIN.C.

• **Set ALARM (alarm)** — This function initializes the alarm functions of the RTCC and sets the alarm (for the data logger, we referred to this as rate) based on the value passed as alarm. It is called during the rate setting menu. It sets as follows:

 • if (alarm = 0), then alarm every 10 seconds.
 • if (alarm = 1), then alarm every minute.
 • if (alarm = 2), then alarm every 10 minutes.
 • if (alarm = 3), then alarm every hour.
 • if (alarm = 4), then alarm every day.
 • if (alarm = 5), then alarm every week.
 • if (alarm = 6), then alarm every month.
 • if (alarm = 7), then alarm every year.

Once the alarm is set, this function will then enable the RTCC to interrupt the PIC24F once the alarm condition is met. The RTCC interrupt performs the function of collecting all the data for the record and then storing the record in EEPROM. It runs continuously until a total of 4,095 records are stored or until the operator elects to shut the alarm interrupts off (using menus) before the full 4,095 count is reached.

• **clock_Setup()** — This routine displays the current RTCC

Implementing a Serial Interface

To connect the Experimenter data logger to a PC, a serial port is required. The port uses one of the two internal Universal Asynchronous Receiver Transmitters (UART) in the PIC24F and connects the transmit and receive pins to pin 9 and pin 8 of I/O expansion bus. Why bother with this connection? Well, the data logger only does a single log session at a time. It stores this nonvolatile data from the logging session. However, if you initiate a new session, then this data will be written over — that is where the PC comes in. We don’t need to lose our data, just simply transfer it to the PC with its larger file system and analytic tools, and store and study the data there. As a stand-alone, the data logger will allow you to examine the stored data under the menu operation. However examining all 4,095 records manually using pushbuttons to scroll through will be tedious!
You must do a #include “CONU2.H” in MAIN and also include the CONU2.C driver source code in your project to use the serial port. The serial port can support a PC serial port or USB with the proper physical interfaces. Acroname [www.acroname.com] provides ideal physical interfaces at a reasonable price.

Only four connections are required to work with the Experimenter. They are pin 9 and 8 of the I/O expansion bus, and +3.3V and GND, as well. If USB is required, some software INF files and USB drivers will need to be installed on your PC. (Acroname provides all the code and instructions with their product.) The CONU2 library functions used in the data logger are:

- **initU2()** — Initializes the serial port using UART2 of the PIC24F for pins 8 and 9 of the Experimenter expansion bus for 9600 BAUD, eight-bit data, no parity, and one stop bit (or 96008N1 for short).
- **putU2(character)** — Writes a character out to the serial port.
- **putsU2(string)** — Writes an entire string out to the serial port.

- **Character getU2()** — Waits for a new character to arrive to the serial port and then returns it.

Testing the Data Logger

Assemble the hardware using the connection diagram supplied in Figure 8. The Acroname interfaces and PC are not required at the start. I used a potentiometer as an analog source for this experiment, but you can hook up any type of sensor or input that does not exceed +3.3 VDC on its output. Download the data logger project from the NV website and use your free MPLAB IDE and PIC24F software compiler to compile the code; then use your PICkit2 to load the program into the Experimenter. Play with the menus, set up the logger, use the 10 second rate, and begin collecting. The data logger has defaults for the clock setting and 10 second rate to make things easier. As the system is collecting, either the pot and watch the values on the display update every 10 seconds. This should coincide with the red LED flashes. Stop the logging and then use the data logger viewer (using the LCD and pushbuttons).

Now, connect the Experimenter to your PC using one of the designated interfaces (USB or serial). Bring up the HyperTerminal application. Configure HyperTerminal for 96008N1 and no hardware handshake. Start the data logger again and you should see a banner announcement on HyperTerminal indicating that the Experimenter is communicating. All logging activities will be displayed as automatic updates on the HyperTerminal Window. Once you finish logging, the data logger will “dump” all its stored record data — on your command — to HyperTerminal using the 16 byte record ASCII format. The data logger retains its records until the next logging session which allows you to execute a number of record “dumps” if necessary. Here’s where the magic begins.

You can do analysis and plotting of this dumped record data using PC software (like Excel). To help you along, Figure 10 shows a screenshot and the procedures to transfer a data record dump to a text file through HyperTerminal and import it to Excel for plotting.

Ideas for Future Expansion

We now have completed our first real application for the Experimenter. It has some very practical capabilities, so put it to good use. I’m sure there are lots of ideas out there that can work with it. Stay tuned! More exciting applications are coming! **NV**

A complete kit to go with this series of articles can be purchased online from the *Nuts & Volts* Webstore at www.nutsvolts.com or call our order desk at 800-783-4624.
SHAKE, RATTLE, AND ROLL
VIBRATION MONITOR

By Ron Newton

Build one for less than $10!

One of my students in Kenya, Africa needed a suggestion for a project that would be simple and inexpensive! I suggested a vibration monitor that could be used as an intrusion alarm. To make sure that it would work, I built my own. Since project cases always drive up the price of a project, I thought, “Why not put the project into a battery holder?”

Eagle Plastics makes a three AA battery holder with a switch. I designed a circuit board the size of a AA battery that would hold all the components (total of nine), and used the center battery slot to power and hold the board.

Methodology

The detection transducer used here is a Measurement Specialist, Inc., LDTO-238K piezo film sensor that has a weight attached. This sensor can generate up to 70 volts when stressed and produces an AC current when vibrating. I found that very small vibrations produced small voltages that needed to be amplified, so I selected a Microchip MCP601. This is a 2.7 volt single supply amplifier and I used it in a non-inverting 101 amplification configuration.

\[
\text{Amplification} = 1 + \left(\frac{R_1}{R_2} \right) = 1 + \left(\frac{100,000}{1,000} \right) = 101
\]

By changing R2, you can increase or decrease the amplification. The board is designed to either use a fixed resistor or a potentiometer so that you can change its sensitivity. The voltage from the sensor is limited by using two signal diodes with opposite polarities in parallel, and feeding the sensor’s output into an op-amp (see the schematic).
The output from the op-amp goes to a PIC12F508 which acts as a timer and tone generator for the speaker (magnetic transducer). The 10 μF capacitor passes only AC to the speaker and blocks any DC.

The PIC508 is inexpensive and is about as simple as microcontrollers can get. When it is put to sleep, it draws less than two micro-amps. The op-amp draws about 230 micro-amps, so in total the two AA batteries should last for over a year. I put in a one minute delay so that the unit can be set down and arm itself. To save power, I use the 508's sleep function.

When the micro is sleeping, there are a couple of things that can wake it up. I used a watch dog timer (WDT) and a pin change on one of the input pins (GP0). I set the WDT to wake up every 2.3 seconds; when this happens, it increments a counter. When the counter reaches 26 (60 seconds), it arms the alarm. If the sensor detects any movement, it changes pin 7/GP0's voltage and this causes it to alarm.

How does the micro know what woke it up or if it just turned on? With the status register. By checking the bits in the status register, the micro will either jump to the program area to increase the count or jump to sound the alarm.

The magnetic transducer has a resonate frequency of 2,400 kHz ± 200 Hz. I wrote a program that will warble around 2,400 kHz for maximum sound. There are two other alarms written in the software code. If you want to use them, you will need to change the software GOTO to the different locations. One is a French ambulance alarm; the other is a single tone. This will require you to have a programmer for the chip and understand writing code. (A pre-programmed chip is available from the author.) If you're feeling ambitious, you can even write little tunes that it can play.

The magnetic transducer is activated by turning it on and off using a square wave generator. The resonate frequency (being 2,400) needs a square wave of 417 micro-seconds.

\[
\frac{1}{2,400} = 0.0004167
\]

This is controlled by a counting loop in the software in Listing 1.

Construction

If you'd like to make your own boards, the files are available on the Nuts & Volts website (www.nutsvolts.com) along with the software code, tips, and suppliers of parts. Go to www.exprespcb.com and download their free software for making your own boards and schematics. This software will open the files on the website.

Pull the two wires coming out of the battery box back into the battery box. Slide a piece of heat shrink tubing over the black wire. Cut them to a length so that you can still solder them, and then parallel solder them together. Slide the heat shrink tubing over the solder joint and push them inside the box next to the switch.

Use the board as a template and place it into the center battery compartment of the battery box. The + mark should be next to the spring of the battery compartment. At first, you might think that's wrong but it's not. Move the board toward the spring about 1/16".

Using a small drill, make a hole in the center of the speaker area into the box. Turn it over and using the small hole as a guide, drill a 1/4" hole in the battery box. Be careful not to drill through the spring. This hole is for the output of the speaker. Depending on how you are going to use the alarm, you can glue a magnet on the back or pop-rivet a lanyard so that you can hang it on a doorknob.

Board Assembly

Tap the hole at the end of the board next to the speaker with a 2-56 tap. This will be for a screw which will make contact with the
battery compartment’s spring.

I had trouble making a contact for the other end of the board. At first, I tried to make a contact similar to the positive end of a battery but the contact was poor and intermittent. I ended up taking a 3/4” length of solder braid and soldering it to the bottom square pad on the board with its tail coming out to the right side. When putting the board into the box, I threaded it through the contact slot and into the first turn of the spring for the battery (on the left). This solved the problem.

If you want to have adjustable sensitivity, solder the R2 alternate potentiometer to the board and leave the fixed R2 vacant. Mount the two ICs, diodes, and R1 and R2 (if you want fixed amplification) to the top of the board. The square pads are pin 1. Watch the polarity of C1 and bend the leads so C1 will lie flat on the board and then solder. Screw a 3/8” 2-56 screw from the top side into the tapped hole.

Turn the board over. Bend the piezo transducer leads at right angles where the contacts enlarge (no polarity) and solder on the bottom side of the board. Make sure that the sensor is centered with the board and that the piezo film is about 1/16” above the board (of the board) so that it can vibrate. Solder the speaker, noting its polarity on the bottom side. The screw should be protruding next to the speaker.

Testing

Place the board into the center position of the battery compartment and add two AA batteries to each side (note their polarities). Turn on the switch and set the unit on a quiet counter. After a minute, strike the counter with your hand. This should sound the alarm. Reset the unit by turning off the switch.

Once the unit is tested, glue the speaker to the bottom of the box so the board will not move. Replace the battery cover and secure it with the small screw to the battery case.

Uses

This device can be used as an intrusion alarm or as an earthquake detector by changing its amplification. How about as a computer alarm if you walk away from your desk? It also could be used for analyzing motor vibration frequencies, or perhaps as an anti-feedback controller for microphones since there is plenty of room for more code. For remote monitoring, a relay can be substituted in place of C1 and the speaker. Run wires to a light or bell.

Here’s to finding your own good vibrations. **NV**

PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>SUPPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Holder</td>
<td>1 ea</td>
<td>12BH331/CS-GR</td>
<td>Eagle-plastics.com</td>
</tr>
<tr>
<td>C1</td>
<td>1 ea</td>
<td>10 µF 16 volt radial</td>
<td>Microchip.com</td>
</tr>
<tr>
<td>D1-D2</td>
<td>2 ea</td>
<td>1N914</td>
<td>Microchip.com</td>
</tr>
<tr>
<td>IC 1</td>
<td>1 ea</td>
<td>PIC12F508</td>
<td>Meas-Spec.com</td>
</tr>
<tr>
<td>IC 2</td>
<td>1 ea</td>
<td>MCP601</td>
<td>Meas-Spec.com</td>
</tr>
<tr>
<td>Piezo Vibration Detector</td>
<td>1 ea</td>
<td>LD20-0128K</td>
<td>Meas-Spec.com</td>
</tr>
<tr>
<td>R1</td>
<td>1 ea</td>
<td>10K 1/8 watt</td>
<td>*Ron Newton</td>
</tr>
<tr>
<td>R2</td>
<td>1 ea</td>
<td>1,000 1/8 watt</td>
<td>Carson City, NV 89701</td>
</tr>
<tr>
<td>R2 Alternate</td>
<td>1 ea</td>
<td>100K potentiometer</td>
<td>ajnewt@att.net</td>
</tr>
<tr>
<td>Screw</td>
<td>1 ea</td>
<td>2-56 3/8”</td>
<td>775 885-8842</td>
</tr>
<tr>
<td>Speaker</td>
<td>1 ea</td>
<td>WT-1205</td>
<td>Soberton.com</td>
</tr>
</tbody>
</table>

*Ron Newton

2230 Damon Rd.

Carson City, NV 89701

ajnewt@att.net

775 885-8842
FULL COLOR
JAYCAR 2010
CATALOG
OUT NOW!

OVER 480
PAGES

- 6,750 products
- Over 900 new products

For your FREE catalog log on to: www.jaycar.com/catalog
or check out the range at: www.jaycar.com

ULTRA-LOW DISTORTION AMPLIFIER MODULE

KC-5470 $55.25 plus postage & packing
Using new ThermaTrak power transistors, this ultra-low distortion amplifier module has no need for a quiescent current adjustment or a vbe multiplier transistor. Kit supplied with PCB & all electronic components. Heat sink & power supply not included.

- Output power: 135W RMS @ 4 ohms
- 200W RMS @ 8 ohms
- Frequency response: 4Hz to 50kHz, 1% 1kHz
- Harmonic distortion: 0.008% @ 20kHz

If you use this kit to store your WAV files on MMC/SD/SDHC cards, it can be used as a phone, a sound effects player or an expandable digital voice recorder. You can use it as a free-standing recorder or in conjunction with any Windows, Mac or Linux PC.

Also available:
- Suitable Balanced Power Supply Kit
 - KC-5471 $32.50

SD CARD SPEECH RECORDER & PLAYER KIT

KC-5481 $43.50 plus postage & packing

BATTERY MAINTENANCE KITS

SLA BATTERY HEALTH CHECKER KIT

KC-5482 $46.30 plus postage & packing

BATTERY ZAPPER MKIII KIT

KC-5487 $46.30 plus postage & packing

PROBING THE LIFE OF YOUR LEAD ACID BATTERIES. LIKE THE ORIGINAL 2005 MODEL, THIS CIRCUIT PRODUCES HIGH LEVEL BURSTS OF ENERGY TO REVERSE THE SULPHATION EFFECT. THE BATTERY CONDITION CHECKER IS NO LONGER INCLUDED AND THE CIRCUIT HAS BEEN UPDATED AND REWORKED TO PROVIDE MORE RELIABLE, LONG-TERM OPERATION. IT STILL INCLUDES TEST POINTS FOR A GMX AND BINDING POSTS FOR A BATTERY CHARGER. NOT RECOMMENDED FOR USE WITH GEL BATTERIES.

- PCB with solder mask and overlay components
- Screen printed machined case
- 6, 12 & 24VDC

ORDER ONLINE:

www.jaycar.com

POST & PACKING CHARGES

<table>
<thead>
<tr>
<th>Order Value</th>
<th>Cost</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25 to $49.99</td>
<td>$7.50</td>
<td>$24</td>
</tr>
<tr>
<td>$50 to $99.99</td>
<td>$24</td>
<td>$48</td>
</tr>
<tr>
<td>$100 to $199.99</td>
<td>$48</td>
<td>$64</td>
</tr>
<tr>
<td>$200 to $499.99</td>
<td>$64</td>
<td>$88</td>
</tr>
<tr>
<td>$500+</td>
<td>$88</td>
<td>$75</td>
</tr>
</tbody>
</table>

Note: Products are despatched from Australia, so local customs duty & taxes may apply.

HOW TO ORDER

Order online: www.jaycar.com
Follow along with this new series of projects using
"The 16-Bit Micro Experimenter Board"
Now available
128 x 64 Graphics Board Kit
For More information and kits, Please visit: www.nutsvolts.com

The Standard for checking Capacitors in-circuit
Good enough to be the choice of Panasonic, Pioneer, NBC, ABC, Ford, JVC, NASA and thousands of independent service technicians.

