Build And Experiment With A PIEZO Electric FILM SPEAKER

What sounds can you produce with film and a little voltage?

♦ Oscilloscope Probes & Probing
Probes, techniques, and a DIY active probe.

♦ Garage Door Alarm
Never again wonder if you’ve left it open!
Low-cost Industrial Serial to Ethernet Solutions

- Instantly network-enable any serial device
- No programming is required for serial to Ethernet application
- Customize to suit any application with a development kit

SBL2e Chip
2-port serial-to-Ethernet server with eight A/D converter inputs and optional SPI, I2C, CAN peripheral device support

SBL2e 200
2-port serial-to-Ethernet server with four A/D converter inputs, optional I2C peripheral support and 10-pin header

SBL2e 100
2-port serial-to-Ethernet server with four A/D converter inputs, optional I2C peripheral support and RJ45 connector

SBL2e X
External 2-port serial-to-Ethernet server with RS-232 support

SBL2e XA
External server with up to four A/D converter inputs, up to eight digital I/O and up to two UARTS (one RS-232)

Hardware Features
Up to three serial ports, 10/100 Mbps Ethernet, up to 10 digital I/O, 12-bit A/D converters, operating temperature -40 to 85 C, 32-bit performance

Software Features
TCP/UDP/Telnet/HTTP modes, DHCP/Static IP support, web-based or AT command configuration

Low Prices
- SBL2e Chip $10.50 (Qty. 10k, Device P/N: SBL2eCHIP-236IR)
- SBL2e 200 $19.95 (Qty. 1000, Device P/N: SBL2e-200IR)
- SBL2e 100 $21.95 (Qty. 1000, Device P/N: SBL2e-100IR)
- SBL2e X $79.00 (Qty. 1000, Device P/N: SBL2eX-100IR)
- SBL2e XA $79.00 (Qty. 1000, Device P/N: SBL2eXA-100IR)

Need a custom solution?
NetBurner Serial to Ethernet Development Kits are available to customize any aspect of operation including web pages, data filtering, or custom network applications. All kits include platform hardware, ANSI C/C++ compiler, TCP/IP stack, web server, e-mail protocols, RTOS, and NB Eclipse IDE.

Information and Sales | sales@netburner.com
Web | www.netburner.com **Telephone** | 1-800-695-6828
Power Your Connected Graphics Solution With the PIC32 Microcontroller

Connectivity and graphical user interfaces are essential in today’s applications. You’re challenged to deliver intuitive, high impact, connected solutions while maintaining flexibility to support several different product options. Microchip’s PIC32 series of 32-bit microcontrollers offer the right performance, memory size and peripherals to help achieve your goals.

With 1.56 DMIPS/MHz performance topping any device in its category, up to 512 Kbytes of Flash, 128 Kbytes of RAM and integrated connectivity peripherals like Ethernet, CAN and USB the PIC32 can deliver the mix of performance and flexibility needed to help you meet your design challenges.

Microchip gets you there with:

- PIC32 Starter Kits — Standalone easy to use development boards with integrated debugger/programmer
- Multimedia Expansion Board — The most complete user interface development solution in its class — enabling development of highly interactive, graphics and audio-based interfaces with WiFi connectivity — a modular add-on to any PIC32 Starter Kit.
- Microchip’s FREE Graphics and Connectivity libraries and code examples — Eases your development effort and speeds your time to market

GET STARTED IN 3 EASY STEPS

1. Purchase PIC32 Ethernet Starter Kit and Multimedia Expansion Board
2. Download MPLAB® IDE
3. Start designing!

www.microchip.com/graphics
12 VDC 80MM COOL-ING FAN, USED
NMB Model 3110KL-04W-B60. 12Vdc. 0.3A. 80 x 80 x 25mm 3400RPM. 40.2CFM. 35dB noise. Two 3" leads. Removed from working equipment in good condition. UL, CSA, CE, VDE.
CAT# CF-379U

10 for $1.75 each

$2.00 each

MICROMINIATURE
12VDC SPDT RELAY
Fujitsu #FBR21D12. 7.5 x 10 x 10mm high. 12VDC 534 Ohm coil. SPDT contacts rated 1A @ 24Vdc, 0.5A @120VAC. Maximum carry current, 2A. Note: PC leads are not stiff. Not suitable for automatic insertion.
CAT# RLY-616

80¢ each
10 for 65¢ each
100 for 50¢ each

HEADPHONES WITH MIC
“Hands-free” headset for cordless home or office phones and many cell phones. In-line volume control and mute switch with pocket clip. 2.5mm sub-miniature phone plug.
CAT# HP-211

$5.85 each

SOLAR CELL
Output: approximately 3 Volts @ 40 mA. 60mm square x 2.5mm thick epoxy-encapsulated silicon photovoltaic cell. Solid, almost-unbreakable module with solderable foil strips on backside. Ideal for solar-powered battery chargers and other projects.
CAT# SPL-61

$3.75 each
100 for $3.25 each

2.4 GHZ ANTENNA
Laird WCR2400MSRMP. 2.4 - 2.5 GHZ. 1/2 wave dipole antenna. 1 DBI gain. 50 ohm impedance. 95mm overall length. Gold-plated, reverse polarity SMA connector. -40 +80c temp. 90 Deg. knuckle.
CAT# ANT-36

$3.50 each

4-WIRE TOUCH SCREEN
Dawar Technologies# 5042R.O AC-CC-30-19R. 1.4. 4-wire resistive touchpad. Clear plastic input screen that allows users to operate a device by touching the display screen. Overall: 36.60 x 70.00mm. Active area: 28.60 x 59.00mm. 1.20mm thick without gasket. Gasket around edge is 2mm wide x 0.80mm thick. 25.00mm flexible ribbon with 4-pin connector that mates with Molex 52207-0460.
CAT# TSR-1

$2.00 each
10 for $1.80 each

7-PORT USB HUB
Provides seven additional USB 2.0 ports to your PC or Mac, to connect digital cameras, external hard drives, flash drives, and printers. One upstream and seven downstream ports. Hot-swappable and plug-and-play connections.
CAT# USB-71

$10.95 each

VIBRATING MINI-MOTOR
Designed to vibrate in cell phones or pagers, this tiny 1.5-4.5Vdc motor has an offset weighted shaft. Overall length, including terminals and shaft, 18mm. Body is 4.5mm x 5.5mm x 11mm long. Flat, surface-mount solder tabs.
CAT# DCM-382

$1.25 each
10 for $1.10 each • 100 for 95¢ each

RED LED TRAFFIC STOP LIGHT, 120 VAC, USED
12” diameter Red traffic light. Bright, attention-getting display contains more than 150 red leds. Operates on only 14 Watts at 120 VAC. 10.75” dia. x 2.75” lens. 4” total depth. Includes rubber mounting gasket. 40” leads. Used, working units, removed from service. May have scuffs.
CAT# RTL-2

$16.00 each
10 for $14.00 each

12VDC SOLENOID
Guardian # T4X12-INT. 12DC / A420-066012-00. 12Vdc. 24.7 Ohm coil. 6.1W. 486mA. 0.5” dia. x 1.5” long frame. 3/8-32 threaded bushing is 0.3” long. 7” leads. 0.188” dia. slotted plunger with hole. Intermittent duty: 25% on time, 100 seconds max., followed by 300 seconds off min. Includes hex nut, lock washer and mounting bracket.
CAT# SOL-412

$4.00 each

21MM PIEZO ELEMENT
50mm wire leads.
CAT# PE-56

$1.00 each
10 for 85¢ each

40 CHARACTER X 2 LINE LCD W/ LED BACKLIGHT
#UMSH-3077JD- YG. STN Transflective LCD. Yellow-green LED backlight. Module size: 182 x 33.5 x 13.8mm. Viewing area: 154.4 x 16.5mm. Character size: 3.2 x 5.5mm
CAT# LCD-3077

$8.50 each
10 for $7.50 each

Shop ON-LINE www.allelectronics.com

ORDER TOLL FREE 1-800-826-5432

MAIL ORDERS TO: ALL ELECTRONICS CORP. 14928 OXARD ST., VAN NUYS, CA 91411-2610

FAX (818) 781-2653 • INFO (818) 904-0524
E-MAIL allcorp@allcorp.com

QUALITY Parts
FAST Shipping
DISCOUNT Pricing
CALL, WRITE, FAX or E-MAIL for a FREE 96 page catalog.
Outside the U.S.A. send $3.00 postage.

MANUFACTURERS - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or Fax YOUR LIST.
LeCroy 40 MHz - 1 GHz Oscilloscopes
Performance you need at a price you can afford
Starting at $695

Save 15% when you trade in your old scope!
Contact a distributor today

LeCroy Authorized Distributors:

AVALON Equipment Corporation
Avalon Equipment Corp.
(888)-542-8256
avalontest.com

TREK EQUIPMENT
Trek Equipment
(888)-873-5374
trekequipment.com

STANLEY Supply & Services
Stanley Supply & Services
(800)-225-5370
StanleySupplyServices.com

Tequipment.NET
Tequipment.NET
(877)-742-8378
tequipment.net

KEMP Instruments
Kemp Instruments
(888)-619-2266
kempinstruments.com

MEUNIER
Meunier Elect. Supply
(800)-638-0457
meunierusa.com

GLOBAL TEST SUPPLY
Global Test Supply
888-670-7884
globaltestsupply.com

To learn more about LeCroy's full line of oscilloscopes, protocol analyzers and embedded test tools visit www.lecroy.com or call 1-800-5-LeCroy
Projects & Features

34 Piezoelectric Film Speaker
Experiment with this unique piezoelectric material to see what kind of audio sounds you can produce with film and a little voltage.
■ By John Iovine

38 Is Your Garage Door Open?
You’ll never have to wonder again with this handy device.
■ By Ron Newton

44 Oscilloscope Probes and Probing
As you start probing higher and higher frequencies, often the results get increasingly odder. This article addresses the reasons for that strange behavior. The ultimate solution to the shortcomings of your 10:1 probe is a very expensive Active Probe — but here is one you can construct for $25.
■ By Robert Reed

Columns

10 TechKnowledgey 2010
Events, Advances, and News
A new approach to solar, a new battleground in hacker wars, the world’s smallest 64 GB SSD, plus other stuff you’ll find interesting.

14 The Spin Zone
Adventures in Propeller Programming
Lighting Up the Season — Again!

24 Q & A
Reader Questions Answered Here
Attic fan control, seven-segment LED help, a timer project, plus more.

54 The Design Cycle
Advanced Techniques for Design Engineers
A Universal Micro Design.

60 Smiley’s Workshop
Programming • Hardware • Projects
Getting a Little Shifty.

68 Near Space
Approaching the Final Frontier
The Canon Hacker Development Kit — Part 2.

FUNdamentals For Beginners
Just getting started in electronics? Try these simple demos to illustrate electronics principles and how components function in actual circuits!

76 How a PNP Transistor Works
BitScope

Analog + Digital

Digital Storage Oscilloscope
✓ Dual Channel Digital Scope with industry standard probes & POD connected analog inputs. Fully electrically isolated from PC.

Mixed Signal Waveform Analyzer
✓ Capture and display analog and logic signals together with sophisticated cross-triggers for precise waveform timing measurement.