Inexpensive enough to pay for itself in just one day’s repairs. At $229, it’s affordable.

And with a 60 day trial period, satisfaction guaranteed or money-back policy, the only thing you can lose is all the time you’re currently spending on trying to repair all those dogs you’ve given up on.

CapAnalyzer 88A
Available at your distributor, or call 561-487-6103

Locate shorted or leaky components or conditions to the exact spot in-circuit
Still cutting up the pcb, and unsoldering every part trying to guess at where the short is?

$229

Your DVM shows the same shorted reading all along the pcb trace. LeakSeeker 82B has the resolution to find the defective component. Touch pads along the trace, and LeakSeeker beeps highest in pitch at the defect’s pad. Now you can locate a shorted part only a quarter of an inch away from a good part. Short can be from 0 to 150 ohms.

LeakSeeker 82B
Available at your distributor, or call 561-487-6103

Electronic Design Specialists
www.eds-inc.com

The New King of the Jungle
Sabertooth 2x50HV

- Dual Channel Brushed Motor Controller
- 12V - 48V Nominal / 62V MAX
- 50A Continuous / 100A Peak x 2
- 4.17” x 3.5” x 1.65” / 11oz/292g
- Analog, R/C, and Serial Inputs

www.dimensionengineering.com/Sabertooth2x50HV.htm
Basically, a resistor restricts electron flow. It acts just like a funnel does for water. A resistor allows a certain amount of electrons to flow, depending on the voltage (pressure). By doing this experiment, you will see that the higher the value in ohms of a resistor, the fewer the amount of electrons that will flow; thus, the dimmer the LED will be.

1. **Build the Circuit.**

Using the schematic along with the pictorial diagram, place the components on a solderless breadboard as shown. Verify that your wiring is correct.

2. **Do the Experiment.**

 Theory: In this simple experiment, we will light up an LED (light-emitting diode) with a battery. The electrons will flow out of the battery through the LED, through the resistor, and back to the battery. Remember, a resistor gives opposition to the flow of electrons. So, the more electrons that flow, the brighter the LED will light up. The fewer the electrons flowing, the dimmer the LED will be.

 Procedure: Connect a nine-volt battery to the battery snap and begin touching the probe (wire 2) to each resistor lead, one at a time. Observe the brightness of the LED. You should see it get dimmer as you go from R1 to R5.
Prototype This — an engineering entertainment program on Discovery Channel — offered a view into the real-life process of designing and building unique, sometimes crazy prototypes. The 13 episode series was filmed over the course of 18 months and aired starting back in October ‘08. Re-runs are currently being shown around the world, so be sure to check out the program!

I was the team’s electrical engineer and hardware hacker, and shared the screen with Zoz Brooks, a roboticist and software designer specializing in human-machine interaction; Mike North, a material scientist and mechanical engineer; and Terry Sandin, a special effects veteran. We were challenged to build things that had never been done before, looked cool on TV, and could be completed within the extremely tight financial and time constraints of television production, all the while being followed around by a camera. It was a great experience to say the least!

This series of articles covers the electronic aspects of some of my favorite projects from the show. My hope is that you will be inspired, learn something new, or use my work as a building block for your own open source project.

Introducing the PyroPack

Featured in the Robotic Firefighter Assistant episode, the PyroPack is a high-tech firefighter pack containing the standard array of firefighting necessities (a self-contained breathing apparatus and personal safety system) coupled with some advanced features (thermal imaging camera, heads-up display, digital pressure gauge, and firefighter identification system). The goal of the project was to improve on the common firefighter equipment used and worn by a firefighter to help increase their efficiency and reduce their risk while on the job. Firefighters are very particular about the equipment they rely on, so designing something they would actually want to use was no simple task. We only had two weeks from initial concept to final test, not to mention the added stress of having my extremely pregnant wife due to give birth at any moment!

The PyroPack has two major subsystems:
1) Headset
2) Backpack

The headset is a non-intrusive, head-mounted, physically adjustable unit containing an infrared thermal imaging camera, a heads-up microdisplay, and a connection to my custom electronics located in the backpack. The backpack contains a large tank of compressed breathing air, a digital pressure transmitter, a small dry-chem fire extinguisher, Makita 18V LXT Lithium-ion battery, and circuitry. A supplemental arm-shield is mounted to the wearer’s left arm which houses the dry-chem pull-tab trigger mechanism and output port, and serves as a simple mounting point for the RFID reader used with the PyroPack’s Firefighter Identification System.

The backpack’s housing was designed by industrial designer Scott Summitt of SUMMIT ID (www.summitid.com) and fabricated using a number of rapid prototyping 3D printing processes, including SLS (Selective Laser Sintering) and DMLS (Direct Metal Laser Sintering) by Forecast3D (www.forecast3d.com). The curvature of the backpack is intended to prevent the pack from being snagged on wires and debris during firefighting operations in constrained environments.

The heart of the PyroPack is the electronics which process data from a variety of sensors, receive a
composite video image from the headset’s thermal imaging camera, overlay the desired text and graphic information onto the image, and send the newly-created video signal to the headset’s microdisplay. I incorporated a simple MEMS-based accelerometer to detect movement of the wearer or lack thereof, a digital pressure transmitter to convey the pressure (and remaining percentage) of the tank of compressed breathing air, and an RFID (Radio Frequency Identification) module used to read the unique identifiers of low-cost RFID tags and to serve as a robust Firefighter Identification System.

Infrared Thermal Imaging Camera and Heads-Up Microdisplay

The headset contains an L-3 Communications Thermal-Eye 3600AS OEM infrared thermal imaging camera core [www.thermal-eye.com/products/3600as.htm] and eMagin SVGA OLED-XL Microdisplay with WFO5 Prism Optic and Module [www.emagin.com/products/OLEDMD/OLED-XL.php]. The headset attaches to the side of a standard firefighter SCBA (Self-Contained Breathing Apparatus) mask and is adjustable by sliding the entire unit in front of the wearer’s field-of-view (over his left eye). It can also slide completely out of the way, allowing for an unobstructed view of the area when desired. Because the thermal imaging camera is forward facing and in direct line-of-sight with the wearer’s eye, the image provided by the camera is a thermal view of the exact scene the wearer would normally see with his eye. Retail price of both the thermal imaging camera and microdisplay are in the tens of thousands of dollars. As our budget could not support such expenses, L-3 and eMagin graciously provided the units to us for use on the episode at no cost. Video overlay is achieved with a Decade Engineering BOB-4H Video On-Screen Display module [www.decadenet.com/bohb4/bohb4.html]. Controlling the text and graphics to overlay on the composite video image sent by the thermal imaging camera was achieved simply by sending a small number of commands via serial interface to the BOB-4-H.

The microdisplay’s primary image is that of the infrared thermal imaging camera. The temperature scale on the right side of the screen is a feature of the camera and denotes the temperature in degrees Fahrenheit of whatever object is positioned in the center of the thermal imaging camera’s field-of-view. The lower portion of the display — defined by a white box and black text overlaid onto the thermal imaging camera image — is where the PyroPack’s sensor information is displayed:

1. Information pertaining to the Firefighter Identification System (not shown in this image).
2. Motion detection status (triggers an alert when no motion of the wearer is detected for a preset amount of time).
3. Remaining percentage of compressed breathing air available in the wearer’s on-board tank (based on a full tank pressure of 3,000 PSI).

Motion Detection

A Memsic 2125-GL two-axis accelerometer [www.memsic.com or www.parallax.com; search for product code ‘28017’) serves as a motion detection mechanism. When no motion of the wearer is detected for 30 seconds, a “MAYDAY” text is overlaid on the heads-up microdisplay image to alert and/or remind the wearer that he needs to keep moving. Support exists in the electronics to enable a transistor which will switch on and off a relay. The relay can be connected to many types of alerting devices (such as wireless transmitters) to wirelessly broadcast to all personnel within range that the wearer is in distress and not moving, or to visible or audible indicators (such as flashing lights or high-decibel sirens).

Status of Remaining Breathing Air

Currently existing pressure gauges are bulky units that are mounted on the outside of the firefighter (typically to the frame of their pack), so the gauges are commonly in the way, bouncing around during active movement, and...
can get caught or snagged on wires or debris.

I used a Keller Preciseline 0328.14903.050500 digital pressure transmitter www.kelleramerica.com/above-ground-pressure-transmitters/ to provide a reading of the current pressure of the backpack wearer’s on-board tank (containing compressed breathing air). The digital pressure transmitter connects to the main circuitry via an industry-standard RS-485 bus http://en.wikipedia.org/wiki/EIA-485/. It transmits a data stream (corresponding to the current pressure of the tank) to the BASIC Stamp 2sx. The BS2sx converts the data into a percentage of remaining breathing air based on a full tank pressure of 3,000 PSI (pounds per square inch) and overlays the result on the headset’s microdisplay.

Firefighter Identification System

In many situations — particularly firefighting endeavors such as search and rescue — it is extremely difficult or impossible for a firefighter to identify other firefighters within a low-to-no-visibility environment, such as a dark or smoke-filled room. The intent of the PyroPack’s Firefighter Identification System is to allow a simple, quick, and effective method for a firefighter to identify other firefighters with minimal interruption to their primary job. Typically, identification consists of one firefighter approaching another firefighter and yelling “Who are you?” which is not always effective. While the headset’s thermal imaging camera allows the firefighter to visually locate a human, it does not provide them with any identifying markers about who the human is or what his or her role is. The Firefighter Identification System supplements the thermal imaging camera by properly identifying the target after it has been located.

The PyroPack uses a handful of low-cost RFID tags embedded into the Firefighter’s regulation clothing at predetermined positions (for example, left and right shoulders, back of neck, left and right chest, left and right hamstrings, left and right quadriceps, etc.). Each RFID tag contains a unique identifier that can be read by a Parallax RFID reader module (search for product code ‘28140’) which is mounted on the wearer’s arm and connected via four-wire cable to the PyroPack’s main circuitry. When the RFID reader module comes within approximately three or four inches of an RFID tag, the unique identifier of the RFID tag will be received by the reader and processed accordingly. The BS2sx is pre-loaded with a look-up table of known RFID tag unique identifiers and corresponding identification information. For example — for our prototype — eight unique IDs are associated with a single firefighter (allowing greater dispersion of RFID tags on the firefighter’s clothing which, in turn, allows for a greater chance of the RFID reader module coming in close contact with a tag) and four firefighters are supported. Of course, in a real-world situation, the look-up table would need to be updated on-the-fly and/or in the field in order for the system to always have the most accurate identifying information.

In our prototype, when a valid RFID tag is read the last name of the firefighter is displayed on the microdisplay. The identifying information can be changed to any desired textual or graphical information, including (but not limited to) full name, rank, engine number, or role. Furthermore, the Firefighter Identification System could be easily expanded to not only identify firefighters, but also provide quick detection of entrance or egress points (for example,
by sticking an RFID tag on the edge of a door frame) or triage of victims within the target building (by placing RFID tags on victims to classify them as minor injury, serious injury, or mortally injured).

RFID is a mature technology robust enough to be used in the most offensive environments, including high-temperature, smoke-filled rooms. The system works via inductive or capacitive coupling and is impervious to room size, fire, smoke, or other objects that could affect other communication systems such as RF/wireless or optical. If the RFID tags embedded into the firefighter's clothing get worn out, burned, or damaged in any other way, they can simply be replaced and the Firefighter Identification System look-up tables updated to reflect the change in unique identifier of that particular firefighter.

Solving a Real Need

This build was particularly enjoyable because we designed something that could actually help people and potentially save lives. In the finale of the episode, we gave firefighters from Modesto, CA a demonstration of the technology and let them wear the unit during training scenarios. They were impressed with the functionality and agreed that there is a need for features of our system to be included in real-world firefighter equipment. Hopefully, one day we'll see that happen! NV

Joe Grand is an electrical engineer, hardware hacker, and president of Grand Idea Studio, Inc. (www.grandideastudio.com), where he specializes in the invention, design, and licensing of consumer products and modules for electronics hobbyists. He can be reached at joe@grandideastudio.com.

NOTE: Resistors are in ohms +/- 5% and capacitors are in microfarads unless otherwise noted.
Save Up To 60% On Electronic Components

Fantastic New LPC1768 Controller
- Includes LPC1768 Microcontroller with 512kB Flash Memory
- 240 x 320 Color LCD with Touch Screen
- USB, LAN, CAN, SPI, I2C Connections
- Joystick and SD Card Socket

Only $119.90

Save On LED and LCD Panel Meters
- New Digital LED Volt and Amp Panel Meters
- Easy to Read Ultrabright Displays
- No Additional Parts Required
- Ideal for Control Panels and Solar Systems

Starting From Only $8.90

Great New Touch Keypad
- Complete and Ready-To-Run
- Utilizes Capacitive Touch Sensing Technology
- Runs on both 3.3V and 5V power supplies
- Outputs both ASCII and Binary Codes for the Key Pressed

Only $17.90

We are your one-stop shop for Microcontroller Boards, PCB Manufacture and Electronic Components

www.futurlec.com

Web-based Control and Monitoring

Get your project online... in minutes!
- No Programming Required
- No Port Forwarding or Dynamic DNS
- No Network Configuration Necessary
- No Need to Host a Web Server

Real-time, secure control and monitoring...
- Serve and Relay Control
- X10 Home Automation
- RS-232 Serial Communication
- Temperature and Analog Sensors
- Digital Inputs and Outputs

all from a web browser.
- Event-based Alerts, Email and SMS
- Embed Controls in your Web Site
- Encrypted, Secure Access
- Data-logging Service
- Open API for Web Applications

WHAT WILL YOU DO?

www.iobridge.com

Complete Fabrication Center

Quality prototype parts within 24 hours!!

Precision Laser, Waterjet, Plasma, Machining, Micro-Machining, Forming, and Welding Capabilities

Parts from practically any material and from 0.001” to 6.000” in thickness.

Finishes such as powder coat, paint, plating, anodizing, silk screen, and more!

* Quick
* Affordable
* Precise
* No Minimums

24 hour turn time based on quantity and finish requirements

Fabricated, silkscreened and shipped in 2 business days with no expedite charges!

www.iitmetalcut.com
AP CIRCUITS
PCB Fabrication Since 1984

As low as...
$9.95
each!

Two Boards
Two Layers
Two Masks
One Legend

Unmasked boards ship next day!

www.apcircuits.com

WIRELESS MADE SIMPLE
QUICKLY AND COST-EFFECTIVELY MAKE YOUR PRODUCT WIRELESS

Featured Products:

- RF Modules
- LTC Series Transceiver
- LT Series
 - 5 MHz
 - 6 MHz
- Sine Wave
- Linear Range
- Low Power Consumption
- Ultra Compact
- Data Rates to 300 bps
- Low Cost
- Direct Serial Interface
- Long Range
- Ultra Low Power Consumption

Integrated Circuits

- Command
- Control
- Reversal
- Entry

OEM Products

- Easily Configurable

Antennas

- From 300 MHz

Function Relay Module

- Provides your directed or emergency
 relay output that are capable of
- Controlling relays on DC or AC-powered
 circuits of 0.5 to 5 amps
- 115 VAC
- 24 VAC
- 5 VDC
- Dual Power Inputs
- 32 Different Addressing
- Wide Operational Voltage
- FCC and Industry Canada Pre-Tested

LINX TECHNOLOGIES
600-738-6677
253 Old Towne
Lake Forest, CA 92630
www.linxtechnologies.com

Lynxmotion

The Lynxmotion Servo Erector Set
Imagine it... Build it... Control it!

With our popular Servo Erector Set you can easily build and control the robot of your dreams. Our interchangeable aluminum brackets make the ultimate precision mechanical assemblies. Our Visual Sequencer for SSC-32 provides powerful PC, Atom, or B2 based control.

Visit our huge website to see our complete line of aluminum and Lexan based robot kits, electronics, and mechanical components.

Biped BRATs
Round 3DOF Hex
A4WD1
Mini 2DOF Hex
Biped
ALSC Arm

www.lynxmotion.com
Toll Free: 866-512-1024

The 8E8 now has 149 unique components!

Images represent a fraction of what can be made!
Experiments with Alternative Energy

Part 11 - Fuel Cell Polarization States and Efficiencies

By John Gavlik, WA6ZOK

Last time, I introduced you to the reversible PEM fuel cell and described its fundamental Electrolysis and Fuel Cell modes along with the minimum water decomposition voltage needed to electrolyze water into hydrogen and oxygen. This time, I’ll delve deeper into the characteristics of the fuel cell by describing its three primary operational conditions called polarization states, along with two ways that fuel cell efficiencies are defined and measured. From this description, you’ll see that a PEM fuel cell operates much like a rechargeable battery except for the fact that a battery stores its fuel internally while a fuel cell stores it externally. Aside from that, the similarities are quite remarkable.

Polarization Characteristics

Let’s start with a fuel cell’s polarization characteristics. In an ideal world, the fuel cell’s optimum theoretical voltage of 1.23V would be realized at all operating currents; this is the water decomposition voltage you learned about in Part 10. However — like batteries — the output voltage is at maximum only at open circuit conditions, and the voltage drops with increasing load along with the resultant current draw. This is known as polarization and is represented by an example polarization curve shown in **Figure 1**.

The polarization curve characterizes the fuel cell’s voltage as a function of current (and vica versa); as the load changes, so does the current — up to the point of what the “fuel” can supply (in this case, hydrogen and oxygen). Any more current demand causes the voltage to drop dramatically to zero. In effect, the polarization curve illustrates the electrochemical efficiency of the fuel cell at any operating current, since one efficiency is the ratio of the actual cell voltage divided by the theoretical maximum of 1.23V. This is called the Energy Efficiency that we’ll examine later. There is also something called the Faraday Efficiency which we’ll cover, as well. Plus, we’ll do experiments to measure each one.

As I mentioned in the beginning, batteries have polarization curves very much like fuel cells as both batteries and fuel cells exhibit excellent partial load performance since voltage increases as the load decreases and vica versa. And, like batteries, fuel cell polarization is caused by chemical and physical factors associated with internal components, mainly the MEA (Membrane Electrode Assembly) that you learned about last month.

Polarization States

There are three polarization states:

- **Activation**
- **Ohmic**
- **Mass Transport**

Activation

Activation polarization is related to the energy barrier that must be overcome to initiate a chemical reaction between reactants. At low current draw, the electron transfer rate is slow and a portion of the electrode
voltage is lost in order to compensate for the lack of electro-catalytic activity. As you can see in Figure 1, this is the steep part of the voltage-current curve on the left. Due to the chemical energy barrier, the internal resistance at the very beginning is very high which accounts for the low current. Once this barrier is overcome, the resistance drops allowing for more current flow and voltage drop. It's kind of like overcoming the starting friction in a mechanical system, except on a chemical basis.

Our experiments will confirm this part of the curve in a slightly different manner since the REEL Power software does not plot voltage against current, but rather voltage, current, and resistance against time. Nevertheless, it is interesting to see just how this part of the fuel cell operates.

Ohmic

Ohmic polarization occurs due to resistive losses in the cell. Since the MEA obeys Ohm’s law (V = IR), the amount of voltage lost in order to force conduction varies linearly throughout this region. The Ohmic region is really the working area of the fuel cell where with enough hydrogen and oxygen fuel – the voltage and currents remain constant for a given load. This is the flat part of the curve in Figure 1, and just like a modern lithium-ion or nickel metal hydride battery (Part 3), the output voltage and current remain stable over time as long as the load remains the same and fuel is available. Again, our experiments will illustrate and confirm this performance area.

Mass Transport

In this region, the reactants become consumed at greater rates than they can be supplied as the fuel begins to run out. Ultimately, these effects inhibit further reaction altogether, and the cell voltage and current drop to zero very rapidly.

There’s a lot more chemistry in all three of these processes, but it’s beyond the scope of this article. The main points to realize are that fuel cell behavior resembles a modern rechargeable battery and that its usefulness for powering electrical systems is generally equivalent to batteries.

The Fuel Cell’s Power Curve

Another interesting thing about the fuel cell’s performance is the power curve. Figure 1 shows it to be nearly linear right up to when the fuel runs out, which means that the fuel cell can supply a load (an electric motor, for instance) strictly based on demand. No power is lost or expended “getting to” the maximum power point. In contrast, internal combustion engines operate most efficiently only at full load and exhibit a rapid decrease in efficiency at partial loading. This fact alone may create the basis for the popularity of the electric car once it has a chance to mature in the marketplace – whether it’s powered by batteries or a fuel cell, or a combination of both.

Fuel Cell Efficiencies

A fuel cell’s efficiency – basically the ratio of power out versus power in, or fuel consumed versus fuel supplied – can be defined and measured in two ways. As mentioned previously, one is called Energy Efficiency and the other is Faraday Efficiency. The symbol used to express efficiency is generally the Greek lower-case letter, eta (η). We’ll measure both efficiencies in our experiments, but here’s a preview of what we’ll be measuring.

Energy Efficiency

The Energy Efficiency of a fuel cell is the ratio of the electricity produced by the consumed hydrogen, compared with the calculated theoretical energy contained in the consumed hydrogen; this is expressed as a percentage. To figure this out, we need to express a few equations in chemical nomenclature in order to determine the theoretical energy contained in hydrogen. So, get out your high school chemistry book if you’re not familiar with some of the following chemistry terms.

Breakthrough Producing Hydrogen from Water and Sunlight

Sunlight + Water = Hydrogen Gas

Led by Dr. Thomas Nann, scientists at the University of East Anglia report a breakthrough in the production of hydrogen from water using the energy of sunlight. Amidst all the hype about a potential hydrogen economy, one of the big questions has been whether sufficient hydrogen can be produced without using yet more energy to create it (the main stumbling block thus far). Typical production methods include stripping hydrogen from other fuels like methane (called reforming) or using electrolysis to split the hydrogen out of water (as we have done). But with efficiencies between 20% and 40% for producing energy from traditional photovoltaic processes, the hydrogen economy cannot be solar powered. Or can it?

Dr. Nann’s group has discovered a more efficient way to do this using a gold electrode coated with nanoclusters of indium phosphide to absorb incoming photons of light (that is the wavy line marked “hv” in the image). The nanoclusters then pass electrons liberated by the sun’s energy into an iron-sulfur complex which acts like a match-maker between the negatively charged electron and a hydrogen proton in the surrounding water molecules. Gaseous hydrogen is generated and the net result is a 60% efficiency for a process in which hydrogen is produced from water by the photons in light that strike a specially designed submerged electrode. The next step is to demonstrate the process with cheaper materials. The scientists report there is no special reason to use gold or platinum – which was used as the second electrode to complete the circuit – other than these noble metals happened to be lying about the lab (some lab!).

Source: Christine Lepisto, Treehugger.com with edits by John Gavlik.
The energy content of hydrogen is calculated by using the amount of energy given off when hydrogen is combusted. This is a given value of 286,000 Joules/mole of hydrogen (exothermic; i.e., a chemical reaction where heat is lost). This is called the molar enthalpy of hydrogen at standard temperature and pressure. We also have the given value for the amount of space H2 takes up per mole. H2 has a molar volume of 24,000 mL/mol and an energy content of 286,000 Joules/mol (1 Joule = 1 watt-second). Use the following equations to calculate the Energy Efficiency (η_E).

For these experiments, we're using the Horizon Hydrocar reversible fuel cell and storage cylinders, so make sure the car's motor switch is turned OFF and that the wires going to the motor are not connected.

Faraday Efficiency

The Faraday Efficiency is a percentage that tells us how much of the hydrogen gas is being used for intended electrical energy production and how much is lost to other factors. It is the ratio between the theoretically calculated volumes of hydrogen consumed by the load at a certain current versus the experimentally calculated volume of hydrogen consumed. The equation for Faraday Efficiency (η_F) is:

$$\eta_F = \frac{H_2 \text{ Volume (theoretical)}}{H_2 \text{ Volume (experimental)}}$$

This phenomenon was originally understood through Michael Faraday's work and expressed in his laws of electrolysis. In effect, it describes the efficiency with which electrons (charge) are transferred in a system to facilitate an electrochemical reaction. The word "Faraday" in this term has two interrelated aspects.

First, the historic unit for charge is the faraday (look at any capacitor's charge value if you're not sure), but it has since been replaced by the coulomb — a unit of electrical charge equal to the amount of charge transferred by a current of one ampere in one second. Secondly, the related Faraday's constant correlates charge with moles of matter and electrons.

Now to the Experiments

Given this background information, we can now proceed with the experiments in confidence that we know what we want to measure and expect to see. We'll be using both the Parallax BS2 and PICAXE 28X2 microcontrollers in our test beds. Figure 2 and Figure 3 show their initial schematic hookups. You can find the complete experiments
including detailed hookup information and procedures for these two micros at www.learnonline.com → Experimenter Kits → Parallax or PICAXE → Hydrogen Experiments → Polarization Characteristics and Fuel Cell Efficiencies. You'll also need the REEL Power graphic software to witness what's happening on your computer, and you'll need a reversible fuel cell like the one in the Horizon Hydrocar (sidebar) or your own reversible PEM fuel cell. Both of these are available in the Nuts & Volts store at www.nutsvolts.com.

Polarization State Experiment

Let's start by measuring the polarization states. Set up the Test Bed per the instructions in the experiments on the LearnOnline website and create 8 ml of hydrogen (H2). Attach the fuel cell to the Test Bed and witness the rapid transition from the Activation to the Ohmic state as shown in Figure 4. With the 10 ohm load, this occurs quite quickly; a higher resistance value will cause it to take longer and, of course, a lower resistance will be even faster as you'll see next.

Figure 5 shows the initial entry into the Ohmic state where voltage (green plot line) and current (blue plot line) are flowing to create a bit of power (red line). Notice the flat plots for these data; it illustrates the linearity of the fuel cell's ability to supply steady current and voltage for a given load — 10 ohms, in this case. Now add another 10 ohm resistor in parallel with the first one and notice the increase in current and power with an attendant decrease in voltage. This will dissipate the hydrogen more quickly and get us into the Mass Transport state even sooner. **Figure 6** and **Figure 7** show the plots for three 10 ohm resistors in parallel (3.3 ohms) and four 10 ohm resistors in parallel (2.5 ohms). Again, notice the jump in current and power along with a decrease in voltage as each resistor is added to the load. Again, the feature to realize is the flatness of the plots at each load level. This mimics a rechargeable battery to a tee.

Figure 7 shows the entry into the Mass Transport state where the hydrogen fuel begins to run out. With a diminishing volume of hydrogen, the fuel cell cannot produce enough current to supply the 2.5 ohm load so something has to give. In this case, it's the voltage that starts to drop. **Figure 8** shows the Mass Transport state in full swing as the voltage, current, and power drop quickly due to the lack of hydrogen fuel. The computer plots confirm the polarization curve described in **Figure 1** except that the computer plots show voltage, current, and power plotted against time rather than voltage plotted against current. Nevertheless, the voltage part illustrates the three polarization states quite accurately. You are encouraged to repeat this experiment using a 100 ohm potentiometer instead of the individual 10 ohm resistors to better see how the fuel cell performs over all three regions at different loads. Start with the potentiometer at maximum resistance, then decrease the resistance values to verify other current settings along with their attendant voltage and power readings.
Efficiency Experiments

Now, let's determine our fuel cell's efficiencies (Energy and Faraday) by first generating 6 ml of hydrogen this time. We want to set up the Test Bed with a five ohm load (two 10 ohm resistors in parallel or equivalent). Then, we need to time the rate of hydrogen consumption with a wristwatch or your computer's clock. Start by generating the 6 ml of hydrogen; when you're ready, connect the fuel cell to the Test Bed and begin timing the process. We want to allow the hydrogen to be consumed over exactly five minutes or 270 seconds.

When the time is up, disconnect the fuel cell from the Test Bed and visually measure the remaining hydrogen left in the storage cylinder. During the timing, record both the starting and ending voltages and currents. Figure 9 shows the start and stop values that I measured; your data may differ. Now, let's plug in some numbers to see how efficient our fuel cell performed.

Energy Efficiency Calculations

The energy efficiency of a fuel cell is the ratio of the electricity produced by the consumed hydrogen compared with the calculated theoretical energy contained in the consumed hydrogen (expressed as a percentage). In order to compute the required values, the averages are computed between the readings at time zero and at 270 seconds. Table 1 illustrates these averages based on the data taken. Your values may be different.

Entering these values into the equations:

- Electrical energy in Joules H2 = E (average) x I (average) x time (seconds)
- Electrical energy in Joules H2 = 0.539 x 0.119 x 270 = 17.3 J

Therefore, the volume of H2 used can be found as:

- Volume of H2 consumed in mL / 24,000 mL/mol = mol of H2
- 5 mL / 24,000 mL/mol = 0.00021 mol H2

The energy content consumed H2 is given by:

- Energy content of consumed H2 (theoretical) = mol H2 x 286,000 J/mol
- Energy content of consumed H2 (theoretical) = 0.00021 x 286,000 = 59.6 J

Energy efficiency can be computed as:

\[\eta_E = \frac{\text{Electrical energy in Joules H2}}{\text{Energy content of consumed H2 (theoretical)}} \]

\[\eta_E = \frac{17.3}{59.6} = 0.2903 \times 100\% = 29.03\% \]

Faraday Efficiency Calculations

Faraday Efficiency is the ratio between the theoretically calculated volume of hydrogen consumed by the load (at a certain current) and the experimentally calculated volume of hydrogen consumed. Faraday Efficiency is computed as:

\[\eta_F = \frac{\text{H2 Volume (theoretical)}}{\text{H2 Volume (experienced)}} \]

H2 Volume (theoretical) = [Electrical charge in Coulombs (C)] x [H2 Volume per mol]

- Electrical charge in Coulombs (C) = I (ave) x time (sec) = 0.119 x 270 = 32.13 C
- H2 Vol (theoretical) = 32.13 C / 193,000 C/mol x 24,000 mL/mol = 3.99 mL

Therefore, the Faraday Efficiency we measured is:

\[\eta_F = \frac{3.99}{5.0} = 0.798 \times 100\% = 79.8\% \]

A value like 79.8% efficiency looks pretty good, but it can be better or worse depending on the electrical current used in the experiment. If you care to, modify the experiment with a different load resistor and repeat it.

Fuel Cell Stacks

Now that you know what an individual fuel cell is capable of and how it performs, it's time to learn a little about fuel cell "stacks." That is, combinations of multiple fuel cells wired in series and parallel for more voltage and current capability (Figure 10). Again, this is like hooking up batteries or solar cells but with
important differences relative to the fuel cell's unique physical geometry and fueling requirements. Depending on the fuel cell type (Part 10) and power requirements, each stack is different but the idea is still the same: Take something that generates about 0.5 volts at various currents (depending mainly on physical size) and scale it up to produce useful voltage, current, and power — just like a battery pack or solar module. Again, the similarities between fuel cells and batteries are amazingly close and, I guess, we can throw in solar cells, as well.

Fuel cell stacks are used for stationary, portable, and mobile applications. As of this writing, the most hyped of the stationary fuel cells is the Bloom Box (Figure 11). The Bloom Box is a solid oxide fuel cell stack that purports to be the solution for independent power for small homes to large buildings and everything else in between; it uses anything from natural gas to bio gas for a fuel source. Right now, it's very expensive and big and is only capable of powering large facilities like the Google headquarters and similar installations. If it can be scaled down to a smaller size, it may be able to power homes, but this is yet to be realized even in operational prototype form.