DSP Waveform & Timing Generator
✓ Built-in synchronized waveform generator. Synthesize arbitrary waveforms, triggers, clocks, bursts, chirps, noise and more.

Multi-band Spectrum Analyzer
✓ Display analog waveforms and their spectra simultaneously in real-time. Baseband or RF signals with variable bandwidth control.

Integrated Waveform Data Recorder
✓ Record to disk anything BitScope can capture. Allows off-line replay and waveform analysis. Export captured waveforms and logic signals.

Multi-platform & user programmable
✓ Supports Windows, Linux and Mac OSX. User programming libraries, drivers & third-party software integration options available.

FULL METAL JACKET

BitScope is built tough to last a lifetime.

Enclosed in a new low profile solid extruded aluminium case, BitScope can handle the harshest working environments.

Its full metal jacket and electrically isolated design means that unlike cheap plastic alternatives it is also highly noise immune for the most sensitive mixed signal measurement applications.

On the road or in the lab, BitScope is the ideal choice!

BitScope Software and Libraries

BitScope 120 includes DSO, an intuitive test and measurement software application for your PC.

DSO test instruments include a digital storage oscilloscope, spectrum analyzer, logic & mixed signal analyzer, integrated arbitrary waveform generator and data recorder, all in one package.

DSO is fast and deep, with display rates up to 50Hz & high speed capture of up to 64kHz/frame.

The data recorder supports offline replay and signal analysis for home assignments or sharing waveform data with colleagues and students.

Other software options include WaveMeter and BitGen for synthesis and analysis applications or BitLib for customized applications & integration with many third-party numerical analysis tools.

Windows, Linux or Mac
Fully Isolated USB

bitscope.com/nv
Semiconductor Shortage — Time for Innovation

If you or your company is in the electronics manufacturing business, you’re probably aware of the worldwide semiconductor shortage. Apparently, the economic slowdown coupled with a recent increase in demand for consumer electronics caught suppliers off guard. The shortage is especially acute in power management semiconductors which are used in just about everything. As a result, electronics manufacturers are scrambling to develop workarounds, consumers are paying more for some items, and many electronics enthusiasts are simply out of luck. The current situation presents several learning points. One is to keep a supply of basic components on hand so that you don’t have to place an order with Digi-Key, Mouser, or some other supplier every time you want to build a circuit. For example, I have several plastic parts containers with common value resistors, capacitors, power regulator chips, switches, microprocessors, and connectors. I’ve accumulated this supply not to ward off shortages, but because it’s time- and cost-effective. As a rule of thumb, I triple the basic order for whatever parts are required for a project. Given that postage and handling are significant expenses, adding a few extra chips to an order adds greatly to convenience and minimally to overall cost. Another option is to order a few of the bulk component samplers — the bags of 1,000 resistors, capacitors, or other components. It’s a quick way to have a ready supply of basic parts on hand.

The second and probably most significant learning point is that it’s important to think of alternatives whenever you approach a circuit. Think of the articles in Nuts & Volts as basic recipes. That is, they’re starting points that you can and should personalize. Instead of approaching a project as ‘cookbook electronics’ or the equivalent of paint-by-numbers construction, think of ways that you can improve on the basic design. How can you make a circuit more economical? Smaller? More efficient? More general-purpose? For example, let’s say you find an article in this magazine or on the web that describes an op-amp circuit powered by two 9V batteries. It’s a common shortcut that often doubles the size and weight of a circuit. Instead of following the original design, why not invest an hour in making the circuit work on a single battery? You’ll not only have a smaller, lighter, and less expensive circuit, but you’ll learn about op-amps in the process.

Or, let’s say a circuit requires a chip that’s not available from the online suppliers because of a worldwide shortage. Spend some time on the web looking for equivalent chips or chip sets, and develop an equivalent circuit. Using substitute components might require reworking the circuit board and changing a few components, but you’ll really understand the circuit operation when you’re done. Sure, one of the greatest rewards of circuit building is applying power and having the circuit come to life. But the deeper, longer lasting reward is gaining an understanding of what’s going on in the circuit so that you can apply it to new circuits and situations. With time, you’ll develop a repertoire of circuit designs that will not only make you impervious to temporary component shortages but that will enable you to create your own circuits from scratch. Then you’ll be the one sharing your expertise with other readers. Happy circuit building.
The Nuts & Volts Pocket Ref

All the info you need at your fingertips!

This great little book is a concise all-purpose reference featuring hundreds of tables, maps, formulas, constants & conversions. AND it still fits in your shirt pocket!

Visit http://store.nutsvolts.com or call (800) 783-4624

Only $12.95

Electronic Surplus

sales1@electronicsurplus.com
Toll free: 1-800-642-1123
8755 Munson Rd
Cleveland, OH 44060

electronicsurplus.com/specials.cstm

120VAC 10A DPDT Relay

$2.95

Stepper motor
12VDC 6-Wire
7.5 deg

$9.00

120VAC 5A DPDT Center-off Switch

$1.00

12VDC 0.24A 60 CFM 90mm Fan

$5.50

18VDC 3500RPM 100mA Motor

$5.85

Relay, sealed
12 VDC 20A SPDT

$5.00

November 2010

The publisher makes no claims for the legality of advertised items or for the honesty of the advertiser. Advertisers and their agencies agree to indemnify and protect the publisher from any and all claims, action, or expense arising from advertising placed in Nuts & Volts. Please send all editorial correspondence, UPS, overnight mail, and artwork to: 430 Princeland Court, Corona, CA 92879.
NEW APPROACH TO SOLAR

We've become pretty much accustomed to the steady flow of ho-hum incremental improvements in solar technology, but engineers at Stanford University (www.stanford.edu) claim to have come up with a process that can more than double the efficiency of solar cell technology and even make it price competitive with petroleum. Called photon enhanced thermionic emission (PETE), it is uniquely able to simultaneously tap into the sun's light and heat.

Most photovoltaic cells use a silicon semiconducting material to convert photons into juice, but they use only a portion of the light spectrum and discard the rest in the form of heat. Unfortunately, such cells become less efficient (and physically degraded) at higher temperatures, so you generally can't boost their output via concentrating devices such as parabolic dishes. (In 2008, IBM demonstrated a system that focused 2,300 equivalent suns on a one sq cm cell to generate 70W, but it required a "liquid metal" cooling system to keep the temperature in check.) In contrast, a PETE device doesn't really hit its peak output until it gets past about 200°C (392°F), so there's no reason why you can't couple one with a thermal conversion system to double the overall output. The new photovoltaic is based on coating a different semiconductor material (in this case, gallium nitride) with a layer of cesium to produce a substance that can handle the high temperatures. The nice touch is that, if properly designed, a PETE system can be retrofitted to existing thermal systems for a relatively inexpensive conversion. According to Prof. Nick Melosh, "This is really a conceptual breakthrough, a new energy conversion process, not just a new material or a slightly different tweak. It is actually something fundamentally different about how you can harvest energy." The materials used in the devices are cheap and readily available, so we're not talking about something that's exotic and cost prohibitive. The only apparent catch is that you probably won't want something sizzling on your rooftop at temperatures as high as 800°C (1,500°F), so the devices will probably be exiled to such places as the Mojave Desert.

US ARMY DEVELOPING SNAKEBOTS

The desktop prototype may not look like much, but the US Army Research Lab (www.arl.army.mil) is expanding on snakebot technology developed at Carnegie Mellon's Robotics Institute that may allow the use of systems instead of soldiers for dangerous search-and-rescue missions, IED disposal, and cargo and checkpoint inspections. The incarnation is the Robotic Tentacle Manipulator, described as an "arrangement of the bases of several snakes in a circular array that functions like a team using multiple parts of their bodies to manipulate an object, scan a room, or handle improvised explosive devices." An interesting aspect is that the system is scalable and therefore can be built as a subsystem to larger platforms such as the iRobot Warrior which is designed to traverse rough terrain and even climb stairs. It is also extensible in that, by varying the number of links on each tentacle, you can adjust its reach and its ability to crawl, swim, climb, or otherwise move through narrow spaces. Plus, fitted with a camera, it can simultaneously send images back to the operator. In fact, the subsystem can be equipped with an array of sensors, including LADAR, allowing it to generate 3D images. It even features touch sensitivity which allows it to balance objects and detect applied forces. Researchers are hoping that the manipulator will soon solve the "opening a door problem" — a challenge posed by the variety of knobs, handles, levers, bars, etc., used on doors. Summarizing, an Army rep observed, "This is a distributed intelligence framework that permits advanced manipulation algorithms to run on a complex but affordable hardware platform."
COMPUTERS AND NETWORKING

RUGGEDIZED COMPUTER FOR MOBILE WORKERS

One of the newcomers in the computer market is the Marathon™ Field Computer from LXE [www.lxe.com]. It doesn't fit easily into any category, as it offers a larger screen and more computing power than the usual PDA, but it's smaller than a laptop and includes a variety of data-capture and connectivity choices. It is also ruggedized for mobile workers in such jobs as route accounting, public safety, and field service management. The Marathon is powered by an Intel Atom processor that runs the full version of Windows 7 or XP, and it includes a seven inch outdoor-visible touchscreen, a QWERTY keyboard, a fingerprint reader that doubles as a mouse, and a high-res color camera. You can also add such things as a mag stripe reader, 2D imager, and extended-life batteries for continuous operation up to 12 hours. The unit employs Qualcomm's Gobi wireless wide area network (WWAN) technology, allowing it to connect to the Internet at 3G speeds, plus a WiFi connection via 802.11 a/b/g/n and Bluetooth connectivity. In addition, it carries an IP-65 rating which essentially means that it is dust-tight, and you can blast it with water from any direction with no harmful effects. The company had not announced the Marathon's price as of press time, but the company's MX3Plus hybrid tablet runs around $2,500, so plan on going up from there.

NEW BATTLEGROUND IN HACKER WARS

Most computer security measures tend to focus on protecting personal computers, but the founders of StopTheHacker.com want you to know that a big and fast-growing hacker target is websites. Apparently, they are taking advantage of new chinks in Internet security to attack websites which often are minimally protected sitting ducks. According to co-founder Michalis Faloutsos, "Websites are the next battleground in the war for computer security ... We are in the early stages of this war, and any website is vulnerable." One favorite trick is to place difficult-to-detect malware inside your web pages so that a visitor who clicks on a link will be directed to the hacker's site rather than a legitimate destination. The hacker may thereby acquire personal information, upload more malware, or even damage the visitor's system. Malware is even being injected into banner advertisements, PDF files, and other documents that you might encounter while surfing and, unfortunately, antivirus services and firewalls are not up to the task of detecting and dealing with such things.

To combat the problem, StopTheHacker.com — with support from the National Science Foundation — has developed a two-pronged strategy. First, they play the role of a potential hacker and ferret out weak points in a client's website, calculating the best way to penetrate those spots. Then, they run periodic scans of the site to verify its integrity. Faloutsos noted, "Our system 'learns' how to hunt down malicious code — unlike the approach taken by the antivirus world where a signature for a specific sample of malware is searched for on a computer. This allows us to identify previously unseen malicious code and analyze new emerging threats."

The good news is that the StopTheHacker.com approach is based on the belief that security should not be the concern of the customer but is "the inherent responsibility of the hosts." The bad news is that you need to talk to your web host into signing up.