On the other end of the size and power spectrum of fuel cell stacks, you'll find a few that can power your cell phone directly or, at least, supply power to charge your cell phone's battery. MBI Micro has one that may be something you're after (Figure 12). The company's Mobion, 100% methanol fed, passive DMFC technology has been demonstrated in fully-functional prototypes and concept models in three primary product directions: external cord-free rechargeable power packs; attached fuel cell power sources; and embedded micro fuel cell designs. They (correctly) claim that the lithium-ion battery loses its charge capacity after a few years, so why not replace it with a fuel cell instead. However, who keeps their cell phone much over two years these days, and who wants to carry around a bottle of methanol to recharge your cell phone? (Try getting it past the TSA at the airport and see what happens.) Nevertheless, it looks like it can be done and it's a neat concept.

For mobile fuel cell stacks, Honda has one for its FCX Clarity car that is as functional and sleek as the car itself (Figure 13). For mobile applications, fuel cell stacks and the fuel itself must be designed for both performance and safety in mind, and Honda has done both very well. Honda has been the pioneer for many emerging technologies like robotics (Azimo), hybrid cars (the Insight), and now fuel cell powered vehicles. Hopefully, the Hydrogen Highway initiatives will occur to make the FCX a reality.

Summary

This time, you learned more about the essentials of how a fuel cell works and what can be done with them in terms of fuel cell stacks. You'll need this background information for our next fuel cell article. In it, I'll put our fuel cell powered Hydrocar through the paces to see how we can apply most of what we've learned about fuel cell technology to a neat mobile fuel cell project. So until next time, conserve energy and stay green.
In this month’s installment of the PICAXE Primer, we’re going to construct a simple “AxMate” adapter that provides all the necessary breadboard connections for powering and programming a PICAXE project. The AxMate adapter simplifies the required connections to a breadboard-based project, and its small size maximizes the space that’s available on a standard breadboard for your actual PICAXE circuitry.

If you are a Nuts & Volts subscriber, you’re probably aware of the Arduino line of microprocessors. Arduinos may not be as inexpensive or as easy to program as PICAXE processors, but they do have some very interesting and powerful features. For example, most Arduino projects can be implemented by using a simple six-pin USB interface that provides all the necessary connections to power and program an Arduino circuit. The USB-to-serial IC that is used in an Arduino programming adapter is the FT232R from Future Technology Devices International, Ltd. This is the same chip that’s used in the PICAXE AXE027 USB programming cable, so when I first became aware of the Arduino’s single-cable breadboard connection, I naively thought that I could simply use the Arduino cable to power and program my PICAXE projects.

Figure 1 presents the pinout of the FTDI six-pin cable that I purchased from Mouser.com in order to try it with a PICAXE project. The CTS# and RTS# lines are both handshaking signals that are not used for PICAXE programming, so I just connected the +5V, Gnd, RxD, and TxD pins to a simple 08M “Hello World” project as shown in Figure 2. Note that the directionality of the TxD and RxD labels on the FTDI cable refer to the cable’s “point of view.” In other words, the cable’s TxD line should be connected to the 08M’s SerIn (RxD) pin, and the cable’s RxD line should be connected to the 08M’s SerOut (TxD) pin. Also, the cable’s TxD and RxD lines have already been converted to 5V TTL levels, so the resistors in the circuit may not actually be necessary. However, I didn’t want to risk destroying anything so I included them just to be sure. As you can see in Figure 2, I painted a red stripe on the +5V pin to make sure I don’t accidentally insert the cable’s connector upside-down. Also, it’s necessary to connect the cable’s +5V and Gnd lines to both power rails on the breadboard.

After double-checking all the breadboard connections, I used the Programming Editor to download a simple LED blinking program to the 08M. Perhaps I should say I “tried to use …” because it didn’t work. ProgEdit informed me that the hardware was not found! After re-checking all the connections, I tried several more times but just kept getting the same error message. I spent some time searching the archives of the PICAXE forum and soon discovered the problem: the AXE027 cable inverts the TxD and RxD signals, but the FTDI cable does not invert them. The documentation for the AXE027 cable includes a schematic that shows no indication of either signal being inverted. This led me to conclude that the inversion is somehow implemented within the FT232R IC itself, so I began searching the FTDI website for clues. It turns
out that FTDI provides a free utility program that makes it possible to configure the communication signals however you want.

When I first discovered the program, it was called “M_Prog” but the name was recently changed to “FT_Prog.” It’s available for download at www.ftdichip.com/Resources/Utilities.htm. FT_Prog is very simple to use. I was quickly able to reconfigure the FT232R IC to invert the TxD and RxD lines, and my “Hello World” program successfully downloaded to the 08M without any further difficulties.

FT232R-BASED USB TO SERIAL ADAPTERS

Before we get into the details of using the FT_Prog utility to reconfigure the FT232R IC, I want to mention some of the hardware alternatives. Subsequent to my original experiments with the FTDI cable, I have tried the same approach with three other FT232R-based USB to Serial adapters that are listed in Figure 3. All three of them were easily reconfigured to function properly with PICAXE circuits and each one has advantages in different situations. The SparkFun “Basic” board is the smallest of the three boards; the “USB BUB” board includes a small prototyping area that allows you to re-order the signals if desired; the larger SparkFun breakout board is required for one of the AxMate variations that I’ll describe below. All three boards are less expensive than the FTDI cable but they all require an additional USB cable which (of course) is not needed for the FTDI cable.

There are two limitations to this approach that are important to keep in mind. First, the maximum current output of the FT232R chip is about 100 mA, so this type of supply isn’t nearly as powerful as one based on the standard 7805 voltage regulator. Even so, 100 mA is more than enough power for the majority of small PICAXE projects, and the AxMate adapters are so simple to use and to move from one breadboard to another that I find myself reaching for an AxMate whenever I want to set up a new PICAXE circuit.

The second limitation is that the FT_Prog utility only runs on Windows. However, if you’re willing to pay the return postage, you can send me your FT232R cable or adapter and I’ll reconfigure it and mail it back; just email me to make arrangements.

USING THE FT_PROG UTILITY

As I mentioned earlier, you can download the FT_Prog utility from FTDI. Be sure to read the note about the necessity of installing the Microsoft .NET Framework 2.0. Also, go to the “Drivers” page and download the drivers for your operating system. In the following list of directions for using FT_Prog to reconfigure your adapter, I used an FTDI cable but the process is the same for any adapter.

1. Install the necessary driver, connect your cable or adapter to a USB port on your PC, and Run the FT_Prog utility. Select “Devices” > “Scan and Parse” — you should see a window similar to Figure 4.
2. Double-click on the “Hardware Specific” entry on the left, then single-click on “Invert_RS232_Signals” — you should see a window similar to Figure 5.
3. Click in the boxes for “Invert TxD” and “Invert RxD,” and then select “Devices” > “Program” — you should see a window similar to Figure 6.
4. Click in the box on the left next to the device and then click the “Program” button.
5. To check that the IC has been reconfigured, just click on the “Invert_RS232_Signals” entry on the left. The TxD and RxD signals should now be inverted.
6. Quit the FT_Prog utility.

When you have reconfigured your adapter, use the breadboard layout presented earlier (Figure 2) to set up a simple “Hello World” circuit so that you can test your adapter. When you run ProgEdit, you will probably need to click the “Refresh”
need to clarify a couple of points. First, as you can see in the photo, the switch that I used is a little larger than the one that's included in the layout which results in it extending slightly beyond the boundaries of the stripboard. I built an early prototype using a smaller switch, but it was difficult to use so I decided to go with the larger one shown in Figure 10.

Also, if you look closely at the photo, you can see that the adapter actually consists of two pieces of stripboard in the “sandwich” arrangement that we have used in previous projects. The top piece of stripboard—which contains four traces with four holes each—is mounted upside-down so that it spans the two four-pin male headers. Its traces run perpendicular to the headers and are soldered to the short ends of each of the header pins. This arrangement results in the two headers having the same pinout, which we have used before. From left to right in the photo, the connections are as follows: +5V, Gnd, SerOut, and SerIn.

As usual, I have color-coded the pins to remind myself of the correct connections. I again painted a red stripe on the cable connector and a red dot on the right-angle male header to identify the +5V connections so that I don’t accidentally insert the cable connector upside-down. Finally, you can see that I have made a small notch in the stripboard. This isn’t really necessary; you could easily install the SerIn and SerOut jumpers first and then insert the stripboard into the breadboard. However, I prefer to be able to see the actual connections when the board is in place.

With the above points in mind, it’s time to heat up the soldering iron and get to work! Read through the complete list of assembly instructions that follows to be sure you understand the entire procedure before assembling the board.

1. Cut and sand a piece of stripboard to the required size (six traces with eight holes each).

2. (Optional) Cut and sand a small “notch” in the stripboard that removes holes G5, G6, H5, and H6 as shown in the layout presented earlier in Figure 9.

3. Sever the trace on the bottom of the board at each of the points indicated in the layout of Figure 9.

4. Insert the jumper from F6 to F5 and solder it at F6, but not at F5 yet. Be sure to leave enough length on the bottom of the board at F5 so that the jumper can be extended to the header pin at F4 when we get to that step.

5. Insert the three resistors and solder the leads at D3, D6, E2, and E3, but not at G2 and H3 yet. Be sure to leave enough length on the bottom of the board at G2 and H3 so that the leads can be extended to the adjacent header pins when we get to that step.

6. Insert the bent leads of the six-pin right-angle male header from the top of the board at B1 through B6, and solder them on the bottom.

7. Insert the long ends of the pins of the two four-pin reverse-mountable male headers from the top of the board. Invert the board and headers and insert the short ends of the pins into a breadboard for support.

8. On the bottom of the board, bend and snip the two unsoldered resistor leads and the unsoldered jumper wire so that each one makes contact with the adjacent header pin as shown in the layout. Use a flat-bladed screwdriver to press the bent leads flat against the traces, and then solder the leads at F4, F5, G1, G2, H3, and H4.

9. Solder the remaining header pins except the pin at E4.

10. Flip the board right-side up again
and insert the long ends of the male headers into a breadboard for support.

11. Place the inverted 4x4 piece of stripboard on the short ends of the header pins so that the pins protrude through the end holes of each trace (see Figure 10).

12. Solder the short ends of the pins to the 4x4 sandwich board. At this point, you may want to snip the protruding pins from the top of the sandwich and file them smooth — especially if you intend to paint them later.

13. Remove the board assembly from the breadboard and insert the resistorized LED as shown in the layout. (Be sure to observe the correct polarity.)

14. On the bottom of the board, bend the lead from E5 and snip it so that it makes contact with the header pin at E4. Press the lead flat against the traces and solder the leads at E4, E5, and E6.

15. Insert the switch and solder its leads at C4, C5, and C6.

16. On the bottom of the board, file all the cut leads smooth.

17. Clean the flux from the bottom of the board and allow it to dry.

18. Inspect the board carefully for accidental solder connections and other problems.

TESTING THE COMPLETED AXMATE ADAPTER

To test the completed AxMate adapter, simply insert it into the end of a breadboard (so that it straddles the center divider) and connect it to your computer with the FTDI cable or one of the USB to Serial adapters we discussed earlier. On the breadboard, make the connections as shown in Figure 10. Before you include the 08M, turn on the AxMate’s switch and use a multi-meter to test the power and ground connections on both power rails.

When you’re sure everything is

It writes your USB Code!

NEW! HIImaker FS for Full Speed FLASH PIC18F4550

Creates complete PC and Peripheral programs that talk to each other over USB. Ready to compile and run!

- Large data Reports
- 64,000 bytes/sec per interface
- Easily creates devices with multiple interfaces, even multiple identities!
- Automatically does MULTITASKING
- Makes standard or special USB HID devices

NEW! "Developers Guide for USB HID Peripherals" shows you how to make devices for special requirements.

Both PC and Peripheral programs understand your data items (even odd sized ones), and give you convenient variables to handle them.

PIC18F Compilers: PICBASIC Pro, MPASM, C18, Hi-Tech C.

PIC16C Compilers: PICBASIC Pro, MPASM, Hi-Tech C, CCS C.

PC Compilers: Delphi, C++ Builder, Visual Basic 6.

HIImaker FS Combo: Only $599.95

DOWNLOAD the HIImaker FS Test Drive today!

www.TraceSystemsInc.com
301-262-0300
correct, turn off the switch and connect the 08M as shown in Figure 10. Download the same LED blinking program we used earlier to test the FTDI cable. If the LED doesn’t begin to blink, you will need to re-check the AxMate and breadboard wiring.

AXMATE VARIATIONS

The AxMate approach to powering and programming PICAXE projects not only simplifies the necessary breadboard connections, it can also be incorporated into a wide range of adapters and project boards designed for specific purposes. Figure 11 is a photo of four new AxMate printed circuit boards (PCBs) that are available on my website. The board in the upper-left quadrant of the photo is the PCB version of the stripboard we just constructed. The red PCB that’s attached to it is the SparkFun Basic Breakout Board I mentioned earlier. The large board in the upper-right quadrant (the AxMate-18) is a complete 18-pin PICAXE project board. Pins underneath the board connect it to the upper power rail, so no additional power supply is necessary.

The board in the lower-left quadrant (the AxMate-8) mates with the SparkFun FT232RL Breakout Board; it includes an on-board jumper that can switch the breadboard power supply from +5V to +3.3V for low voltage projects. Finally, the board in the lower-right quadrant (the AxMate-RE) contains a complete +5V regulated power supply, as well as the standard stereo connector that accepts the AXE027 USB programming cable.

This approach is suitable for projects that require more than a 100 mA supply or for users who would rather not switch from their AXE027 cable to a different USB to Serial adapter. I’m also working on an AxMate-08 board and an AxMate-14 board which will be added to the AxMate line in the next couple of months.

In addition to my recent involvement (a.k.a., obsession) with the AxMate boards, I have been working on a couple of possible projects for the next installment of the Primer. At this point, I haven’t yet settled on a final choice, so I’ll leave it as a surprise. See you then … **NV**

FIGURE 10. AxMate Installed on a Breadboard.

FIGURE 11. AxMate Variations.
Amateur electronic musician Joe Rhythm is planning a one-man video concert that he plans to post on YouTube. Controlling his array of instruments requires both hands and he wants to build a pressure-sensitive tone generator that he can control with a free finger or even an elbow or foot. Joe quickly whipped up a simple tone generator using parts from his bench stock. Since there wasn’t enough time to order a pressure sensor, he improvised by making one from materials he had on hand. What did he use? Go to www.Jameco.com/search6 to see if you are correct and while you are there, sign-up for our free full-color catalog.
THE MICROCHIP PIC24FJ256GN106

The PIC24FJ256GB106 is a 16-bit USB v2.0-compliant microcontroller. To make this USB-enabled design easy for you to assemble, I’ve chosen this PIC for its high level of availability, low cost, and low pin count. As the numbers in its name imply, the PIC24FJ256GB106 is the largest microcontroller of the smallest PIC24FjxxxGBxxx series in terms of internal program memory. Sporting only 64 pins, the PIC24FJ256GB106 internals include 256K of high endurance program Flash and 16K of SRAM.

Like other members of its family, the PIC24FJ256GB106 I/O subsystem is based on a set of remappable peripherals. This PIC has 29 remappable pins which can be assigned to digital-only I/O pins using its peripheral pin select feature. Remappable I/O includes general-purpose timer clock inputs and timer-related peripherals such as input capture and output compare. Serial communications I/O pins tied to UART and SPI portals are also remappable. External interrupt inputs and comparator module outputs are eligible for remapping, as well. Note that you can’t find a dedicated UART pin in Figure 1. However, you can find dedicated I/O pins in RTCC pins. Basically, any peripheral I/O pins that you can readily identify are not remappable.

The PIC24FJ256GB106 does a bunch of things with USB that we won’t cover in our USB discussion. For instance, if your design requires it, the PIC can act as a low speed or full speed USB host. Although we won’t use its host mode capability, we will take advantage of everything else USB that this PIC offers. The PIC24FJ256GB106’s USB support is total to the point that all we need to do to tap into its USB potential is add a USB connector and a 3.3 volt regulator to our design.

SPEAKING OF DESIGNS

Turn your attention to Photo 1. The deceptively simply printed circuit board (PCB) is the base component of a PIC24FJ256GB106 USB Trainer. If you’re wondering how PIC32MX got into the PIC24FJ256GB106 USB Trainer’s moniker, compare Figure 1 to Figure 2.

This is a good time to show you how peripheral pin select allows the PIC32MX and PIC24FJ256GB106 microcontrollers to lay eggs in the same nest. Note that in Figure 2 PIC32MX pins 31 and 32 can be configured as UART I/O. Those same PIC24FJ256GB106 I/O pins in Figure 1 are remappable (RP10 and RP17). Recall that we can use the PIC24FJ256GB106’s peripheral pin select feature to remap UART I/O. The same UART
peripheral pin select magic will also work on pins 5, 6, 50, and 51 of the PIC. This 16-bit/32-bit motor swap capability reminds me of the good old days when guys were dropping 454 cubic-inch engines into Chevy Vegas!

An 8 MHz crystal is all we need to generate all of the necessary CPU, peripheral, and USB clocks. The 8 MHz primary oscillator signal is fed to the PIC24FJ256GB106's USB PLL which produces the absolutely necessary 48 MHz USB clock. Our PIC24FJ/PIC32MX USB Trainer design uses an external 8 MHz crystal. However, we can also generate the 48 MHz USB and all of the CPU and peripheral clocks using the PIC24's internal 8 MHz oscillator. Our 8 MHz crystal-controlled clock is also used to feed the 4x PLL that drives the 32 MHz CPU clock.

The host USB portal supplies +5 volts DC in addition to the USB signals D+ and D-. The PIC24FJ256GB106 is a 3.3 volt microcontroller, so we'll need to add a voltage regulator to our design. I've chosen a Microchip TC1262-3.3 for the job. The TC1262-3.3 only requires a pair of 4.7 μF ceramic capacitors for stable operation and is capable of 500 mA operation.

It's a sure bet that one of the peripheral devices you'll want to hang onto the USB Trainer base design will require a five volt power rail. A common LCD is a good example of a highly desirable five volt peripheral device. However, you won't want to fire up the Trainer with a five volt load until you have performed the proper USB initialization processes. Before drawing significant amounts of current from the USB power portal, you must get permission from the USB hardware. That's where the TPS2041BDBVT's microcontroller-controlled active-low EN (Enable) input comes into play.

Once our USB session has enumerated and enters the CONFIGURED state, we have the ability to turn on the voltage spicket (spicket is Southern speak for the output of a faucet or alcohol condensation unit) to the five volt peripherals via the TPS2041BDBVT solid-state switch. While we're discussing voltages, the PIC24FJ256GB106's internal 2.5 volt regulator requires the 10 μF ceramic filter capacitor and its

FIGURE 1. The really neat thing about the PIC24FJ256GB106's peripheral pin select feature is that we can place the remappable peripherals in the same pin locations as the dedicated peripherals on other 16-bit and 32-bit microcontrollers.

FIGURE 2. This PIC32MX795F512H is the baby of the new SuperPIC PIC32MX family of devices. It is no accident that this puppy wags its tail just like a PIC24FJ256GB106.
consists of 27 easy-to-find electronic components that can be obtained from Mouser (www.mouser.com).

In the recent past, I've received emails from readers informing me that some of my Design Cycle projects are a bit too pricey. So, to keep the costs down and Design Cycle readers happy, the PIC24F/PIC32MX USB Trainer is built upon an inexpensive two-sided ExpressPCB PCB. Many of you that will build your own version of the PIC24F/PIC32MX USB Trainer have a specific set of external peripheral devices that you will add to the base Trainer design. With that thought in mind, note the absence of additional pushbuttons, RS-232 converters, or LCDs in the base design. The idea is to allow you to add only the peripherals you need for your application without having to work around peripherals your application will never use.

Due to its low parts count, the PIC24F/PIC32MX USB Trainer is simple enough to be assembled using only a schematic diagram. To further ease your assembly burden, the Trainer's PCB silk screen component identification layout shown in Screenshot 1 matches the component identification found in Schematic 1.

CODING THE PIC24F/PIC32MX USB TRAINER

Thanks to Microchip, coding the PIC24FJ256GB106 for USB duty is just as easy as assembling the USB Trainer hardware. The PIC24F/PIC32MX code is based on the Microchip USB libraries that are part of their Application Libraries v2010-02-09. Keeping with my low-cost mantra, these tools are free for a download. The compiler of choice for this project is Microchip's C30 which isn't free. I get loads of emails from readers asking if the free Lite compiler editions will run Design Cycle projects. That you'll have to determine for yourselves as there are an infinite number of peripheral configurations and applications that can or cannot be compiled with any particular C compiler. In other words, there are just some things that I can't test.

In that the USB stack is provided as a package, all we have to do to utilize the packaged tools is build or modify four user files. Modification of existing USB stack user files is the easier road to follow. A word of caution: DO NOT modify the USB stack package files under any circumstances. With that, let's begin our coding task with the HardwareProfile.h file:

```c
#include "HardwareProfile - EDTP 24F-PIC32MX USB TRAINER.h"

That's it for the HardwareProfile.h file. Now, let's do the real work inside of the HardwareProfile - EDTP 24F-PIC32MX USB TRAINER.h file. The first order of business is to put our brand on this USB code:
#ifndef EDTP_PIC24F_PIC32MX_TRAINER
#define EDTP_PIC24F_PIC32MX_TRAINER
#endif

#define CLOCK_FREQ 32000000

As you can see, it’s also a good time to tell the rest of the USB stack the speed of our CPU clock.

The LEDs included in the Trainer design serve a dual purpose. The status of the USB link enumeration is displayed in the LEDs. Once the link is up and running in the CONFIGURED state, the LEDs become part of the demo application which is part of the main.c file we’ll look at later. In keeping with Fred Eady’s First Law of Embedded Computing that “Nothing is free,” to utilize the LEDs we must configure them in the USB stack’s USB TRAINER.h file:

```C
/** LED **/
#define mInitAllLEDs() LATC &= 0x9FFFF; TRISC &= 0x9FFFF; //RC13, RC14
#define mLed_1 LATCbits.LATC13
#define mLed_2 LATCbits.LATC14
#define mLed_1_on() mLed_1 - 1;
#define mLed_1_off() mLed_1 = 0;
#define mLed_2_on() mLed_2 - 1;
#define mLed_2_off() mLed_2 = 0;
#define mLed_1_toggle() mLed_1 = !mLed_1;
#define mLed_2_toggle() mLed_2 = !mLed_2;
```

I chose to keep the USB stack’s original LED definition names. That makes it easier to get a successful compile as you don’t have to sift through the stack renaming the LEDs. As you’ll see later, the main.c application and status routines will utilize the LED GetLED, On, Off, and Toggle macros.

The TPS2041BDBVT is not something that the USB
stack is expecting. So, it would be a good idea to mention it to the rest of the USB stack functions:

```c
#include <avr/pgmspace.h>

#define INIT_TPS() LATD &= 0xFFFE; TRISD &=
 0x0BFF; //1111 1111 1111 1111
#define TPS_EN LATDbits.LATD10
#define EN_5V() TPS_EN = 0
#define DIS_5V() TPS_EN = 1
```

If you take a look back at Schematic 1, the
TPS2041BDVT definitions and macros we just laid out make perfect sense. The CC current overload pin is not defined. If you plan on using the full 500 mA capability of
the USB power source, you'll need to code a safety net
routine that triggers on the output of the TPS2041BDVT's
CC pin. Theoretically, you should not be able to overrun
the TPS2041BDVT's current handling capability from the
USB port. However, recall Fred Eady’s Second Law of
Embedded Computing which states “Never Assume Anything.”

The main.c functions also include a routine that utilizes
the AN0 analog-to-digital converter (ADC) input to read a
current from the wiper of a 10 kΩ potentiometer. If you
wish to include this analog functionality in your application,
here's the macro that is part of our TRAINER.h file:

```c
#include <avr/pgmspace.h>

#define mInitPot() AD1PCFG1bits.PCFG0 = 0;
ADICON0bits.VCFG = 0x00;
ADICON0bits.ADCS = 0xFF;
ADICON0bits.SSRC = 0x00;
ADICON0bits.SAMC = 0x000001;
ADICON0bits.FORM = 0x00;
ADICON0bits.SMPI = 0x00;
ADICON0bits.ADON = 1;
```

That does it for our contributions to this file. The trick
is to remember to identify any peripheral stuff you add to
the design in your version of the HardwareProfile.h file set.

The USB stack's original PIC24F/J256GB106-based
usb_config.h file looks just fine for now. You may want
to take a look at the usb_config.h file to get an idea of what it
does for you, so I've included it in the download package
at www.nutsvolts.com. Likewise, the USB stack's default
PIC24F/256GBoxx usb_descriptors.c file can be left alone
if you wish. I made a very slight "branding" modification
of one of the descriptor strings in the usb_descriptors.c file:

```c
//Product string descriptor
ROM struct[BYTE nLength;BYTE bOscType;WORD
string[261];s0002=;
sizeof(s0002),USB_DESCRIPTOR_STRING,
{E',D',T',F',
 'P',C',P',4',//*',I',C',3',',',M',
 'X',T',R','A','T','W','E','R'}
```

Everything else in the usb_descriptors.c file was left
untouched. The usb_descriptors.c file for this project is
gear towards a HID device and uses the default PID
and VID assignments. Recall from our previous HID
discussions that these devices do not need to have special
drivers loaded on the host to operate.

The "branding" we've been doing pays off at the
beginning of the main.c file:

```c
#if defined(EDTP_PIC24F_PIC32MX_TRAINER)
 #define CONFIG1 (JTAGEN_OFF & GCP_OFF & GWRP_OFF &
 COE_OFF & FWDTEN_OFF & ICS_FeoX2)
 #define CONFIG2 (0x07FF & 0x0000 & FCKSM_CSDCMD &
 0x0C08 & 0x0000 & POSMOD_HS &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 P & 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 0x0000 & 0x0000 & 0x0000 & 0x0000 &
 #else
 #error No hardware board defined, see
"HardwareProfile.h" and __FILE__
#endif
```

Configuration fuses in _CONFIG1 are set to disable
the PIC24F/J256GB106's JTAG interface and any PIC code
protection schemes. _CONFIG1 also nixes the watch dog
timer and sets the programming/debugging port at pins
17 and 18 of the PIC24F/J256GB106.

.Middle2 deals mostly with the oscillator, clocks,
and PLL settings. The fuses are set to accommodate the 8
MHz HS primary oscillator configuration that feeds the 4x
PLL for the CPU clock and the USB PLL. To provide the
48 MHz USB clock from an 8 MHz input clock, we must
specify PLLDIV_DIV2 in the _CONFIG2 fuse configuration
string.

The main.c file is a very good example to use as a
starting point for your own USB application. For the
purposes of our discussion, I modified the main.c UserInit
function to turn off the TPS2041 MOSFET switch until the
USB link was totally enumerated and entered the
CONFIGURED state:

```c
void UserInit(void)
{
 //Initialize all of the LED pins
 mInitAllLEDs();
 //disable the TPS2041 output
 DIS_5V();
}
```

The TPS2041 output is enabled only after the
PIC24F/PIC32MX USB Trainer enters the USB
CONFIGURED state:

```c
if(USBDeviceState == CONFIGURED_STATE)
{
 EN_5V(); //enable TPS2041 output
}
else
{
 DIS_5V(); //disable TPS2041 output
}
```

This is a good time to show you how the LED
definitions are used as they follow the TPS2041 output
switching code I just revealed to you:

```c
if(USBDeviceState == DETACHED_STATE)
{
 mLED_Both_Off();
}
else if(USBDeviceState == ATTACHED STATE)
{
 mLED_Both_On();
}
else if(USBDeviceState ==
```
POWERED_STATE
{
    mLED_Only_1_On();
}
else if(USBDeviceState == DEFAULT_STATE)
{
    mLED_Only_2_On();
}
else if(USBDeviceState == ADDRESS_STATE)
{
    if(led_count == 0)
    {
        mLED_1_Toggle();
        mLED_2_Off();
    }
    //end if
}
else if(USBDeviceState == CONFIGURED_STATE)
{
    if(led_count == 0)
    {
        mLED_1_Toggle();
        if(mGetLED_1())
        {
            mLED_2_Off();
        }
        else
        {
            mLED_2_On();
        }
    }
    //end if
}

It's nice to be able to look at the LEDs and determine all of the other enumeration states. However, what you really want to see is LED1 and LED2 alternately blinking on your USB Trainer.

MAGIC SMOKE STATION TEST

Since I'm writing this paragraph, you and I can get up on our donkeys and proclaim success! I've applied power via the USB portal and programmed the PIC24FJ256GB106. If you were here in the shop with me, you would see LED1 and LED2 going to town in an alternating manner and the POWER LED operating without a struggle.

Remember that analog input I mentioned earlier? Well, I can't show you blinking LEDs but since we included the pot macros, I can show you data acquired from the PIC24FJ256GB106's ADC. I'll use the Kdtronick UsbHidDemo application to send the command and receive the data.

Screenshot 2 confirms that our PIC24FJ PIC32MX USB Trainer has been recognized as a HID device by the UsbHidDemo application (which is running on my laptop). The EDTP Device Name was gleaned from the modification we made to the product string descriptor in the usb_descriptors.c file. The VID (1240) and PID (63) belong to Microchip and can also be found in the usb_descriptors.c file.

I shortened the PIC24FJ256GB106's AN0 ADC input to ground before issuing the 0x37 command. As you can see in the Read area of Screenshot 3, the ADC returned the command value followed by the ADC value of 0x0000. Screenshot 4 returned the 10-bit value of 0x3FF as I applied +3.3 volts to the ADC input before issuing the command to take a reading from the potentiometer's wiper. The code used to read the potentiometer is relatively simple and is provided for us in the main.c demo application:

WORD_VAL ReadPOT(void)
{
    WORD_VAL w;
    #if defined(EDTP_PIC24F_PIC32MX_TRAINER)
    ADICHS = 0x0;  //MUXA uses AN0
    // Get an ADC sample
    ADICON1bits.SAMP = 1;  //Start sampling
    for(w.Val=0;w.Val<0x1000;w.Val++);
    //Sample delay, conversion start automatically
    ADICON1bits.SAMP = 0;  //Start sampling
    for(w.Val=0;w.Val<0x1000;w.Val++);
    //Sample delay, conversion start automatically
    while(!ADICON1bits.DONE);  //Wait for
    //conversion
    //to complete
    #else
    #error
    #endif
    w.Val = ADClBUF0;

    return w;
} //end ReadPOT

Note that branding comes in handy once again as the ADC commands are particular to the PIC24FJ PIC32MX USB Trainer. The ReadPOT function defines the analog port to read and, in this case, it is AN0. The ReadPOT...
function is called from the 0x37 case statement that is rolling around in the main.c file:

```c
 case 0x37: //Read POT command. Uses ADC to measure an analog voltage on one of the ABox I/O pins, and returns the result to the host
```

The mInitPot() macro has its roots in the TRAINER.h file. The ReadPot function as well as the 0x37 case code are part of main.c.

**KEEP UP WITH SERVO MAGAZINE**

If you're a SERVO reader, you already know that with minimal hardware and firmware modifications you can plug the PIC24F/PIC32MX USB Trainer into the expansion project hardware we assembled over there. Just in case you missed it, the SERVO expansion board project added an RS-232 portal, a 2 x 16 LCD, and an XBee-Pro transceiver to the ZeroG - PIC24FJ128GA006 Trainer.

With the exception of the PIC24FJ256GB106's USB capability, the ZeroG Trainer's base hardware is identical to that of the PIC24FJ/PIC32MX USB Trainer. The ZeroG Trainer and the USB Trainer hardware similarities allow the reuse of code, as well. For instance, the LCD can easily be incorporated into a PIC24F/PIC32MX USB Trainer design as the hardware hookup, and the LCD driver firmware have been proven on the PIC24FJ256GA006.

In the end, the ability to reuse technology in your projects saves time and money. Having 16-bit USB knowledge in your Design Cycle isn't bad either. Be here next time as we'll replace the PIC24F/PIC32MX USB Trainer's PIC24FJ256GB106 with a PIC32MX575F512H.

**SOURCES**

- **EDTP Electronics, Inc.**
  - PIC24F/PIC32MX USB Trainer
  - ZeroG - PIC24FJ128GA006 Trainer
  - [www.edtp.com](http://www.edtp.com)

- **Microchip**
  - PIC32MX575F512H
  - PIC24FJ256GB106
  - PIC24FJ256GA006
  - MPLAB C for PIC24 MCUs
  - [www.microchip.com](http://www.microchip.com)

Fred Eady can be contacted via email at fred@edtp.com.

**SCREENSHOT 4.** This shot shows the results of applying +3.3 volts to the PIC24FJ256GB106's AN0 input. Just as expected, its 10-bit ADC returned the maximum reading of 0x03FF.
A speaker is an electromechanical device. It has a coil, a magnet, and a paper cone. These three parts are mechanically connected in such a way that when current is increasing or decreasing in the coil, the paper cone moves which causes sound. So, the function of a speaker is to convert electrical energy into sound.

1. Build the Circuit.
   Using the schematic along with the pictorial diagram, place the components on a solderless breadboard as shown. Verify that your wiring is correct.

2. Do the Experiment.
   Theory: In this circuit, the electrons flow from the battery through the resistor, through the speaker, and back to the battery. To make sound, the coil requires a constant change in current. The speaker will only emit sound when you first touch the wire to the resistor, and when you disconnect the wire from the resistor.

   Procedure: Connect a nine-volt battery to the battery snap and tap the probe lead to the 10 ohm resistor. (Do not leave the wire touching the 10 ohm resistor or it will burn out the battery and ruin the speaker.) Reverse the battery leads and do the procedure again. Observe how the cone moves in the opposite direction.
AVR Memory  
Part 1: Introduction

Recap

Last month, we put an ATmega644 on a breadboard and I promised that this month we'd transfer the design to a PCB so that we would have an easy-to-use open-source hardware platform to learn with. Unfortunately, I messed up. I had it all working and even tested the PCB with my bootloader. Then it quit working. As the deadline for this article began to stand up and glare at me with tendrils of smoke and occasional puffs of fire directed my way, I did what any sensible person does. I panicked and messed things up even worse. Am I mortified? You betcha! So, the PCB will be delayed and this month we will begin a miniseries on AVR memory architecture with the goal of understanding each type, providing examples on how to use each, and in the final episode we will use what we've learned to write a bootloader in C. Somewhere along the line I should get the BeAVR PCB and associated software working again, and we'll see it then.

Computer Memory

Whether it is a bank of switches, a strip of cardboard with holes punched in it, or a microscopic slab of very pure sand with metals etched onto it — computers require memory for programs and data.

Computer memory has two distinct aspects. First, there is the physical medium that holds the data — usually a configuration of transistors that can be set to hold a voltage representing single-bit values of either 1 or 0. The circuits are grouped in bytes (eight bits) or other sized groups that are dealt with as a unit. Groups of these physical data storage units are arrayed so that they can be accessed individually by their addresses. Addresses are the second distinct aspect of computer memory and are independent of the physical method used to store the data.

We thus think of memory as being a sequence of physical locations to store data of a certain size (eight bits for AVRs) that each have a unique address that we use to read or write data from that specific location. Let's do a thought experiment to help understand this. If we have a 2K memory, we have 2048 physical locations to store data. Traditionally, we use 'K' to denote 1024 in computers since the number system is binary and 2^10 is 1024. In decimal systems, we use the lower case 'k' for 1000. Since there are no real standards for this, it can get confusing. Each of these 2048 locations has an address from 0 to 2047 — but since we like to express these numbers in hexadecimal, they would number from 0x0000 to 0x07FF.

**Figure 1** illustrates the separation of the address concept from the real (physical) location where data is stored. The first thing we can see about the difference between the stored data and the address of the stored data is that the stored data is eight bits meaning that it can encode 256 unique values — 0 to 255 — but the total number of these eight bit locations is a much larger number: 2048. So, we require more bits to uniquely encode the addresses of those locations. An 11-bit number could encode 2048 values, but with small microcontrollers like the AVR we typically deal with only two sizes of numbers in hardware: either eight-bit **bytes** or 16-bit **words**. So, logically we would use the larger words to encode
addresses. We express bytes as two digit hex numbers (0x00 to 0xFF) and words as four digit hex numbers (0x0000 to 0xFFFF) [where the leading 0x just means that it is a hex number]. It then follows that in Figure 1, the addresses are words and the data are bytes. We use ‘...’ to indicate that there are addresses and data before and after what is shown.

In this specific case, we see addresses 0x0400 to 0x040C (decimal 1024 to 1036) and we see a random appearing sequence of data for each address beginning with 0x48 and ending with 0x00. Then, we see ‘...’ to show us that further along at the addresses 0x0678 and 0x0679 we have the data value 0x04 and 0x00. We assume that there is lots of other data at the other addresses, but since we aren’t showing them they aren’t needed for this explanation. The first sequence of bytes aren’t as random as they appear. They are the ASCII codes [link: www.asciitable.com] for the characters ‘Hello World!’ followed by the null byte 0x00 that to C indicates the end of a string.

What Do You Call Eight bits?

Originally, C had data types with names like char or int and the size of these data types was machine dependent. K&R (The C Programming Language, Brian Kernighan and Dennis Ritchie, 2nd edition) defines char: ‘a single byte, capable of holding one character from the local character set.’ Since that character set is ASCII, you only need seven bits to encode it. The extra bit is used as a sign bit leading to the bizarre concept (IMHO) of signed and unsigned char. A signed character has values of –128 to 127, and an unsigned character has a value of 0 to 255. There are no negative ASCII characters nor are there any above 127 (in the basic set). The sign lets you use chars as ordinary numbers within the ranges shown above but confuses novices who ask: ‘Is char a number or a character?’

C has grown a bit since K&R and the C99 standards library defined terms that help make data type more specific and portable by giving them known numbers of bits for a given type. This convention uses the data types int8_t and uint8_t for the unsigned and signed eight-bit types (formerly char), and int16_t and uint16_t for 16-bit data types (formerly int). That’s a lot clearer, isn’t it? Well, not to me, but after we get past this introductory article, we will stop using the original K&R C names and start using those from C99.

A Few Pointers

Suppose you have the task of writing a function that sends strings of characters out the serial port. There would be many ways to do this, but one way would be to provide that function the address of the first character in a string. Then, the function could send out that character, add one to the address, and send each subsequent character until it runs into the character that C considers to end a string: nul (0x00) that we mentioned above. Such a function operating on the data in Figure 1 would send ‘Hello World!’ on the serial port. A function like this would need some way to get the address of the string. In C, we can send that address in the function parameter list by using a pointer. In C, we use ‘*’ to indicate that a variable is a pointer. We’ll see this again shortly.

Please don’t glaze over here, you are going to have to understand this to move on with C programming and the next concept is the one that trips up most folks just starting out with C. The two addresses shown in Figure 1 (0x0678 and 0x0679) are for the values 0x04 and 0x00. You could read these two bytes and combine them into the word 0x0400 and use that as the address of some other location in the memory which — by no accident — is the address of the first item in the data sequence for the ‘Hello World!’ string that begins at address 0x0400. This is a key concept in programming: data values can be the address of other data values. When data values are used as addresses of other data, they are called pointers. In our example, the data at addresses 0x678 and 0x679 are used as a pointer to the ‘Hello World!’ string that begins at 0x0400. I admit that this discussion has been repetitious, but for some folks, pointers are the single most difficult concept to get past in all of computer programming.

Pointers Can Be Dangerous

Pointers are the reason that many refer to C as a mid-level rather than a high level programming language. In high level languages, the programmer only deals with data and the compiler makes all the decisions about the addresses. In low level languages (like assemblers), the programmer assigns the addresses to the data. In C, we are not required to play with addresses, but are allowed to if we want to. Some things can only be done using pointers. Pointers also allow us to do many things more efficiently and cleverly than would otherwise be the case. But they can be dangerous. To quote K&R, p 93: ‘Pointers have been lumped with the goto statement as a marvelous way to create impossible to understand programs. This is certainly true when they are used carelessly, and it is easy to create pointers that point somewhere unexpected. With discipline, however, pointers can also be used to achieve clarity and simplicity.’ This would be a good time to assert that if you really want to learn the C programming language, you should get K&R. Books like my C Programming for Microcontrollers (available from Nuts & Volts) are also good for getting started specifically with micros, but to really get the religion, you need a copy of the “bible” and K&R is it.

As an example of a dangerous misuse of pointers, I once used a pointer to sequentially access the video buffer of an IBM PC. I made a simple ‘fence-post’ error,
that is, I started a count with 1 instead of 0, and wrote the last data byte to an address that was one location outside of the video buffer. That byte was only occasionally important enough to crash the system and I nearly went nuts trying to figure out what was wrong. When your device crashes intermittently with no apparent rhyme or reason, you may well be suffering from a bad pointer use.

**Declaring Pointers**

We declare a variable to be a pointer by preceding its name with an *`, called the *indirection* or *dereferencing* operator:

```c
char *q; // q is a pointer to a char
```

We get the address of a variable using &`, called the address of operator:

```c
// create a character variable initialized // to 0x48
char v = 'H';
```

```c
// put the address of `v` in the pointer `q`
q = &v;
```

In the case of the AVR, the compiler will know to create a 16-bit storage location for the `*q` variable just like it knows to create an eight-bit location for the `v` variable. Now, take a deep breath and commit all that to your memory so that the next time you see something like `*myOhmy`, you'll know that it is the address of something — a pointer — and if you see `&myAmi` you'll know that this is an operation that yields the address of the variable myAmi. Then, the statement `myOhmy = &myAmi` will make perfect sense.

**C Programming Examples**

To help our understanding, let's play with these concepts on a PC using a simple and free C compiler. We'll switch over to AVRs next month. Let's use Pelles C that you can download from www.smorgasbord.et.com/pellesc/.

**The Canonic First Program**

This is canonic since it comes from the C bible (K&R p. 6).

```c
#include <stdio.h>

main()
{
 printf("hello, world\n");
}
```

Interestingly, the Pelles C has a wizard application that creates a version of this program as a template for writing other programs.

Open Pelles C, click on the File menu, and select New, Project. Figure 3 shows the resulting window with ‘Console Application Wizard’ highlighted and Hello_World typed into the ‘Name’ field.

Click OK and you'll see the window shown in Figure 3. Check the ‘A “Hello, world” program. Yes, the Hello World program is so basic that it is included for you!

Click Next and you'll see the window in Figure 4. Now click the finish button. As if by magic, Pelles will
write your first Hello World program for you as shown in Figure 5. Next click the ‘Compile’ button, the ‘Execute’ button, and you’ll see the console output shown in Figure 6.

Whoa! That’s so easy that it almost makes us forget that there are some not so easy things going on under the hood, and our job is to learn about those not so easy things. So, for the time being we will forget about the easy way to say hello and revert to some more basic C functions that are closer to the discussion about memory and pointers.

‘Hello, World!’ The Hard Way

Using an Array

In C, when we want to create a sequence of characters in memory like we saw in Figure 1, we have several options. However, the one most closely related to the memory discussion is to define an array (a continuous sequence of memory locations) and initialize it with the data we want stored sequentially in memory. Pelles C allows us to revert to the original C data types: char for eight-bit and int for 16-bit (let’s not quibble at this point about signed and unsigned okay?). So, we create our data sequence by using:

```c
char greet[] = "Hello, World! \n \0";
```

This tells the compiler to store the indicated characters as a sequence in memory. The `\n` and `\0` are special non-printable characters; the first is newline (an instruction to the output device to create a new line) and the second is null, with a value of 0. We added the `\n` (which isn’t in Figure 1) to separate the output line in the console display. The following program will output the data to our terminal:

```c
#include <stdio.h>

int main(int argc, char *argv[])
{
 int i;
 char greet[] = "Hello, World! \n \0";
 for(i = 0; greet[i] != \0; i++)
 {
 putchar(greet[i]);
 }
 return 0;
}
```

This program uses the `putchar()` function from the `stdio` library and reads each character from the memory one at a time, and outputs each character individually. In the first program, we used the `printf()` function, but under the hood the `printf()` function calls some code not unlike what we see here. The ‘for’ loop sends a character from the `greet[]` array, increments the address of the array, then if the value isn’t equal (!=) to `\0` it sends the character. It loops through each address until it finds the `\0` character, then it stops.

Using a Pointer

Now suppose we have a bunch of arrays of data and we want to simplify our lives by writing a function whose job it is to send out a null-terminated array (a string) to the console. We could write a function, `consoleOut()` and use it as follows:

```c
#include <stdio.h>

void consoleOut(char *); //declare the function

int main(int argc, char *argv[])
{
 char greet[] = "Hello, World! \n \0";
 char south[] = "Howdy, ya’ll! \n \0";
 char north[] = "Get outta my face! \n \0";
 consoleOut(greet);
 consoleOut(south);
 consoleOut(north);
 return 0;
}
```

```c
void consoleOut(char *x)
{
 int i;
```
```c
for(i = 0; i < 8; i++)
{
 putchar(*x);
 x++;
}
```

In C, the name of an array without the following square brackets is a pointer to the first element in the array data sequence. For instance, if the C compiler just happened to follow our example and put the characters in the `greet[]` array beginning at address `0x0400` as shown in Figure 1, then the word 'greet' will be a pointer to address `0x0400`. (Our compiler might, theoretically, store that address at addresses `0x0678` and `0x0679` also as shown in Figure 1.) So, we define the `consoleOut(char *)` to tell the compiler that this function takes a pointer to a character as a parameter (char *). Then, when we use `consoleOut(greet)` the compiler knows that 'greet' is a pointer to a char and to use the address of the array named 'greet' (hypothetically `0x0400`) and not any element of that array. We send the specific 'greet' pointer to the parameter list, but the function is generic so it receives the pointer as 'x' and uses it as a pointer to the data in the greet array. So, when the 'for' loop begins, 'x' is pointing to 'H', then we increment the pointer. Notice that when we increment the address we are using 'x' which the compiler knows is the address, so x++ adds one to the address.

Here's one more example to show a use of the 'address-of' operator &.