ARE YOU A NARCISSIST?

Are you a narcissist? Do you suffer from low self-esteem? Better analyze your Facebook account to find out. According to an undergrad thesis by Soraya Mehdizadeh, a psych student at Toronto's York University (www.yorku.ca), people with such personality defects tend to use Facebook as a self-promotional tool and are among the heaviest users of the site. For purposes of the study, "self-promotion" was defined as "any descriptive or visual information that attempted to persuade others about one's own positive qualities." Other indications of potential psychopathy include "use of positive adjectives, self-promoting mottos, and metaphorical quotes," striking a pose or making a face in your photo, or using photo editing software to hide the wart on your nose. For example, on one site I recently visited (discretion prevents me from divulging the person's name), one obvious swellhead said, "I'm so smart that I figured out a way to get college credit for playing around on Facebook."

But all is not gloom and doom here. Mehdizadeh offers us hope of salvation: "I believe the next question to be answered is whether or not the use of such websites could be used to improve one's self-esteem and overall sense of well-being. This sort of finding may have great implications in the lives of the socially anxious or depressed." Well, I'm feeling better already.
NICE BUDS, BUD

The Ultimate Ears unit of Logitech (www.ultimateears.com) has been selling in-ear monitors for musicians and audiophiles for some time, but the latest is a set of reference monitors aimed at professional producers and audio engineers. The product was developed in cooperation with EMI Music's Capitol Studios, so quite a bit of industry experience went into them. Like all studio speakers, the Ultimate Ears In-Ear Reference Monitors provide flat phase and frequency responses to give an uncolored reproduction of the actual recording. This is not necessarily what the average stereo buff wants to hear, so keep that in mind before you consider buying a pair. If all you want to listen to is the natural and true audio track, however, this may be the way to go. The monitors provide up to 32 dB of noise isolation and can reproduce frequencies from 5 Hz to 18 kHz. They also employ a tightly braided cable that reduces friction and tangling, as well as reducing crosstalk. A dual sound channel configuration keeps low, mid, and high frequencies separated until they go into your ears, where they "mix naturally, reducing any chance for distortion."

You can't just drop by Walmart and pick up a pair, as each set is made specifically for the customer. You are required to have ear impressions made by an audiologist and sent to the company.

Oh, yeah. One more thing. They cost $999. Maybe you'll be dropping by Walmart after all.

WORLD’S SMALLEST 64 GB SSD

You won’t be buying one yourself, as it’s intended to be embedded in various mobile computing platforms, but it’s still noteworthy that SanDisk Corp. (www.sandisk.com) has introduced an integrated solid-state drive (iSSD) said to be the first high-capacity product in that category. According to the company, it’s the first Flash SSD device to support the SATA interface in a small BGA package that can be soldered onto any motherboard, and that is fast enough for use with advanced operating systems in next-generation equipment. The chip offers 160 MB/sec sequential read and 100 MB/sec sequential write speeds, weighs less than a gram, and measures only 16 x 20 x 1.85 mm. Compatible with all standard operating systems, it is available in capacities ranging from 4 to 64 GB. Pricing, as always, depends on quantity.

INDUSTRY AND THE PROFESSION

STUDY REVEALS WIND POWER MARKET

If you’re involved in the wind power business, you may be interested in the latest report on the subject from the D.O.E. and Lawrence Berkeley National Lab. The 2009 edition of the Wind Technologies Market Report provides a comprehensive overview of developments in the rapidly evolving US wind power market, which is second only to China in size. For a free download, just point your browser at www.jkeckert.com/freedownloads/2009wind.pdf.

90TH ANNIVERSARY OF COMMERCIAL RADIO

It seems like only yesterday, but it was actually 90 years ago (November 2, 1920) when the first commercial radio station went on the air. An experimental version had actually existed in Westinghouse engineer Frank Conrad’s garage since 1916 as amateur station 8XK, but it was eventually moved to a shed atop the K Building of the Westinghouse East Pittsburgh works and licensed as KDKA. The first broadcast provided election night coverage (Harding beat Cox, by the way) from 6:00 PM until noon the following day. Between news and occasional music, announcers asked the audience, "Will anyone hearing this broadcast please communicate with us, as we are anxious to know how far the broadcast is reaching and how it is being received." Contrary to rumors, Larry King was not on hand for the occasion.
I like this time of year. The air is clear (even in Los Angeles!), the mornings are crisp, and the evenings are brightened with holiday decorations that illuminate the insides and outsides of homes everywhere. My home is somewhat small, so my lighting projects are, too. Small doesn’t make me wimpy, though, and my little 12-channel lighting board for the Propeller Platform is designed to be tough enough for applications that go way beyond LEDs.

THE POWER OF 12

A couple months ago, I had the pleasure of working with a leading Hollywood special effects designer to add lighting to a big prop he built for a client. The prop is a futuristic soldier in a large suit that has rocket engines on the back. My friend wanted to use very bright RGB LEDs in the rockets so that they could be faded up to bright red, then slowly transition to blue—all while appearing to pulsate and "rumble" as a real rocket engine does.

Output control was pretty easy as I’d previously used a TIP125 in a high side driver circuit for high power LEDs. I simply whipped up a 12-channel board to handle the "rockets" and other lighting tasks, and then took advantage of launching multiple Spin cogs in the Propeller to simplify the code for each element of the prop. In the end, my friend was very happy—so much so that he was actually making engine sounds with his mouth after we got the code adjusted just the way he liked it!

After buttoning up that project, I started thinking about some holiday lighting ideas and then I had a thought: If I beef up that circuit—just a little—I can use it for other things, too. With 12 channels, I could control 12 independent devices, or I could dedicate three channels to an RGB LED module, or I could dedicate four channels to control a stepper motor, or I could control any combination thereof. As my friend, John, says, "It's just SMOP" (small matter of programming).

As I was already using a TIP125 which can handle a fair bit of current, I updated the driver circuit (Figure 1) by adding a diode across the output terminal; this will let the board handle inductive loads, too. The real trick, though, was squeezing 12 of these circuits onto a standard Propeller Platform module and running power traces on the top and bottom of the PCB (printed circuit board) to increase current capability of the board. That said, the total current should be limited to 5A and only if power is coming in on TB13 (when power is "borrowed" from the Propeller Platform, the connections/ traces from the P/P to the driver board cannot carry that much current).

Figure 2 shows a completed board (with 12V test LEDs attached). Yes, it’s pretty busy and will take a little patience to build; just take your time with the components and start with the shortest (resistors) and work your way up to the tallest (TIP125s). As suggested above, TB13 is available when you need to control a lot of power. You can also power the Propeller Platform from TB13—there are power jumpers to the VIN headers that need to be installed for this. Note, though, that the power switch on the Propeller Platform is bypassed when power from TB13 is shared through these jumpers.

With the little room I had left, I squeezed two simple circuits onto the board. The first (shown in Figure 3) is a simple pushbutton and normally open, dry contact input. As with the output circuit above, there is a pull-down on the I/O pin (that is part of a SIP package). The pull-down is especially important on the output circuits to hold the outputs off while the Propeller is in reset and the I/Os are floating.

The other circuit I added is a TTL serial port shown in Figure 4. The 2.2K resistor in the RX line allows 5V systems...
to be connected without problems; this header can also be used with a standard IR sensor for remote control. (I did this with the "rocket man" prop — it was fun!)

Oh! Before I forget, there is one final note on assembly: The 10K SIPs are intended to go on the bottom side of the board (Figure 5); this keeps them clear of any wiring entering the terminal blocks.

ELECTRONIC MENORAH REDUX

With 12 channels of control at our disposal and a holiday season just begging for cool lighting projects, let's jump right in — it's just a small matter of programming, right? First up is a do-over of a BASIC Stamp program that I wrote for my column four years ago: an electronic Menorah.

With the BASIC Stamp version, we used a capacitor on the output to smooth a random pulse to the LED to [well, sort of] mimic the flame effect. With the power of the Propeller, we don't need to do that any more, and we can get more realism to boot. In the October '10 issue of Nuts & Volts, there is an article that shows how to simulate candle flames with the Propeller; we're going to borrow some of that code and build the Menorah program from it.

In the BASIC Stamp version, we simply turned it on and it would light the candles for the current day (which was incremented at each power-on cycle and stored in the EEPROM). This meant that you had to light it on the first day and not miss any days in between. For the update, I wanted an easy way to select the day at random and to allow manual control over lighting each "candle."

While watching my test LEDs flicker, I remembered a program that I wrote in 1995 for a BASIC Stamp 1 user. He was a pilot and owned a small airstrip. What he asked me to create was a program that could count the number of microphone "clicks" coming through his air-to-ground radio system. The clicks count would be used to activate a relay to turn on the runway lights. The idea was to look for a specific number of clicks in a defined timeframe so that standard radio communications would not trip the circuit.

In case you're wondering, yes, it worked. We used a 555 to one-shot the audio pulse which allowed the BASIC Stamp 1 to detect it. With the Propeller, we can do the same thing in software.

Since the Power 12 module has a button on it, this seemed like a good way to go; we can start the sequence (indicated by a lit Shamash candle) by pressing in the current day (1 to 8), and then subsequent presses will light the next candle. By using the secondary presses, the ceremonial blessings can be recited between each candle. (Please note: I am not Jewish and do not know if an electronic Menorah is valid for the Hanukkah ceremony.)
Please consult with your Rabbi if you have any concerns in this regard.

I actually developed two helper routines for the button input. The first simply debounces a specified input pin for a number of milliseconds; if the button is pressed through the entire cycle, then it is considered good. Here's that bit of code:

```cpp
pub getbutton(pin, dbtime) | db, t
  dira[pin] := 0
  db := 0
  t := cnt
  repeat dbtime
    waitcnt(t += MS_001)
    if (BTN_MODE == ACTIVE_HIGH)
      db += ina[pin]
    else
      db += !ina[pin] & %1
  return (db == dbtime)
```

We start by forcing the desired pin to an input state and clearing a variable that will count the number of active cycles through the loop; if the active cycles match the specified debounce time, then the button is considered pressed.

Within the loop, we wait one millisecond (synchronized, so as not to add too much overhead for long debounce periods) and then add the state of the input to the counter. Note that the code can accommodate active-high and active-low inputs. In my experience, the buttons on a given project tend to use the same active state so I set that state (BTN_MODE) in the constants section.

At the end of the loop, we return true or false depending on whether or not the button remained pressed through the entire cycle. This code is very modular and provides a fixed delay that we will use in the following method:

```cpp
pub getcount(pin, cmax) | count, idle
  count := 0
  idle := 0
  repeat
    if (getbutton(pin, 50) == true)
      repeat
        until (getbutton(pin, 50) == false)
        count += 1
      idle := 0
    else
      idle += 50
    if (count == cmax)
      quit
    if (count > 0) and (idle >= 1000)
      quit
  return count
```

Again, the purpose of this method is to count the number of presses on the target input pin, up to a specified maximum. It uses the getbutton() method to scan the pin and create internal timing.

At the top, we clear the button count and idle timer variables. When a button press is detected, the code waits for it to be released, increments the count, and then resets the idle timer. If there is no button press, then the idle timer is incremented by 50 since that is the timing used with getbutton().

There are two ways to return from this method: 1) The maximum button count is reached, or 2) There is a non-zero count and the button has been left idle for at least one second (1,000 ms). I considered passing the maximum idle time as a parameter, but it really didn't seem to be worth doing. I spent a lot of time playing with this method and it works quite well. That said, you may need to fine-tune it for different buttons as some are easier to press than others.

Now we can create the working Menorah code:

```cpp
pub main | day, level
  leds.init(360)
  bytefill(@wicks, 0, 12)
  cognew(flicker(9), @stack)
```

At the top, we initialize an object called leds — this is a 12-channel BAM driver that is set up especially for the Power 12 PCB, so the only thing we have to specify is the desired modulation frequency. The next step clears the array called wicks that will hold our candle brightness values. Finally, we launch the candle flicker generator into its own cog using cognew (this is discussed in detail in the October '10 issue).

The next step is to get the day number from the user and then light the Shamash ("helper") candle:

```cpp
day := getcount(TRIG, 8)
repeat level from 0 to 255
  wicks[8] := level
  pause(6)
if (--day == 0)
  quit
```

The current day in entered with the getcount() method which — for a Menorah — is limited to eight. After returning from getcount(), we light the Shamash candle which is on channel nine (P8) of the Power 12 board. A six millisecond delay between each brightness level causes the "candle" to be fully lit in about a second and a half.

The next step is to light each candle in order, starting with the current day. A button press is required for each candle so that there is time for the recitation of blessings between each:

```cpp
repeat
  pause(1000)
  repeat
    until (getbutton(TRIG, 50) == true)
    repeat level from 0 to 255
      wicks[day-1] := level
  pause(6)
  if (--day == 0)
    quit
```

Within the loop, we allow the last candle to "burn" at least one second before scanning the button for a new press. When this is detected, the candle for the day is "lit"
just as we did above. The day indicator is then decremented to point to the next candle. When all are lit, we can quit the repeat loop.

The last step is to wait for one more press — this time, to extinguish the candles. While I found a lot of good information regarding the lighting sequence of the Menorah, I never came across anything having to do with extinguishing the candles. This routine, then, will very slowly dim all at the same time:

```spin
repeat
  until (getbutton(TRIG, 250) == true)
  repeat level from 255 to 0
    repeat day from 8 to 0
      if (wicks[day] > 0)
        wicks[day] := level
    pause(24)
  ++day
else
  repeat level from 255 to 0
    repeat day from 6 to 0
      if (wicks[day] > 0)
        wicks[day] := level
    pause(24)
  quit
```

Note that we require a longer button press to extinguish the candles. This is by design to prevent an accidental bump of the button from extinguishing them too early. Note, too, that the loop timing for the fade-out is longer to create a nice, slow fade-out.

So, there you have it: a Propeller powered electronic Menorah. I think you'll find the code easy to modify and the candle simulation is far nicer than the old RC circuit. You can find the complete program in the downloads package as jm_pp12_menorah.spin.

THE KWANZAA KINARA

Before we move on, there is another, multi-day holiday celebration that uses a special candelabra: Kwanzaa. Those that celebrate Kwanzaa light the Kinara which has seven candles (one for each day). Since the Kinara candles are lit in ascending order each day, the code is a little simpler.

That said, I employed a little trick in this program to show you how to re-map outputs when they are not in the desired order. Let's say, for example, that we built a beautiful electronic Kinara and wired it with the outputs connected to each candle, moving left to right, in ascending order, like this:

```
1 2 3 4 5 6 7
```

The problem is that the Kinara candles are lit in this order:

```
2 4 6 1 7 5 3
```

In the event we can't (or don't want to) rewire the project, we can re-map the outputs with a simple table in Spin. Here's a little table I created to remap the (zero-indexed) day to the physical channel output on the board:

<table>
<thead>
<tr>
<th>dat kinara</th>
<th>byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>kinara</td>
<td>3, 0, 6, 1, 5, 2, 4</td>
</tr>
</tbody>
</table>

On the first day (0), we will light the center candle (black) which is connected to P3. On the second day, we will light the outermost red candle which is connected to P0. The map should now make sense.

Here's the core code for the Kinara:

```spin
repeat
  repeat until (getbutton(TRIG, 100) == true)
    repeat level from 0 to 255
      wicks[idx] := level
    pause(6)
  ++day
else
  repeat level from 255 to 0
    repeat day from 6 to 0
      if (wicks[day] > 0)
        wicks[day] := level
    pause(24)
  quit
```

At the top, we have a little trickery concerning the button input. Since the Kinara candles are lit in ascending order and always start with the central candle, the program doesn't know what day it is — we tell it with each new press. What we do, then, is scan the button, wait a bit, then check again (note these periods are slightly longer than before). The idea is that a short button press will light the next candle and a long button press will extinguish those that are lit.

You can see that we treat the dat table like a simple array, reading the correct output for the day that we're presently lighting. Easy, right? I think so — and, it's definitely easier than rewiring a project.

See jm_pp12_kinara.spin for the complete, commented listing.

For those that are interested in building a fully functional Menorah or Kinara, I again encourage you to consult the October '10 issue as there are detailed instructions on building candles from LEDs and items that you can pick up at any hardware store.

PLAYING WITH PROTOCOLS

More and more of those home Christmas displays that I enjoy so much are coming under computer control. I think a good chunk of the credit goes to a nifty bit of freeware called Vixen which was developed and maintained by my friend, KC Oaks.

If you're new to this stuff and really want to dive into the fray, I suggest that you check out www.doityourselfchristmas.com. It's a very active set of forums with many knowledgeable, highly enthusiastic members.

One of the more popular protocols supported by Vixens and a favorite with many DIY Christmas lighting enthusiasts is called Renard, which was created by a gentleman named Phil Short. Most of the code on the 'net for the Renard protocol is PIC-based as that's what Phil uses, though I have seen an implementation done in SX/B.

The Renard system is typically set up such that one
board receives the packet from an upstream device (console or another unit) and uses the bytes intended for this board while retransmitting all others. I believe this design was intended to create a plug-and-play, auto-addressing scheme. You see, each controller is looking for a specific two-byte sequence at the start of its data:

$7E \quad $80 \quad <\text{dimmer data}>

If we had two controllers in the system, we would see something like this from the console:

$7E \quad $80 \quad <\text{aaaaaaaa}> \quad $7E \quad $81 \quad <\text{bbbbbbbb}>

In the Renard system, the packet that follows $80 is consumed locally and not retransmitted. When the second address byte is ($81) received by the first controller, it is decremented to $80 which enables the second packet for the second controller. Downstream of the first controller, the stream above becomes:

$7E \quad $80 \quad $7E \quad $80 \quad <\text{bbbbbbbb}>

As you can see, the first packet of dimmer values is removed and the second address is decremented such that it will be recognized by the second device in the chain. The second device isn't bothered by the missing packet data; the new SYNC byte that follows the address byte resets everything internally.

With the large base of users, one can only assume that the system has proven itself. My question became, can I create a half-duplex (receive-only) device that would work with the protocol? I think the answer is yes and I'm going to show you what I did. From my view of the world, the Renard protocol has three major states:

- Wait for sync byte ($7E$)
- Wait for address byte ($8x$)
- Process packet bytes

To send the SYNC value as a dimmer level, it gets encoded as two bytes: $7F, 30$. What this means, then, is that we need two-byte encoding for a $7F$ (ESC) dimmer level — that would be $7F, 31$. Finally, there is a "pad" byte that may be sent by the console that is ignored by the Renard device. To use the PAD value ($7D$) in the dimmer packet, it gets encoded as $7F, 2F$.

Okay, then, let's give it a whirl. For most serial applications, we can use the FullDuplexSerial object to do the heavy lifting. Yes, we only need half duplex (reception) for this project but FDS is still just fine. To set up FDS, we will typically do something like this:

```c
console.start(RX1, TX1, %0000, 115_200)
```

The serial object is called "console" and we're going to receive at 115.2K baud on pin RX1 (the programming port to make testing easy). The third parameter is the mode; in this case, we're going with the standard true mode which works with RS-485 devices, as well as USB-serial devices like the Prop-Plug and the USB2SER.

And now for the fun! What I did is set up a simple state handler to accommodate the rules defined for the Renard protocol. Again, my code is just a "sniffer" (that is, it doesn't retransmit anything) so it will be looking for an address that could be something higher than $80 (which it must be if there are standard Renard devices in use on the same buss):

```c
console.rxflush
state := W_SYNC
chan := 0
repeat
  cmd := console.rx
  case state
  W_SYNC : if (cmd == SYNC)
    state := W_ADDR
  W_ADDR : if (cmd == PAD)
    ' ignore
  elseif (cmd == SYNC)
    ' no change
  elseif (cmd == ADDR)
    state := W_LVL1
    chan := 0
  else
    state := W_SYNC
  end
end
```

This is the basic setup and handling of the first state. The receive buffer gets flushed after the serial object is started just to make sure that there's no garbage in it. After initializing the `state` and `chan` variables (which are local to the method therefore must be manually initialized), we drop into a `repeat` loop that will execute the state handler.

At the top of the loop, we receive a byte from the console and drop into a `case` structure. The first task is to look for the SYNC byte. When that happens, we can advance the state to look for the address byte that matches our board:

```c
W_ADDR : if (cmd == PAD)
  ' ignore
elseif (cmd == SYNC)
  ' no change
elseif (cmd == ADDR)
  state := W_LVL1
  chan := 0
else
  state := W_SYNC
end
```

In the W_ADDR state, the program is waiting for the address byte, but other values could arrive and we need to handle them. If a PAD ($7D$) byte or another SYNC byte arrives, there is no change in state. If the correct
address byte arrives, then the state is bumped to start reading dimmer values from the stream and the channel pointer is reset to zero. If any other value arrives, we reset the handler and wait for the next SYNC byte:

```spin
W_LVL1 : if (cmd == PAD)
    ignore it
elseif (cmd == SYNC)
    state := W_ADDR
elseif (cmd == ESC)
    state := W_LVL2
else
    leds.set(chan, cmd)
    if (++chan == CHANNELS)
        state := W_SYNC
In most cases, the packet will arrive very cleanly but, as we did above, we need to handle any exceptions, as well. If a PAD byte comes, we ignore it. If a new SYNC byte shows up, then we reset the state processor to look for the board address. If an ESC byte arrives, then the channel value is encoded as two bytes and we update the state handler to process the second byte.

Finally, if none of that happens, we simply take the new byte as the current channel value. After updating the dimmer, the channel count is incremented and when we’ve reached the limit for this board, the state is reset to start the process for the next packet.

For those dimmer values that are encoded with two bytes, the W_LVL2 state handles the second byte and updates the dimmer channel:

```spin
W_LVL2 : if (cmd => $2F) and (cmd <= $31)
 cmd := $7D + (cmd-$2F)
 leds.set(chan, cmd)
 if (++chan == CHANNELS)
 state := W_SYNC
elseif (cmd == SYNC)
 state := W_ADDR
else
 state := W_SYNC
If the second byte is in the correct range ($2F to $31), the dimmer value is calculated and the LED channel is updated. As above, the channel count is checked and if the value just received is for the last channel, the state processor is reset.

If we happen to get a "broken" packet and a new SYNC byte shows up, we go back to looking for the address byte. Otherwise, we go back to looking for the next SYNC byte.