```c
#include <stdio.h>

int main(int argc, char *argv[])
{
 char c1 = 'H';
 char c2 = 'e';
 // Assign the address of c2
 // to ptr
 char *ptr = &c2;
 printf("\n");
 printf("c1 has the hex value 0x%02x (\c) and is stored at \n", c1, (void *)&c1);
 printf("c2 has the hex value 0x%02x (\c) and is stored at \n", c2, (void *)&c2);
 printf("ptr has the value %p and is stored at %p\n\n", ptr, (void *)ptr);
 printf("The value of the char pointed to by ptr is 0x%02x\n", *ptr, *ptr);
 return 0;
}
```

Note that the '\n' at the end of the line allows the printf() statements to continue on the next line which is only necessary here to reduce the width of the source code to make it fit the text. Also, don't worry so much about all the 'stuff' like `0x%02x` in the printf() statements which are out of the scope for this discussion. Just pay attention to the use of '&' and '&'. Executing this code yields the results shown in Figure 7.

Next month, we will apply some of this hard-won knowledge to the AVR and give examples that run on microcontrollers. Meanwhile, if you want to get a leg up on C, buy the book C Programming for Microcontrollers from Nuts & Volts, and if you want to get two legs up, get the combo with the book and hardware projects kit. It will come in handy. NV
CD-ROM SPECIALS

Nuts & Volts 6 CD-ROMs & Hat Special!
That's 72 issues. Complete with supporting code and media files.

Only $129.95
Free Shipping!

2009 CD-ROM
Nuts & Volts
Only $24.95
On Sale Now!

ELECTRONICS

An Arduino Workshop by Joe Pardue

The Arduino — designed for the novice — has become so popular that there is now an embarrassment of riches when it comes to the amount of information and hardware available. So much stuff is out there that some folks have trouble picking out what they need to just get started. The author is known for his breezy writing style and lucid illustrations that help folks understand complex technical topics. For more information, please go to: http://store.nutsvolts.com/home.php

$44.95

Getting Started in Electronics by Forrest M. Mims III

Author Forrest Mims teaches you the basics, takes you on a tour of analog and digital components, explains how they work, and shows you how they are combined for various applications. Includes circuit assembly tips and 100 electronic circuits and projects you can build and test. Forrest M. Mims, III, has written dozens of books, hundreds of articles, invented scientific devices, and loves to share his knowledge with eager students! $19.95

Encyclopedia of Electronic Circuits, Volume 7 by Rudolf F. Graf / William Sheets
NEW IN THE BESTSELLING SERIES!
ONE THOUSAND MORE LEADING-EDGE CIRCUIT DESIGNS!

Designed for quick reference and on-the-job use, the Encyclopedia of Electronic Circuits, Vol 7, puts over 1,000 state-of-the-art electronic and integrated circuit designs at your fingertips. Organized alphabetically by circuit type, this all-new collection includes the latest designs from industry giants such as Advanced Micro Devices, Motorola, Teledyne, General Electric, and others. $39.95

Programming PICs in Basic by Chuck Hellebuyck

If you wanted to learn how to program microcontrollers then you've found the right book. Microchip PIC microcontrollers are being designed into electronics throughout the world and none is more popular than the 8-pin version. Now the hobbyist can create projects with these little microcontrollers using a low cost development tool called the CHIPAXE system and the BASIC software language. Chuck Hellebuyck introduces how to use this development setup to build useful projects with an 8-pin PIC12F683 microcontroller: $14.95

Programming and Customizing the Multicore Propeller Microcontroller by Parallax

Written by a team of Propeller experts, this authoritative guide shows you how to realize your design concepts by taking full advantage of the multicore Propeller microcontroller's unique architecture. The book begins with a review of the Propeller hardware, software, and Spin language so you can get started right away. $49.95
BOOK & KIT COMBOS

From the Smiley Workshop
C Programming for Microcontrollers by Joe Pardue
Book $44.95
Kit $66.95
Do you want a low cost way to learn C programming for microcontrollers? This 300 page book and software CD show you how to use ATMEL’s AVR Butterfly board and the FREE WinAVR C compiler to make a very inexpensive system for using C to develop microcontroller projects.

Combo Price $99.95 Plus S/H

Virtual Serial Port Cookbook by Joe Pardue
As talked about in the Nuts & Volts June issue “Long Live The Serial Port”
Book $44.95
Kit $69.95
This is a cookbook for communicating between a PC and a microcontroller using the FTDI FT232R USB UART IC. The book has lots of software and hardware examples. The code is In C and Visual Basic Express allowing you to build graphical user interfaces and add serial port functions to create communications programs.

The Virtual Serial Port Combo
Reg. Price $ 114.95 Subscriber’s Price $109.95 Plus S/H

From the Smiley Workshop
An Arduino Workshop by Joe Pardue
The book An Arduino Workshop and the associated hardware projects kit bring all the pieces of the puzzle together in one place. With this, you will learn to: Blink 8 LEDs (Cylon Eyes); Read a pushbutton and 8-bit DIP switch; Sense Voltage, Light, and Temperature; Make Music on a piezo element; Sense edges and gray levels; Optically isolate voltages; Fade an LED with PWM; Control Motor Speed; and more!

An Arduino Workshop Combo
Reg. Price $ 124.95 Subscriber’s Price $119.95 Plus S/H

THE EVIL GENIUS SERIES

This lab — from the good people at GSS Tech Ed — will show you 40 of the most simple and interesting experiments and lessons you have ever seen on a solderless circuit board. As you do each experiment, you learn how basic components work in a circuit. Along with the purchase of the lab, you will receive a special password to access the fantastic online interactive software to help you fully understand all the electronic principles. For a complete product description and sample software, please visit our webstore.

The Learning Lab
Reg. Price $79.95 Subscriber’s Price $75.95

This great little book is a concise all-purpose reference featuring hundreds of tables, maps, formulas, constants, and conversions. AND it still fits in your shirt pocket!
Indoor Shooting Range
PCB & Programmed Chips

NEW!

As seen on the May 2010 cover:
Build your own
indoor shooting range! With a little
part-customizing for your
own weapon and components
from your favorite
parts house, you'll be firing proton bullets
in no time. We have the printed circuit
boards and the two programmed chips
necessary for this great project available for
your convenience.
Includes an article reprint.

Subscriber's Price $48.95
Non-Subscriber's Price $51.95
PCBs can be bought separately.

NixieNeon Clock Kit

Using Neon and Nixie bulbs, this clock
displays the precise movement of time
and is programmable to display "Time
Chaos" at different intervals. The
NixieNeon Clock then resets itself to the
correct time in an eye-catching ballet of
luminosity. The PCB is 7.25" x 7.25" and
consists of over 400 components.

Reg $195.95
Sale Price $159.95
PCBs can be bought separately.

AVRSimon Kit

AVRSimon is a do-it-yourself game kit
based on the 1978 Milton Bradley flying
saucer-shaped game of Simon in which
players repeat sequences of light and
sound. This fun project is a great way to
learn about electronics and soldering, and
incorporates basic microcontroller
functions such as reading switch inputs,
turning LEDs on and off, and generating
sounds. Plus, it's fully reprogrammable!
For kit details, please visit our webstore.

$19.95

16-Bit Micro Experimenter Board

Ready to move on from eight-bit to 16-bit
microcontrollers? Well, you're in luck!
In the December 2009 Nuts & Volts Issue,
you're introduced to
"the 16-Bit Micro Experimenter." The
kit comes with a CD-ROM that
contains details on assembly, operation, as
well as an assortment of ready-made
applications. New applications will be added
in upcoming months.

Subscriber's Price $55.95
Non-Subscriber's Price $59.95

Nixie Tube Clock Kit

Nixie tube clocks fuse the spirit, drama,
and eerie beauty of cold war technology
with modern inner workings to create
uncommon handcrafted timepieces.
Now with optional case choices!
Get more info @ our webstore.

Subscriber's Price $146.95
Non-Subscriber's Price $159.95
Kit includes article reprint, complete instructions,
and parts list.

Solar Hydrogen Education Kit

The Solar Hydrogen Education Kit includes
a solar cell, a PEM reversible fuel cell,
oxygen and hydrogen gas containers, and
more! The set only needs pure water to
create hydrogen and produce electricity.
Perfect for science lab, classroom use, or
demonstration purposes.

Subscriber's Price $56.95
Non-Subscriber's Price $59.95
ALTERNATIVE ENERGY SECTION

Do-It-Yourself Home Energy Audits by David Findley
Reduce your utility bill and your carbon footprint!
This new TAB Green Guru Guide offers complete details on assessing home energy efficiency and offers 101 energy- and money-saving solutions. The author describes simple, no- and low-cost measures to identify problems and dramatically increase livability, efficiency, and expendable income each and every year. Information on energy grants, rebates, and tax credits is included.
$19.95

"Double Wide" Sun Tracker Kit
The Double Wide Sun Tracker is one of the great projects from the series of articles by John Gavlik, "Experimenting with Alternative Energy." In Parts 4 and 5, he teaches you how to get the most out of your PVs within the full day of sunlight. For kit details, please visit our webstore.
Subscriber's Price $94.95
Non-Subscriber's Price $99.95

B3-Phase Wind Turbine Kit
The Whirlybird 3-Phase Wind Turbine Kit is one of the great projects from the series of articles by John Gavlik, "Experimenting with Alternative Energy." In Parts 6 and 7, he teaches you how to produce the most electricity utilizing the wind.
For kit details, please visit our webstore.
Subscriber's Price $75.95
Non-Subscriber's Price $79.95

WindPitch Kit
The WindPitch Wind Turbine Kit is a miniature real-working wind turbine and is one of the great projects from the series of articles by John Gavlik, "Experimenting with Alternative Energy." In Parts 8 and 9, he teaches you how to produce the most power by evaluating the pitch (setting angle) of the profiled blades. For kit details, please visit our webstore.
Subscriber's Price $84.95
Non-Subscriber's Price $89.95

SPECIAL OFFER

Build Your Own Electronics Workshop by Thomas Petruzelli

YOUR DREAM ELECTRONICS LAB!
This value-packed resource provides everything needed to put together a fully functioning home electronics workshop! From finding space to stocking it with components, to putting the shop into action — building, testing, and troubleshooting systems — the best part is, this book will save you money — big time!
Reg $29.95 Sale Price $24.95

Enter the world of PICs & Programming with this great combo!

Combo Price $175.95
For complete details visit our webstore @ www.nutsvolts.com
of Front Panel Express.

Front Panel Designer is a tool for engineers, designers, and do-it-yourselfers to design their front panels or enclosures. It is a WYSISYG (What You See Is What You Get) application. The user gets the results as they see it on their screen. Front Panel Express has an automated process to machine these designs with modern CNC technology on aluminum panels, plastic panels, or on customer provided material.

This process makes it easy for their customers to quickly get professionally finished products for their prototype or production runs.

---

**CABLE/ACCESSORY ORGANIZER**

Skooba Design has added a new cable/accessory organizer, as well as a new collection of multi-use protective wraps, to its line of tech-travel carrying cases and accessories.

With the storage grid, pockets on the opposite side, elastic loops for batteries, pens, and thumb drives, and an exterior document/CD pocket, the Cable Stable DLX offers approximately 18 different storage spaces in a 12 ounce case the size of a traditional day planner. According to the company, customers have come up with many creative high- and low-tech uses for the Cable Stable, including using it as a netbook case, cosmetic/toiletry kit, and even a storage case for kids’ travel distractions.

Also keying off a very popular Skooba product design, the new SkoobaWraps are simple, “portable padding” that can be wrapped and self-secured around virtually any suitable object, from a compact camera in the small wrap, to a compact laptop in the large one. Much like the Cable Stable, the Wraps are an ideal way to cope with the challenges of air travel. They can be used to instantly protect and pack just about anything, from handheld video games to netbooks, iPads and e-readers, to travel souvenirs.

SkoobaWraps pack flat when not in use, and add negligible weight when traveling. As Skooba puts it, “Roll them, fold them, make protective origami—it’s like always having a supply of bubble wrap with you, only thinner, easier to use, more durable, and a heck of a lot better looking.”

The new Cable Stable DLX is available now at a suggested retail price of $39.95. SkoobaWraps, come in three sizes with suggested retails from $12.95-$17.95.
 Floppy Interface
I am looking to buy or get enough tips to design and build a device to do service adjustments on old style floppy drives that are used in music keyboards. To run analysis and adjustment software, I have to remove the drive from the keyboard and connect it to a computer. But, the new computers don't have floppy connectors any more. The best device would have a floppy drive 34 pin connector on one end, a USB plug on the other, and some controller in the middle. The current USB external floppy drives are quite different from anything I could use for this project.

#6101 Timothy Edwards
San Diego, CA

AC Motor Control
I'm building an all-az antenna rotor controller from scratch, but I'm having trouble with the circuit for controlling the AC motor in the RadioShack rotator. I've tried using a TRIAC with little success. I believe they are my answer but I don't understand how to use them. What I need is a circuit that will accept one direction bit and one enable bit that will control a motor's direction of spin. The original controller achieved this by feeding one or the other non-neutral leads of the motor with ~22V AC; the third lead is common neutral.

#6102 Matt Williamson
Houston, BC

Quartz Cookoo Clock
My quartz cookoo clock has a photodiode to turn off the clock at night, but I want it to work at night. Can I just remove the photodiode?

#6103 Doug Cardona
Rincon, Puerto Rico

Driveway Sensor
I want to set up a home driveway sensor similar to a traffic light actuator, by using a single wire loop in the pavement that senses vehicles by changing the frequency of an oscillator. I need to know how it works and how to build it.

#6104 W. Rogers
via email

Vacuum Cleaner Soft Start
I have a Hoover EmPower vacuum cleaner that causes the breakers in my home to trip almost every time I first power it on. After a few minutes of use, I can turn the machine off and back on with no problem. I am thinking that the initial inrush current is too much for the breakers (they are GFCI protected). Does anyone know of some sort of soft start circuit or any other trick that may help?

#6105 Jonah G.
Nashville, TN

Remote Start
I am buying my wife a car, but she will not get the garage. So, I agreed to buy her a remote start. I have looked around for one with a clock that will start the car every weekday. So far, no luck. I'm thinking one could program a PIC to start the car like at 8:30 am for 15 minutes, except Saturday and Sunday. Of course, with an override switch for vacations. Any ideas?

#6106 Michael McKenna
Milwaukee, WI

RS-232 To Audio and Back
I have puppets which I can control with a servo controller board attached to the serial port of the computer. I want to record the serial output to audio, burn a CD, and then play the audio from the CD and send the output to the servo controller board, as though it were coming from the serial port of the computer. Anyone have an idea or could help design a hardware solution to this need?

#6107 George Wood
Lakeside, CA

Noise Suppression in PIC Projects
We develop products with PIC tech, but are unable to beat the noise. Can anybody suggest a solution?

#6108 Suresh Naidu
India

PIC16F876A
What is the least expensive system to use to program a PIC16F876A? I got one as a sample from Microchip now I don't know what to use to talk to it.

#6109 Joseph Walker
Newville, AL

All questions AND answers are submitted by Nuts & Volts readers and are intended to promote the exchange of ideas and provide assistance for solving technical problems. Questions are subject to editing and will be published on a space available basis if deemed suitable by the publisher. Answers are submitted by readers and NO GUARANTEES WHATSOEVER are made by the publisher. The implementation of any answer printed in this column may require varying degrees of technical experience and should only be attempted by qualified individuals. Always use common sense and good judgment!
and replace it with a solid-state relay that has sufficient capacity to operate the 24 volt solenoid. The water will shut off within 10 to 15 seconds after you leave. The nightlight has a sensor to shut it off in the daytime. You will want to cover that with some black tape.

Russell Kincaid
Milford, NH

#2 You can try a PIR sensor from www.parallax.com. Turn on a small five volt relay which, in turn, would turn on the 24 volt solenoid.