Whew! I know that reading about that process probably makes it seem more difficult than it is. Once you see the full listing (in jm_pp12_renard_ez.spin), it will be easier to grasp. Does it work? Absolutely! And, I blasted packets at it all day long at 115.2K baud (most Renard systems run at 57.6K or slower). Figure 6 shows my Vixen test pattern that I sent to the board during testing. Every time I looked in on it, the pattern was happily running on the LEDs, so the trouble we took to make the state handler robust seems to have paid off.
Vixen supports a lot of interesting protocols and with the flexibility of Spin, it will be worth investigating more of them — but let's save that for another time, shall we? Since we could add two half-duplex ports to the Propeller Platform using the Gadget Gangster Prototyping board, it might be fun to create a traditional Propeller-based Renard device that handles the pass-through. Are you up to it? Of course you are, and I'll probably try it myself down the road.

For now, though, since this is my last column of the year, let me wish you and yours the very best for this holiday season and the coming new year. I am grateful to get to share my experiments in Nuts & Volts and sincerely appreciate Robin, Larry, and all the nice folks I interact with at T & L Publications, Inc.

Of course, I must also thank my friends at Parallax (that started for me with a BASIC Stamp 1 some 16 years ago), my colleague, John Barrowman, and, finally, my wonderfully supportive friends and family. May God bless you all.

Until next time, light up your life and keep spinning and winning with the Propeller! NV
A Physics professor planned to illustrate a lecture with demonstrations of how light can be intercepted by certain phosphors or various optoelectronic sensors and transformed into entirely new light. He wanted an ultra-simple demonstration of how an LED would glow when biased by a forward current provided by a suitable sensor. He rummaged through his optoelectronic drawer and found two silicon solar cells, several cadmium sulfide photo resistors, a couple of AlGaAs red LEDs, some silicon phototransistors and half a dozen silicon photodiodes. In his parts cabinet he found some transistors, miniature chokes and assorted resistors and capacitors. How did he combine the smallest number of components to do what the phosphor card did?

Go to www.Jameco.com/search8 to see if you are correct.
Get Ready For The Holidays With a Ramsey Kit!

Digital Controlled FM Stereo Transmitters

- PLL synthesized for drift free operation
- Front panel digital control and display of all settings and parameters
- Professional metal case for noise-free operation
- EMI filtering on audio and power inputs
- Super audio quality, rivals commercial broadcasts
- Available in domestic kit or factory assembled export versions

For nearly a decade we’ve been the leader in hobbyist FM radio transmitters. We told our engineers we wanted a new technology transmitter that would provide FM100 series quality without the advanced mixer features. They took it as a challenge and designed not one, but TWO transmitters!

The FM30B is designed using through-hole technology and components and is available only as a do-it-yourself kit with a 25mW output very similar to our FM25 series. Then the engineers redesigned their brand-new design using surface mount technology (SMT) for a very special factory assembled and tested FM35WT version with 1W output for our export only market!

Both the FM30B and FM35WT operate on 13.8 to 16VDC and include a 15VDC plug-in power supply. The stylish black metal case measures 5.55”W x 6.45”D x 1.5”H. (Note: After assembly of this do-it-yourself hobby kit, the user is responsible for complying with all FCC rules & regulations within the US, or any regulations of their respective governing body. FM355WT is for export use and can only be shipped to locations outside the continental US or valid APO/FPO addresses or valid custom brokers for end delivery outside the continental US.)

The FM35BWT Digital FM Stereo Transmitter, Assembled, 0-1W, Black (Export ONLY) $299.95

Electrocardiogram ECG Heart Monitor

- Visible and audible display of your heart rhythm
- Bright LED “Beat” indicator for easy viewing
- Re-usable hospital grade sensors included
- Monitor output for professional scope display
- Simple and safe 9V battery operation

Use the ECG1 to astound your physician with your knowledge of ECG/EKG systems. Enjoy learning about the inner workings of the heart while, at the same time, covering the stage-by-stage electronic circuit theory used in the kit to monitor it. The documentation with the ECG1 C covers everything from the circuit description of the kit to the circuit description of the heart! Multiple “beat” indicators include a bright front panel LED that flashes with the actions of the heart along with an adjustable level audio speaker output that supports both mono and stereo hook-ups. In addition, a monitor output is provided to connect to any standard oscilloscope to view the traditional style ECG/EKG waveforms just like you see on ER... or in the ER! 10 hospital grade re-usable probe patches are included together with the matching custom case set shown. Safe 9V battery operation.

ECG1C Electrocardiogram Heart Monitor Kit With Case & Patches $44.95
ECG1WT Electrocardiogram Heart Monitor, Factory Assembled & Tested $89.95
ECGP10 Electrocardiogram Re-Usable Probe Patches, 10-Pack $7.95

Digital Voice Changer

This voice changer kit is a riot! Just like the expensive units you hear the DJ’s use, it changes your voice with a multitude of effects! You can sound just like a robot, you can even ad libbuto the voice! 1.5W speaker output plus a line level output! Runs on a standard 9V battery.

MK171 Voice Changer Kit $14.95

Steam Engine & Whistle

Simulates the sound of a vintage steam engine locomotive and whistle! Also provides variable “engine speed” as well as volume, and at the touch of a button the steam whistle blows! Includes speaker. Runs on a standard 9V battery.

MK134 Steam Engine & Whistle Kit $11.95

Liquid Level Controller

Not just an alarm, but gives you a LED display of low, middle, or high levels! You can also set it to sound an alarm at the high or low condition. Provides a 2A 240VAC rated relay outputs. Runs on 12-14VAC or 16-18VDC.

K2639 Liquid Level Controller Kit $23.95

Laser Trip Sensor Alarm

True laser protector over 500 yards! At last within the reach of the hobbyist, this neat kit uses a standard laser pointer (sold separately) to provide both audible and visual alert! Safety-rated, 5A relay makes it simple to interface! Breakaway board to separate sections.

LTS1 Laser Trip Sensor Alarm Kit $29.95

Follow Us and SAVE $$

Follow us on your favorite network site and look for a lot of super deals posted frequently... exclusively for our followers!
Learn and build! 130, 200, 300, & 500 in one labs! Integrated circuit AM/FM radio lab! The famous RF preamp that's been written up in the radio & electronics magazines. This little board preamp covers 100 KHz to 1000 MHz! Unconditionally stable gain is greater than 16dB while noise is less than 4dB! 50-75 ohm input. Runs on 12-15 VDC.

SA7 RF Preamp Kit $19.95

Mad Blaster Warble Alarm If you need to simply get attention, the “Mad Blaster” is the answer, producing a LOUD shattering raucous racket! Super for car and home alarms as well. Drives any speaker. Runs on 9-12VDC.

MB1 Mad Blaster Warble Alarm Kit $9.95

Touch Switch Touch on, touch off, or momentary touch hold, it’s your choice with this little touch switch! Great fun for your desk, website, or anywhere else! Actually includes TWO totally separate touch circuits on the board! Drives any low voltage load up to 100mA. Runs on 6-12 VDC.

TS1 Touch Switch Kit $9.95

Laser Light Show Just like the big concerts, you can impress your friends with your own laser light show! Audio input modulates the laser display to your favorite music! Adjustable pattern & speed. Runs on 6-12 VDC.

LLS1 Laser Light Show Kit $49.95

USB DMX Interface Control DMX fixtures with your PC via USB! Controls up to 512 DMX channels each with 256 different levels! Uses standard XLR cables. Multiple fixtures can be daisy chained. Includes Light Player software for easy control. Runs on USB or 9V power.

K8062 USB DMX Interface Controller Kit $67.95

Tickle-Stick Shock器 The kit has a pulsing 80 volt tickle output and a mischievous blinking LED. AND it can be remotely operated! Includes Tickle Stick Kit $12.95

Electronic Watch Dog A barking dog on a PC board! And you don’t have to feed it! Generates 2 different selectable barking dog sounds. Plus a built-in mic so you can record any barking sound you wish and it talks when it hears it! Adjustable sensitivity! Unlike my Saint, eats 2-BVC or 9-12VDC, it’s not fussy!

K2655 Electronic Watch Dog Kit $39.95

Get the latest Ramsey Hobby Catalog! 96 value packed pages of the newest goodies around! Order yours today on line or give us a call... Or download the PDF at www.ramseykits.com/catalog!
ATTIC FAN CONTROL

Q I have two separate attic exhaust fans (they run on 110 volts AC). Each fan has its own thermostat. The thermostats are very inaccurate and difficult to synchronize. I would like to set up a single, more accurate thermostat that would control both fans so that they will turn on and off at the same time. I have thought of using a furnace thermostat and some sort of relay, but I am not sure how to set this up. Can you make any suggestions?

— Guy Fischetti

A Home thermostats are designed for 24 VAC and low current, so you will need a relay (see Figure 1). In the parts list, the transformer has quick-connect terminals (faston), but you can find similar transformers at the local hardware store. I would not buy the universal 240/120 VAC type because the wire is smaller and less reliable. The thermostat will also be available at the hardware store; the round Honeywell type is what I have in mind. The Panasonic relay can be mounted with two screws on any flat surface and the contacts are quick-connect terminals.

MICRO HELP

Q I have a piece of equipment that uses a Motorola 68HC711E9 micro which has some programming burned in. I want to copy out the program and purchase a few spares. I’ve looked at some stuff on the market but I’d like some help if you don’t mind; I want to keep it simple and cheap but accomplish the task. Thank you in advance for some advice/help.

— Michael Shelton

A I am an analog engineer; I would expect you to know more about this than me. However, I looked up the datasheet and see that there is no provision for copy protection, so it should be easy. I found the EVB Plus2 development board for $189 that should do the job. If you can program an EPROM, the info at www.dataman.com/WebPages/Support/S4/SupportS4ProgrammingThe68HC711.aspx should be helpful.

Feedback from Michael: I did

ATTIC FAN CONTROL

Q I have two separate attic exhaust fans (they run on 110 volts AC). Each fan has its own thermostat. The thermostats are very inaccurate and difficult to synchronize. I would like to set up a single, more accurate thermostat that would control both fans so that they will turn on and off at the same time. I have thought of using a furnace thermostat and some sort of relay, but I am not sure how to set this up. Can you make any suggestions?

— Guy Fischetti

A Home thermostats are designed for 24 VAC and low current, so you will need a relay (see Figure 1). In the parts list, the transformer has quick-connect terminals (faston), but you can find similar transformers at the local hardware store. I would not buy the universal 240/120 VAC type because the wire is smaller and less reliable. The thermostat will also be available at the hardware store; the round Honeywell type is what I have in mind. The Panasonic relay can be mounted with two screws on any flat surface and the contacts are quick-connect terminals.

MICRO HELP

Q I have a piece of equipment that uses a Motorola 68HC711E9 micro which has some programming burned in. I want to copy out the program and purchase a few spares. I’ve looked at some stuff on the market but I’d like some help if you don’t mind; I want to keep it simple and cheap but accomplish the task. Thank you in advance for some advice/help.

— Michael Shelton

A I am an analog engineer; I would expect you to know more about this than me. However, I looked up the datasheet and see that there is no provision for copy protection, so it should be easy. I found the EVB Plus2 development board for $189 that should do the job. If you can program an EPROM, the info at www.dataman.com/WebPages/Support/S4/SupportS4ProgrammingThe68HC711.aspx should be helpful.

Feedback from Michael: I did
some searching before I got your reply. After some exchanged emails, etc., I bought one just for the 68 series 52 pin from Tech-Arts in Canada (www.technologicalarts.ca) for $32. With the software link to download and furnish a 12V ext supply to program, he said it would more than meet my needs.

TIMER PROJECT

I need a variable ratio timer set-up so that as you increase the relay ON time, you automatically reduce the OFF time. The cycle should repeat until the timer is turned off. It needs to be set up using one potentiometer to adjust the time periods. The complete cycle is about one minute and should operate from a 12-volt DC automobile battery.

I have been successful in setting up two timers for this purpose, but it requires adjusting two potentiometers.

As with a lot of your readers, the first place I go when a new issue of *Nuts & Volts* comes in is "Q & A," trying to solve problems of others and to learn more. I enjoy your magazine; lots of it is way over my head, but slowly I am learning. I am only 70, so I still have some time left to experiment and learn.

— Morris Sandlin

I first thought of using the SN74LS292 programmable frequency divider until I discovered that it costs $14+ each. It would have been neat because of digital precision which would eliminate the possibility of accidentally making the pulse width greater than the period (which results in a narrow pulse instead of a wide one). I decided to go with a less expensive circuit (see Figure 2).

I used the CD4060B frequency divider which has a provision for a built-in R-C oscillator but it won't

TIMER PROJECT PARTS LIST

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>MOUSER PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTORS</td>
<td>METAL FILM, 1/4W, 1%, AXIAL</td>
<td>271-VALUE-RC</td>
</tr>
<tr>
<td>R6</td>
<td>1 MEG POT, 1/8W</td>
<td>31VC601-F</td>
</tr>
<tr>
<td>R7</td>
<td>TRIMPOT, 20K, 1/8W</td>
<td>81-PV37W203C01B00</td>
</tr>
<tr>
<td>C1, C3</td>
<td>.01 μF, 100V, 5%</td>
<td>505-MKP20.01/100/5</td>
</tr>
<tr>
<td>C2</td>
<td>.1 μF, 100V, 5%</td>
<td>505-MKP20.1/100/5</td>
</tr>
<tr>
<td>C4</td>
<td>100 μF, 35V, ALUMINIUM</td>
<td>140-XAL35V100-RC</td>
</tr>
<tr>
<td>IC1, IC2</td>
<td>555 TIMER, 8-PIN DIP</td>
<td>512-LM55CN</td>
</tr>
<tr>
<td>IC3</td>
<td>DUAL D FLIP-FLOP, CD4013</td>
<td>595-CD4013BE</td>
</tr>
<tr>
<td>IC4, IC5</td>
<td>14 STAGE COUNTER, CD4060</td>
<td>595-CD4060BE</td>
</tr>
<tr>
<td>IC6, IC7</td>
<td>QUAD 2 INPUT NOR, CD4001</td>
<td>595-CD4001BE</td>
</tr>
<tr>
<td>VR1</td>
<td>22V, 43V @5A</td>
<td>650-ROV10-220L-S</td>
</tr>
<tr>
<td>D1</td>
<td>400V, 1A, 1N4004</td>
<td>512-1N4004</td>
</tr>
<tr>
<td>D2</td>
<td>ZENER, 15V, 1W, DO-41</td>
<td>78-1N4744A</td>
</tr>
<tr>
<td>Q1</td>
<td>NFET, 60V, 300 mA</td>
<td>512-BS170</td>
</tr>
<tr>
<td>K1</td>
<td>AUTOMOTIVE RELAY, 12V</td>
<td>653-G8JN1C7TMFRDC12</td>
</tr>
</tbody>
</table>
work over the wide range that I need. That is why the 555 oscillators were used. With 14 stages, the 4,060 divides by 16,384 but I am only using half the period. The output is initially low and goes high after 8,192 clock pulses. When the output goes high, it feeds back and resets itself to start another time period. There is a power-on reset through C2 which resets all the flip-flops. The parts list is Figure 3.

The variable time (R6) is less than one second to almost 60 seconds. If the variable time exceeds the fixed time, the pulse width is the difference which will be very small; you may want to tweak R4 and R5 but don't make R5 less than 1K because when R6 is zero, the discharge transistor has to pull current through R5. The only reason for R2 and R4 is to make the 555 output pulse wide enough that you can see it on an oscilloscope.

The components VR1, R1, D2, and C4 are to protect the circuit from the transients of the automotive system which can reach 60 volts or more.

SEVEN-SEGMENT LED HELP

Q I have a whole box of seven-segment LEDs of assorted sizes. Some are multiple character; some have decimal points. They go from 14 pins up to many pins. Some are common anode, some common cathode. I haven't been able to find the pinouts anywhere on the Internet for LEDs in general. I think it would be good if you could tell us where to look to get that info. Or better still, how to test to find out where the segments are for each character and whether it's a CA or CC.

I tried this: Set bench power supply to 1.5 VDC. Connect one probe to any pin. Run the other probe along the remaining pins until something lights. If not, swap the probes and do it again. One of the two pins must be the common. Then, determine which is which. Then, identify the segments pin by pin. For some reason, this doesn't always work. There must be a better way as many of these are made in China or some place like that and there is no datasheet available or it's in a foreign language. Help bail out us “duffers.”

— C. P. Furney, Jr.

A A Mouser or Digi-Key catalog may be helpful. Find a similar device and download the datasheet, then check if the pinout of your device is the same. Otherwise, I don't know of any method better than what you have done. However, I would use a five-volt supply with 1K in series to limit the current; 1.5 volts would not light up some colored LEDs.

LED FLASHER AND BEEPER

Q I’d like to modify a 9 VDC LED flasher diagram by adding a mini-beeper to ‘beep’ in tandem with the LED; also, I’d like to add a 5K (or other value) variable resistor to select the speed from ‘fast’ to ‘slow’ to beep and flash in tandem.

Lastly, I would like a second schematic that would do everything just as above but be powered from a 3 VDC source. Thus, incorporate a CMOS 555 timer instead! Can you please help with these two schematics?

— Michael Williams

A Only one schematic is needed because the LMC555 will operate from 3V to 12V. In Figure 4, R5 varies the speed from fast to slow and R1 sets the maximum speed. Changing speed also changes the duty cycle so you don't want to go too fast because the beep and blink will get very short. You could fix R3 at 390 ohms, and the brightness of the LED will vary with supply voltage. You could use the SBZ-204 buzzer; I didn't because I did not know where you found it.

MAILBAG

I have an old OrCad package that works wonderfully for electronic schematics, but for a general-purpose, all around drafting package that can do mechanical or architectural drawings, electrical schematics, and flowcharts, I suggest TurboCad. Version 16 is available from Internet sites for under $80 plus shipping and tax (if any). It has a huge library of shapes for all purposes and it comes with a tutorial.

— Peter A. Goodwin

I have used AutoCAD LT with a Via Schematic plug-in but it is cost-prohibitive — about $2,000 a few years ago. However, I think I have an excellent choice for the flow-charting
Mailbag Continued ...

software. I use Raptor at college (ITT-Technical Institute) and it is available at http://raptor.martinCarlisle.com. Best of all, it's free and really small.

— Joseph Fulton

While reading the question, I realized that I had already solved the problem. Two years ago, I had purchased a 24 hour single setting timer for about $4. (Some single set timers were twice as expensive.) The timer can turn the outlet on and off once in 24 hours in 15 minute increments. I changed the internal wiring so that the motor is also cut off at 0 hours. I glued a paper scale marked with 0 to 23 hours on the face. Both the outlet and motor are turned off when the timer reaches 0.

I have been using the timer for recharging batteries. I used to forget to turn off the charger, but not any more.

— Anonymous

Dear Russell: Re: Mystery Component, July '10, Page 25.

I believe the mystery component Jon Carter is referring to is a thermal fuse. If it is a 1/4" x 1" cylindrical metal part with one pointy end, that is what it is. We have run into these many times embedded in transformers. One brand is MICROTEMP, made by THERM-O-DISC. If there is a dead short, these act like a fuse and open immediately. If they get over their rated temperature, they act like a thermostat, but do NOT recover.

— Warren Cook

Response: Thanks for the feedback, Warren.

In your column, a person asked about a mystery component in a microwave oven. The component inside the transformer is a thermal fuse. It blows under two conditions: over current and over temperature. If this fuse is blown, the transformer is considered bad. I used to repair microwave ovens and the only way to get this transformer is to buy a new timer unit. Putting any part in there will compromise the UL safety.

— Randy Carter

Response: Thanks for the feedback, Randy. I would forward your comments to Jon Carter if I could find the original email!

According to the Hammond transformer website — www.hammondmfg.com/pdf5c007.pdf — IDC output = .62 x IAC for a FWB with cap input power supply. That means that their 3.8 amp transformer will only produce an output of 2.3 amps DC when used in your circuit.

— Mike Eck

Response: Thanks for the feedback, Mike. You are right, that transformer will overheat if loaded to three amps. Your comment brought to my mind the question: How much inductance — in series with the rectifiers — will produce a continuous current such that full VA rating applies? Trial and error simulation indicates that 5 mH will do it but I can’t find an inductor rated 5 mH at three amps. One could connect seven 680 uH inductors in series (Mouser PN 542-2322-V-RC) if you want to do it.

Dear Russell: Timer, July ’10, Page 25.

Thank you for your suggestion for building a two-hour timer. I am enclosing some pictures which I took of the finished units (Figures A and B); two were made. Your circuit was used almost exactly as you presented it except that I omitted the trimpot. I used a larger series resistor (560K) paralleled with one determined using a decade box.

The units as originally built controlled the AC line using a 4015L2 thyristor/MOC3020 solid-state relay combination. However, I found that the power was not being turned off with the very small load of a small “wall-wart.” The voltage dropped to only 65 volts! Only then did I think to check the specs of the 4015L2; the minimum current is listed at 0.8A! One of those obscure facts you learn with experience. As you can see in the pictures, a relay was substituted.

Since only two were required, the circuit was assembled on a Vero board rather than an etched one. The timing capacitor was metallized polyester rather than an electrolytic for long-term reliability. I thought that you might like to see how one of your “babies” turned out. Once again, thanks.
Mailbag Continued ... — Bill Woods

Response: Thanks for the feedback, Bill; you did a great job.

Dear Russell: Re: Video Switch Code, August ’10, Page 24.

It seems to me that the code as printed in the magazine will not work. Since you say you breadboarded it and it works, then I presume there is a misprint or an older nonworking version was printed. Basically the code around the label HOLD: will not work as desired.