You might want to use a 2N3904 transistor or 2N7000 MOSFET between the PIR sensor and 5V relay.

Henry H.
via email

[2102 - February 2010]
Spot Welder

Where can I find or make a simple spot welder suitable for rebuilding battery packs?

#1 There are two types of spot welders: (1) capacitive discharge; and (2) timed AC, as illustrated in references [1] and [2], respectively. A charged capacitor is discharged into a step-down spot welding transformer in type 1. A high current pulse is applied to the welding probes. In type 2, a timed burst of AC is applied to the primary of the welding transformer. The secondary of a few turns of heavy wire applies a few hundred amps to the welding probes.

Figure 1 shows the circuit of a capacitive discharge spot welder in reference [1]. A variac adjusts the line voltage applied to voltage doubler D1, D2, C2, C3, and C4. The MCR808 is two parallel 18A 100V SCRs. It seems like it should be 400V SCRs. The push switch triggers the SCR gate, discharging C2 into the primary of the welding transformer when the anode-cathode conducts. The low voltage secondary of the transformer applies a pulse of high current to anything between the welding electrodes. No information was provided for the choke. However, I recommend something in the neighborhood of 20 mH @15A to 40 mH @ 7.5A. The stated mH rating will limit the AC input current to the @current rating. Reference [2] provides information on a welding transformer. Since high mH, high current chokes are a custom built item these days, consider replacing the choke with a 100 ohm 100 watt resistor to limit charging current and short circuit current.

Reference [1] also shows a timed AC spot welder consisting of a discrete component timer and high current anti-parallel SCRs switching the AC. That somewhat dated circuit is not shown here. For a modern AC spot welder, see reference [2]. It uses a solid-state relay to switch AC to the primary of a 700VA welding transformer. The solid-state relay is enabled by an O/S (one-shot) timer for the duration of the weld. Reference [1] recommends an interval of 20 milliseconds to one second. As the O/S times out, a burst of high current AC from the welding transformer secondary is applied to the probe circuit.

References:


Dennis Crunkilton
Abilene, TX

#2 Powerstream at www.powerstream.com has spot welders and supplies particularly for NiCd, LiIon, NiMH, and similar battery packs.

Walter Heissenberger
Hancock, NH

[2103 - February 2010]
Centrally Monitor Door Status

I want to monitor the open or close status of 20 or more doors in a building. Are there devices made that would send a location address and magnetic door switch status via Cat 5 cable about 200' back to a central panel?

I would like these devices to share a common pair and be powered from the central panel too. The panel would light up an LED.

#1 Although it's a lot of fun for readers of this magazine to design a circuit to fulfill a need (and I'm one of them), I thought that a search of a possible existing product might be more cost effective. I came across an interesting product manufactured by DCS. Model AMP-700 is a compact (1.1" x 3.4" x 0.75") addressable door/window sensor with a built-in Reed switch. You can chain as many as 32 of these devices together with just two wires. These sensors are available online for around $15 apiece.

They must be used with a compatible DCS control panel (e.g., Power832). For display, they have a model PC5532 LED keypad with 32 individual LEDs to indicate which sensor is active. Check their website at www.dcs.com for more info and search the Internet for suppliers.

Bob Kovacs
Barnegat, NJ

#2 I contacted a friend in the security business and he tells me that there is an alarm panel made by...
Bosch. They have what are called popits that are a single zone unit with addressing. These use a four conductor daisy chain wire. You can add up to a couple hundred of them to one line. But, this looked like a good project to me, so I came up with a design and built a simple setup. To have the doors share a bus, you need intelligence at every door.

Microcontrollers (µC) are cheap these days, all I believe you need are two chips’ worth at each door. A simple µC such as the PIC 12F509 (less than $1) could do all the work at each door in conjunction with a bus interface chip based on RS-485 (e.g., LTC485 at $1.75).

No other interface chips are needed. Using Cat 5 cable (additional design work should be done to look at resistance for the power transmission and max distance), make one pair for the RS-485 bus, and use the other three pairs for the 5V power from the central site (triple up the wires for less resistance). The max distance also determines max transmission speed.

RS-485 allows 32 transceivers (doors) on the bus.

A central µC would do poll and response of each door and then output the status to a set of latches wired to the LED panel.

I built a two unit system in my lab, wrote the code to cycle through the addresses and included a simple error checksum (only as far as proving the concept), and it works fine. Two bytes are sent with the word of the door (the poll) and a checksum. Door returns its address, checksum, and status. So if you want to DIY, there is an idea.

Pete Lunt
Fairfax, VA

[2105 - February 2010]
Welder Conversion

I want to enhance my Lincoln 225 amp 220 volt AC welder with a circuit that can change the 60 Hz AC to a variable higher frequency. Welding aluminum with a tungsten torch (TIG) requires a variable frequency higher than the 60 Hz to make the best weld due to the nature of aluminum oxide and alloy. It is suggested in my reading that commercial TIG welder circuits change the sine wave to a square wave.

My concept is to add an auxiliary box to house the power supply for the electronics, the cooling fan, and either the cable to a foot switch or rheostat mounted to the torch head or surface mounting. A selector switch will turn the TIG feature on or off to continue to use the original welding feature or to TIG weld.

I have found circuits where the frequency can be varied, but at low voltage and amperage. One article on converting an AC to DC MIG welder suggested the diodes in the rectifier have a peak inverted voltage of 1,000 volts for the momentary time when striking the arc, and be able to handle the amperage of the original welder – 225 amps.

#1 The simple answer is that there is no simple answer! Sorry, but the methods of achieving what you have and what you want are quite different. You have (I believe) a basic transformer welder, operating at 60 Hz, with output power selectable by secondary tapping points. What you desire is a high(er) frequency welder output with effectively the same power. Unfortunately, you cannot supply your existing welder with anything much different from 60 Hz, or you will probably destroy the transformer. It just wasn’t designed to work at higher frequencies.

So, how can it be done? High frequency welders are effectively switched mode supplies with very beefy output stages and close control of the voltage to accommodate the varying load imposed on them. That’s where the conversion of sine wave (mains) to square wave (chopped output) comes from. Since it is a welder, there’s no smoothing to speak of. As you can see, this shares next to nothing physically with your original welder.

The appellation of ‘MIG’ really only specifically implies that it can supply a wire feed through the torch which also supplies the shrouding bubble of inert gas. It doesn’t necessarily mean it is high frequency.

The conversion of a welder from AC to DC in your last paragraph, appears to refer to a bolt-on (literally!) half or full wave rectifier. That device has to be able to withstand the inrush current as the arc is struck (before the reactance of the transformer limits the current), and withstand the inductive voltage spike as the arc is broken. So, with a factor of safety applied, yes it has to be that big!

Sally Jelfs
Brackley, England (UK)

[2104 - February 2010]
AC Motor Control

I would like a diagram for a three-phase AC motor control that I can build myself. I can find all kinds for DC, but not AC. Could someone point me in the right direction?

Frank
via email

#2 You can weld aluminum with your welder as-is. The high frequency is there to strike an arc; this keeps the work from getting contaminated from the electrode. You can scratch-start and weld without high frequency. The AC setting on your welder will stir up the weld puddle and make the impurities come to the top. You can get a high frequency add-on box for your welder and be able to start an arc easier. Reference: The Procedures Handbook of Arc Welding, Lincoln Electric.
**2.4GHz 2 Camera Wireless System**

- 2.4GHz wireless technology
- 2 cameras and 1 receiver
- Range up to 300 feet
- Weatherproof housing for outdoor installation
- Integrated microphone for audio recording
- Includes 2 cameras, 1 power supply, and receiver with remote control

**LED Flashlight with On Board 4GB DVR**

- Ideal for Law Enforcement, Pest Control, Inspection, Maintenance, Security, and More
- Rechargeable flashlight
- Records video and audio

**Aardvark II Dual Camera Wireless Inspection Camera**

- With 3.5" LCD Recordable Monitor
- Your Extended Eyes and Hands
- See It! Clearly in narrow spots, even in total darkness or underwater
- Find It! Fast. No more struggling with a mirror & flashlight
- Solve It! Easily, speed up the solution with extended accessories
- Record It! With the 3.5" LCD recordable monitor, you can capture pictures or record video for documentation

**USB Digital Storage Oscilloscopes**

- 38 Channel USB Logic Analyzer
- CSI5034
- 34 input channels capable of simultaneously monitoring data and control information, and is capable of capturing narrow pulses and fast changing events
- Large memory size allows the user to configure the system
- Memory modes allow for multiple data points for error analysis of the data taken
- 50 MHz bandwidth, 100 MHz sampling rate, 10 bits vertical resolution, 64 MHz/100 MHz clock rate
- Spectrum Analyzer
- FFT
- Real-time spectrum analyzer
- Max power output: 100 mW
- Input level: +10 dBm

**Aardvark**

- Dual Camera Wireless Inspection Camera
- 17mm and 9mm camera heads
- 3.5" LCD recordable monitor
- Designed for inspecting hard to reach or confined areas
- No external power required
- Batteries powered by the host computer's USB port
- Easy to use, intuitive, and easy to understand

**LED Flashlight DVR**

- Flashlight with 4GB DVR
- Regular Price $189.00
- Sale Price $69.00

**34 Channel USB Logic Analyzer**

- Item # CSI5034
- Sale Price $329.00
We carry a LARGE selection of Power Supplies, Soldering Equipment, Test Equipment, Oscilloscopes, Digital Multimeters, Electronic Components, Metal and Plastic Project Boxes, Electronic Chemicals, PC Based Digital I/O Cards, Panel Meters, Breadboards, Device Programmers, and many other interesting items. Check out our website: www.CircuitSpecialists.com

Adjustable DC Power Supplies with Adjustable Current Limiting

Regulated linear power supplies with adjustable current limiting. The LED display shows both Volts & Amps. The current output can be preset by the user via a front panel screwdriver adjustment screw while the voltage is adjustable by a front panel multi-turn knob for precise voltage settings. Output is by front panel banana jacks and there is also a covered terminal strip for remote voltmeter sensing at the load.

* Utilizes SMD technology
* Pre-Settable Voltage & Current levels
* Front Panel On/Off Switch
* Large LED readout for Voltage & Current
* S+ & S- Sampling terminals

<table>
<thead>
<tr>
<th>Item #</th>
<th>0-30 Volt / 0-10 Amp Adj.</th>
<th>0-30 Volt / 0-20 Amp Adj.</th>
<th>0-40 Volt / 0-10 Amp Adj.</th>
<th>0-60 Volt / 0-10 Amp Adj.</th>
<th>0-120 Volt / 0-3 Amp Adj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSI010X</td>
<td>$198.00</td>
<td>$299.00</td>
<td>$299.00</td>
<td>$319.00</td>
<td>$265.95</td>
</tr>
</tbody>
</table>

www.circuitspecialists.com/dcpower

60MHz Hand Held Scopemeter with Oscilloscope & DMM Functions

Who Says you can’t take it with you? With the DSO1060 YOU CAN! You get both a 60 MHz Oscilloscope and a multi-function digital multimeter all in one convenient lightweight rechargeable battery powered package. This power-packed package comes complete with scopemeter test leads, two scope probes, charger, PC software, USB cable and a convenient nylon carrying case.

- 60MHz Handheld Digital Scopemeter with Integrated Digital Multimeter Support
- 60MHz Bandwidth with 2 Channels
- 150ms Real-Time Sampling Rate
- 6.000-Count DMM resolution with AC DC at 600V 800V 10A
- Large 5.7 inch TFT Color LCD Display
- USB Host/Device 2.0 full-speed interface connectivity
- Multi Language Support
- Battery Power Operation (Installed)

<table>
<thead>
<tr>
<th>Item #</th>
<th>DSO1060</th>
<th>$599.00</th>
</tr>
</thead>
</table>

60MHz Hand Held Scopemeter w/Oscilloscope, DMM Functions & 25 MHz Arbitrary Waveform Generator

- All features of the DSO100 plus a 25 MHz Arbitrary Waveform Generator
- Waveforms can be saved in the following formats: jpeg/gif/png/image, MS excel/csv file
- Can record and save 1000 waveforms
- DC to 25 MHz Arbitrary Waveform Generator

<table>
<thead>
<tr>
<th>Item #</th>
<th>DSO-8060</th>
<th>$659.00</th>
</tr>
</thead>
</table>

Programmable DC Electronic Loads

POTRANS [Special Purchase] 150Watt 24V/6.5A Switchable Power Supply

- High efficiency
- High reliability
- Protection: Over-voltage/Over-current/Over-power/Shut-down circuit
- Output reverse protection
- VAC input range selected by switch
- 100% full load burn-in test
- EMRF: FCC Part 15 J, Class A & CISPR 22 Class A

| Item # | CSI15024-1M | $19.00 +$14.35 100+2.95 |

0-30V/0-5A DC Power Supply

| Item # | CSI530S | $79.00 |

www.circuitspecialists.com/csi530s

Programmable DC Power Supplies

- Up to 10 settings stored in memory
- Optional RS-232, USB, RS-485 adapters
- May be used in series or parallel modes with additional supplies
- Low output ripple & noise
- LCD display with backlight
- High resolution at 1mV

<table>
<thead>
<tr>
<th>Model</th>
<th>CSI544A</th>
<th>CSI545A</th>
<th>CSI454A</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage</td>
<td>0-18V</td>
<td>!-36V</td>
<td>0-72V</td>
</tr>
<tr>
<td>DC Current</td>
<td>5A</td>
<td>3A</td>
<td>1.5A</td>
</tr>
<tr>
<td>Power (max)</td>
<td>110W</td>
<td>100W</td>
<td>100W</td>
</tr>
<tr>
<td>Price</td>
<td>$159.00</td>
<td>$159.00</td>
<td>$159.00</td>
</tr>
</tbody>
</table>

www.circuitspecialists.com/csi3710a

BlackJacK SolderWerks

Our Premium Line Up for Soldering, Repair & Rework

Rugged design at an affordable price. BlackJack Solder Werks from Circuit Specialists is the industries cost-performance leader and continue our reputation of providing high value products for our customers.

BK2000 Compact Soldering Station $29.95

BK2000+ Compact Soldering Station with Digital Display $46.95

BK2050+ 70 Watt Lead Free Soldering Station $79.00

BK3000LF $59.00

BK4000 INVERTER Soldering Station $99.00

BK4050 INVERTER Soldering Station with handle & Mechanical Arm $99.00

BK5000 INVERTER Soldering Station with Mechanical Arm $99.00

BK6000 Premium All-In-One Repairing Soldering System $199.00

www.circuitspecialists.com/blackjack

The CI530S is a regulated DC power supply which can adjust the current and voltage continuously. An LED display is used to show the current and voltage values. The output terminals are safe 4mm banana jacks. This power supply can be used in electronic circuits such as operational amplifiers, digital logic circuits and so on. Users include researchers, technicians, teachers and electronics enthusiasts. A 3½ digit LED is used to display the voltage and current values.

www.circuitspecialists.com/csi530s
1st Place: Thumper by Harrison Pham - Internet radio player with MP3 recording and playback capabilities. Has features not found in any commercial products & built for a fraction of the cost!

2nd Place: DAQPac by Ryan David - An automotive data logger for motorsports enthusiasts, with all the features necessary for a driver to improve both driving skill and vehicle performance.

3rd Place: Sphinx by Michael Park - Sphinx is a Propeller-based Spin compiler that compiles complex programs (including those containing Propeller ASM) such as the Parallax TV and graphics objects. Sphinx also performs some of the functions of an operating system. It provides a command-line shell, a text editor, disk utilities, and a memory-resident (cog-resident) I/O system.

How will you use the Propeller chip?

With eight 32-bit processors (cogs) in one chip and deterministic control over the entire system, the multicore Propeller chip is inspiring. Witness this fascinating array of Propeller-based projects from the winners of our 2009/10 Propeller Design Contest.

Honorable Mention: Prop Floppy by Sai Mustafa - A floppy controller with a serial interface and the ability to store images on memory sticks.

HM: Prop RTOS by Peter Van der Zee - A kernel for easily implementing multiple independent threads in any assembler cog, enabling the easy scheduling of the timing of triggers for all threads.

HM: Propeller Powered Rock Band Robot by Adam Stienecker - A system that can automatically play Rock Band on the Xbox 360 using video analysis with a Propeller chip acting as the control platform.

See all the winning projects at www.parallax.com/go/propellercontest. Order online or call Sales toll-free: 888-512-1024 (M-F 7am-5pm, PDT).

Friendly microcontrollers, legendary resources.

www.parallax.com

Prices subject to change without notice. Parallax and the Parallax logo are trademarks of Parallax Inc.