It is coded (as printed) as a single if statement that will update the outputs (GPIO = Y) if the button is not pushed, but will then continue past the endif statement to the next J and continue to cycle through all four inputs; it will then fall through the next J into the cycle LOOP:. This code will not stop on one video input. I believe the code should be.

```plaintext
GPIO = Y  ' output the calculated pattern
HOLD:    IF GPIO.3 Then HOLD
         ' stay here till button is pushed.

Judging from your HOLD label, I assume you wanted the code to hold here till it sees a button push. Probably something got lost in the printing. Also, why are some words in BOLD and later in the LOOP code none are bold? I also feel that your handling of the button pushing could be better. There is, of course, the problem of bounce which I will ignore for now. These little machines are fast and basically will be in either pause mode or a button checking loop like the above “if statement” all the time. The way your loop code is written (with the 1/2 second pauses in the timing loops then checking for the button) means that you may have to hold the button down for 1/2 second or slightly longer to even be detected. If one should push the button while in the 1/2 second pause and let go of the button before the pause is over, then the button push will never be detected. If you hold it too long, you may go past the one second pause you use to give “time to get your finger off the button.” I would recommend a smaller time interval in the pause used in the button checking timing loops; maybe a tenth of a second. Also, rather than pause an arbitrary one second after detecting the push, you could actually look for the button release ... code similar to the HOLD code above looping on itself till a button is released would work nicely no matter how long someone pushed the buttons. I presume your system is very touchy as to how long buttons must be pushed and held down till released. It looks to me like the pause 1000 code for button release came out as a quick solution to problems during your debugging stages. Since your application uses a momentary push to cycle through software options, a mechanism to
detect a complete cycle from push to release could be used before entering the code to be acted upon.

Contact bounce, of course, brings in its own little problems that can be solved either with hardware or in software. For those not familiar with contact bounce, it is the mechanical “bounce” of the metal contacts as they first hit until they settle down in a continuous closed contact. Computers are fast enough to see this as several closing and opening cycles of the switch. If not compensated for, software will be all over the place when one intention is a single event. In software, one would detect the first contact closure, wait a short time for bounce to stop, then if desired, wait for the first nonclosure, and again a short debounce delay, and then continue on with code for a momentary pushed button as desired in this project. Other projects may need to operate only as long as the button is closed. Hope this helps someone out there.

Sorry if this got a little long, but there are issues here in real time code that programmers should be aware of if they want their systems to behave as they intended and to interact with humans in a user friendly manner.

— Evan Wasserman

Thanks very much for taking the time to analyze the code. Looking at it now, I don’t understand why it worked (just as I don’t understand why it doesn’t work sometimes). Your suggestion for the HOLD loop is a good one. I should have thought of that. I am aware of the contact bounce problem but figured that the PAUSE 1000 would take care of it. The code could have been better, as you pointed out, but I am still learning. The program that I use (Microcode Studio) automatically puts reserved words in bold.

Dear Russell: Re: Irrigation Timer August ’10, Page 22.

I always read your column with great interest. I was wondering whether the circuit needs to be protected from indirect surges. My sprinkler timer (the Champion PR-90) has protection (a MOV) at each terminal block. A ribbon cable runs from each terminal block to the PCB in the controller (a surge will hit the MOV before it hits the solid-state components). There could also be some additional protection on the PCB. Also, the PR-90 sprinkler timer allows the times to be digitally adjusted from 10% to 300% to change watering times depending upon the temperature, humidity, etc. The PR-90 sprinkler timer allows each zone time to be adjusted from 10 seconds to one minute in five second increments; one minute to one hour in one minute increments; and one hour to 12 hours in 10 minute increments which seems adequate to fulfill the needs for the drip irrigation system without any additional circuitry.

— Alan Sciacca

Response: Thanks for the info, Alan. Readers may be interested to know a commercial unit is available.
UNIQUE SYSTEM FOR SURFACE-MOUNT PROTOTYPING WITH SMT PACKAGES

BoardworX — from MX2 Systems Corp. — is a new SMT prototyping system that allows circuit builders to use the latest SMT parts when creating new designs in a convenient and easy to use form. BoardworX utilizes a “universal grid” concept which accommodates mounting of all standard packages available for SMT parts currently available (except BGA) and applies simple point-to-point wiring to achieve a quick prototype circuit. The system removes the delay in layout, fabrication, and delivery of a custom PCB and provides a general platform on which almost any component can be mounted in many orientations. It can be considered “perf board for surface-mount.”

The system consists of a simple grid of pads that is designed to accommodate all pin pitches available on various parts by having the user shift the device around at mounting time to find the best fit, then tacking the part down. This is followed by hand-wiring the interconnects between parts with bare fine wire. The result is a small, tight neat package, utilizing SMT and through-hole parts if desired.

The series currently has four board choices which allow for different construction capabilities. All boards except the SMT-300 have different grid spacing on either side.
of the board for the best fit of components. The SMT-100 is a basic board, 2 x 3 inches, featuring a universal grid on which to mount parts; it’s intended for general prototyping of small to medium sized circuits. The SMT-200 features a set of large pads on the back of the board that can be used as a plane for convenient electrical connection (via holes through the board) or for heatsinking and mounting larger power components. The SMT-300 addresses the SMT and through-hole hybrid designs, combining 100 mil spaced through-holes which border two SMT universal grid areas. Additionally, this board can be used for building custom adapter boards from surface-mount parts for mating to solderless breadboard applications. The SMT-400 is a small mini board (just under one inch square) allowing for small “fix” or daughterboards to be constructed.

**PROPELLER PLATFORM USB**

Eight cores, a custom programming language, and video output make the Parallax Propeller a unique microcontroller. The new Propeller Platform USB makes it easier to develop with it. Based on Jon Williams’ original Propeller platform, the Propeller Platform USB combines a Propeller, USB, and microSDHC on a 2.8” x 2.5” PCB with headers to connect to add-on modules, breadboard, or protoboard. Your own modules can be built with any protoboard, and 15 add-on modules are also available for making games, controlling motors and servos, connecting to the Internet, driving LCD touchscreens, and more. Also handy are its power capabilities; 5V and 3.3V ultra low dropout voltage regulators run up to 1.5A, and you can connect a battery pack or wall adapter. Advanced users will appreciate the replaceable crystal and expanded EEPROM for overclocking and data storage. The Propeller Platform USB is designed and assembled in the USA and is open source. The Propeller Platform USB is a flexible, easy-to-use development tool for the Propeller. Propeller tutorials are available at the website listed here.

For more information, contact: **Gadget Gangster**
The 3D LED cube from Images Scientific is composed of 64 mono-chromatic LEDs arranged in a 4 x 4 x 4 matrix.

LED lights create animated patterns that blink, morph, and change. Four pushbuttons on the bottom of the LED cube allow the user to select the mode, and scroll through the 3D animations available.

The unit starts up in demo mode which automatically cycles through all 29 pre-programmed 3D animation patterns available. Playtime for 29 patterns is six minutes and 30 seconds before the patterns repeat.

Features:
- Pushbutton controls.
- Includes power adapter.
- Dimensions: 3.8” x 3.8” x 4.2”.

Four colors are available: red, green, blue, and yellow.

For more information, contact:
Images Scientific Instruments
Web: www.imagesco.com/servo/motion-control-index.html

PCB-POOL® — a leading manufacturer of prototype printed circuit boards — has announced the introduction of a new metal core (insulated metal substrate) PCB prototyping service.

Metal core PCBs are designed to transmit heat away from operating areas on the PCB or components to less critical areas such as metal heat-sink backing and metallic core.

Designers of high intensity LEDs, power converters, automotive applications, or any circuits requiring greater heat dissipation can now take advantage of reduced pricing and shorter lead times offered within this new service. Various machining methods have been integrated in the IMS manufacturing process; these include the ability to produce threaded drill holes, counter-sinking, and controlled depth milling using the latest CNC technology.

Other benefits include:
- One layer IMS PCBs.
- No minimum quantity.
- Various soldermask and silkscreen colors available.
- No tooling or set-up charges.
- Lead free HASL surface finish.
- 1.5 mm thickness.
- 100 µm isolation layer.
- 35 µm copper.
PCB123 v4 Makes DESIGN PROCESS EASIER

Sunstone Circuits, a printed circuit board (PCB) prototype solutions provider, is launching the newest version of their design software, PCB123 v4. This advanced software is the most up-to-date, enhanced version of their free-to-use, no license required design-tool. It has an intuitive CAD interface that lets you create new PCB designs quickly, offering freedom and flexibility in your schematic and layout editing. In their quest to remain the easiest PCB solutions provider to do business with, Sunstone Circuits has responded to feedback from the engineering community by not only improving the feature set of PCB123, but also configuring the software into a more user friendly and intuitive resource. As a result, design engineers now have access to a free industrial-grade CAD tool that is setting a new standard in the industry. Some of the key features in the release of PCB123 v4 include:

- 500,000 New Parts: Improved search functionality with complete access to parts libraries (powered by Accelerated Design).
- Datasheet Availability: Research in ‘real time,’ parts availability from Digi-Key.
- Automated BOM (Bill of Materials): For ease in purchasing and assembly.
- New Data Importer: Gain efficiency by importing DXF files from mechanical CAD tools, removing tedious pain-points that slow down the design process.
- Buildable Designs: Sunstone’s DRC/DFM rules are integrated into the software to deliver more effective feedback and fewer design spins.

PCB CAD tools have traditionally concentrated on the hard engineering issues, like impedance calculations and trace routing tools. What has been overlooked is the ability to provide design engineers with information regarding the economic or supply-chain constraints that affect design times. With PCB123 v4, Sunstone brings the first fully-realized set of tools that allows its users to design with full knowledge of the budgetary and scheduling impacts of their design decisions, as well as the hard engineering information. Sunstone realizes that their users are held accountable for financial and budgetary constraints and that the tool they use should provide them that information.

For more information, contact: Sunstone Circuits
Web: www.Sunstone.com
Naturally occurring piezoelectric materials are crystals. The piezoelectric effect was discovered by Pierre and Jacques Curie. In 1880, the Curie brothers published a paper on the piezoelectric phenomena and crystallographic structure of tourmaline, quartz, topaz, cane sugar, and Rochelle salt.

Since piezoelectric materials only develop momentary electrical potentials, in order for the electric potential generated to power an electrical device, the mechanical strain must oscillate to provide continual power to the device.

Figure 2 illustrates what the electrical response of a finger tap on piezoelectric film would look like on an oscilloscope. The initial pulse rapidly decays while oscillating.

Piezoelectric Film

In this article, we will experiment with a unique piezoelectric material: piezoelectric film. Piezoelectric film is made from polyvinylidene fluoride (PVDF) which is a non-reactive thermoplastic. The piezoelectric effect in PVDF material was first observed in 1969 by Kawai.

To make PVDF piezoelectric, the material must become anisotropic meaning the molecular structure of the plastic compound must be aligned to create a piezoelectric effect. This is achieved using two processes during manufacturing. The heated PVDF material is extruded and stretched in the length direction into paper thin material. This stretching causes some alignment of the internal plastic dipoles. To enhance the alignment of the dipoles, a high voltage “poling” voltage is applied to the surfaces of the plastic sheet material. This aligns most of the dipoles in the thickness direction that is perpendicular to the surfaces (see Figure 3).

The surfaces of the stretched and poled PVDF sheet material is then metalized with thin, electrically conductive nickel copper.
Pyroelectric

PVDF is also pyroelectric, meaning that it produces an electrical charge in response to a change in temperature. The material is sensitive to infrared energy between 7-20 um. This response allows it to be used for heat detection of the human body. Piezoelectric film sensors are used behind the fresnel lens in motion sensors where they can detect a human body at 50 feet.

Ultrasonic Transducer

Piezoelectric film was used as an ultrasonic transducer for range finding in a few old Polaroid sonar cameras like the One-Step and SX-70. The sensor performed a dual function of first sending out an ultrasonic burst, and then acted as a receiver to catch the reflecting echo. The time lapse between the transmission and receiving the echo provided the range to the subject for the camera to focus. These sensors, as well as supporting electronics, are still available from Senscomp.

Piezoelectric Film Properties

Piezoelectric film has an extremely high output voltage, about 10 times greater than piezoelectric ceramic materials. Since the material is a thin, lightweight flexible film, it can be glued on to shaped designs (one may use a variety of commercial glues). The material has a high mechanical strength and is impact resistant. Other attributes include:

- Wide frequency range (.001 Hz - 10^9 Hz).
- Low acoustical impedance (close to water and human tissue; efficient for sonar and imaging).
- High dielectric strength.
- Good mechanical strength.
- Moisture resistant, inert to many chemicals.

One disadvantage to piezo film is that it is a weak electromechanical transmitter when compared to piezoelectric ceramics.

Piezoelectric Film Speaker

When an electric field is applied to a piezoelectric film, it deforms (see Figure 4). The film is able to compress and expand across its thickness under the influence of an electric field. It is this property that allows it to perform as a flat film speaker. For efficiency, a large piece of piezo material is used. The piezoelectric film

### PARTS LIST

- Piezoelectric Film Speaker
- Printed Circuit Board
- Eight-pin DIP Socket
- LM386 Audio AMP IC
- Slide Switch
- 9V Battery Terminals
- 10K Potentiometer PC Mount
- 390 ohm 1/4 watt Resistor
- 12K ohm 1/4 watt Resistor
- 10 ohm 1/2 watt Resistor
- (2) 10 µF Capacitors
- .047 µF Capacitor
- 250 µF Capacitor
- (2) Two-pin female sockets
- Mini Step-up Transformer

![Audio Sound Generator](image1)

![Metalized Electrodes](image2)

![Piezoelectric Film Material](image3)

![Curved piezo film speaker produces larger volume of sound.](image4)
speaker measures three inches by six inches. While the material does change dimensionally across its length, it is to a lesser degree as the dipoles are mostly aligned perpendicular to its thickness.

To use this material as a speaker, it is necessary to provide a high voltage audio signal. This is accomplished by feeding a standard audio signal through a step-up transformer.

Referring to the schematic in Figure 5, an electrical audio signal from a radio or iPod is applied to the input header P1. The signal feeds through a voltage divider network composed of resistor R4 and potentiometer V1. The signal from V1 feeds into the LM386 audio amplifier IC. V1 acts as a volume control. The LM386 is set up in a standard configuration to produce a gain of 50X amplification.

The output of the audio amplifier is fed to the primary of a mini step-up transformer. The high voltage output from the transformer is fed to the piezoelectric film speaker.

Figure 6 is a close-up of the circuit built on a PCB supplied with the kit available in the Nuts & Volts webstore.

Figure 7 shows the speaker and circuit ready to go. I used an iPod for the audio source for the circuit. (The iPod is NOT included in the kit.)

**Construction**

Mount and solder the HV transformer making sure to line up the yellow dot on the transformer to the silkscreen dot on the transformer outline. Mount and solder (V1) 10K potentiometer PC mount (R3 and R4) 390 ohm 1/4 watt resistor; R1 1.2K ohm 1/4 watt resistor; R2 10 ohm 1/2 watt resistor; C1 and C4, 10 µF capacitors; C2, .047 µF capacitor; and C3, a 200-250 µF capacitor. Mount and solder slide switch S1. The input P1 and piezo speaker outputs are two-pin female sockets. Mount and solder into place. Plug the LM386 in the eight-pin socket. Orientate the indent on the IC to the indent on the silkscreen.

**Usage**

Connect your audio source to the input header. Turn it on and set its volume range mid-point. Connect the piezoelectric film speaker to the output. Turn on the circuit and adjust the V1 volume control until you hear sound coming out of the speaker.

By curving the speaker, the sound volume increases. If...
you connect the piezo speaker leads to the input leads of an oscilloscope and tap on the speaker with your finger, you ought to get a trace very similar to Figure 2.

You could also see voltage change with the application of a temperature change. I do not recommend applying heat to see this voltage change. It is too easy to permanently damage the film. If you are adventurous, try applying heat from a bare incandescent lamp while observing the trace on a high impedance oscilloscope.

REFERENCES
Hard-wiring is always a problem, especially with an old house. With the new Linx transmitters and transceivers, this can be done wirelessly. The cost of the project is less than $65 + boards. Pre-programmed chips and boards are available in the Nuts & Volts Webstore.

The primary design shown here was made for a single garage door. Installation is simple. Using Velcro tape, the transmitter is placed on the back of one of the panels of the door, and the receiver is in the bedroom. When the door goes up or down, the receiver indicates its position. There’s no wiring of switches as it uses an internal tilt switch.

If you have more than one garage door, the transmitter can be hard-wired for up to three doors using magnetic switches; it will indicate each door’s position. A single receiver receives and decodes three garage doors, and they don’t have to be in the same location. The transmitter and the receiver use two AAA batteries which should last six months to a year. Both the transmitter and receiver have an audio indicator to let you know when the batteries need replacing.

The receiver also has a switch that can be activated to be an alarm if any of the doors are opened by a burglar. See Figure 1.

Electronics

In both the transmitter and receiver are two ICs, a Linx transceiver, and Microchip PIC16F505 which directs the transceiver. A voltage detector is used to determine if the batteries are getting low.

The transmitter is put to sleep to save power. It draws 12 micro-amps when sleeping. The transmitter activates every 2.3 seconds by use of a watch dog timer (WDT). When the WDT times out, the unit checks the battery voltage. If the voltage drops below 2.4 volts, it beeps. The transducer resonates at 2.730 kHz. The micro proves a square wave at this frequency; the 10 µF capacitor blocks DC but allows the AC to pass.

If the tilt switch or any of the magnetic switches activate, it transmits a code to the receiver. The code is 16 bits wide and the first three lower bits determine which door is open. This leaves 13 bits for scrambling $13^3 = 8,192$ combinations. The transmitter turns on the Linx transceiver and sends the codes. It transmits for about five seconds and goes back to sleep. The code combination flow sheet is located on the NV website.

The receiver basically has the same parts but uses three bi-colored LEDs to indicate door positions. See

---

Hard-wiring is always a problem, especially with an old house. With the new Linx transmitters and transceivers, this can be done wirelessly. The cost of the project is less than $65 + boards. Pre-programmed chips and boards are available in the Nuts & Volts Webstore.

The primary design shown here was made for a single garage door. Installation is simple. Using Velcro tape, the transmitter is placed on the back of one of the panels of the door, and the receiver is in the bedroom. When the door goes up or down, the receiver indicates its position. There’s no wiring of switches as it uses an internal tilt switch.

If you have more than one garage door, the transmitter can be hard-wired for up to three doors using magnetic switches; it will indicate each door’s position. A single receiver receives and decodes three garage doors, and they don’t have to be in the same location. The transmitter and the receiver use two AAA batteries which should last six months to a year. Both the transmitter and receiver have an audio indicator to let you know when the batteries need replacing.

The receiver also has a switch that can be activated to be an alarm if any of the doors are opened by a burglar. See Figure 1.

Electronics

In both the transmitter and receiver are two ICs, a Linx transceiver, and Microchip PIC16F505 which directs the transceiver. A voltage detector is used to determine if the batteries are getting low.

The transmitter is put to sleep to save power. It draws 12 micro-amps when sleeping. The transmitter activates every 2.3 seconds by use of a watch dog timer (WDT). When the WDT times out, the unit checks the battery voltage. If the voltage drops below 2.4 volts, it beeps. The transducer resonates at 2.730 kHz. The micro proves a square wave at this frequency; the 10 µF capacitor blocks DC but allows the AC to pass.

If the tilt switch or any of the magnetic switches activate, it transmits a code to the receiver. The code is 16 bits wide and the first three lower bits determine which door is open. This leaves 13 bits for scrambling $13^3 = 8,192$ combinations. The transmitter turns on the Linx transceiver and sends the codes. It transmits for about five seconds and goes back to sleep. The code combination flow sheet is located on the NV website.

The receiver basically has the same parts but uses three bi-colored LEDs to indicate door positions. See
Figure 2. It also wakes up every 2.3 seconds and looks for a valid transmit signal and code for 20 microseconds. If there is none, it goes back to sleep. It counts four 2.3 cycles and then flashes either green or red indicating the door positions. If it receives a signal from the transmitter, it changes its display and will flash the LEDs until the transmitter stops its transmission.

Both micros control the transceiver’s power using the PDN line control. The T/R SEL pin differentiates between sent data and received data.

**Construction**

**Boxes**

Go to the downloads link indicated here and download Garage. There are templates included in the attached files. Print and cut them out. With the two halves together, turn the box over and locate the battery holder area. Place the battery area towards you and turn the box face up. The board and antenna go on the far end as shown in Figure 3. (The box will not go together if the top half is reversed). Using a glue stick, glue the antenna template, front panel template, and side templates to the box. Using a drill press, drill the proper size holes as indicated on the templates. The receiver box is done the same way, however, there are no side holes; only the front panel and antenna. After the holes are drilled, use hot water to remove the templates and glue.

**Transmitter**

On the top of the board, mount the Linx module first, then the microprocessor, capacitor, terminals, and the voltage detector. Add the transducer, LEDs, and the switch on the bottom side. The best way to insure the correct length of the LEDs is to place them in the board, place the board in the box, seat them in their holes, and solder the leads. Take a look at Figure 5. As above, solder the battery holder wires and install the antenna.

**Receiver**

On the top of the board, mount the Linx module first, then the microprocessor, capacitor, resistor, and the voltage detector. Add the transducer, LEDs, and the switch on the bottom side. The tilt switch is mounted on its side with its terminals toward the edge of the board. The transducer is mounted on the bottom of the board. Look at Figure 4. Note the polarities on the components which require them. Thread the wires from the battery holder through the slots of the battery compartment, through the antenna, and place it through its hole. Add the board over the antenna and secure with a screw. Use two self-tapping screws to secure the board to the box.
Testing

There are no off or on switches on either box. Once the batteries are installed, they are active. Turn the transmitter box on its side so that its antenna is pointing to the left; observe the receiver. Now turn the box so that it is on its back or front. The receiver light should change. (See the demo video in the NV downloads.)

Mounting

The transmitter should be mounted with the antenna horizontal and pointing left. If there is only one garage door, it can be mounted with double-backed Velcro tape. As the door tips activating the tilt switch, the transmitter will transmit. If you have more than one garage door (up to three), you can use a magnetic switch on the doors and connect them to the three terminals in the box. (Check out Digi-Key CKN6004-ND.) Terminal one is common ground. Cut the trace coming from the tilt indicator. Again, mount the box with the antenna horizontal.

The receiver should be placed on either side with the antenna also horizontal. If the switch is pressed, the unit will act as an alarm if the doors are open.

Software

The program files are also located on the NV website. It is best to download MPLAB IDE from www.microchip.com to program or make modifications. They are labeled Garage Transmitter.asm and Garage Receiver.asm. See Figure 6 for the flowchart.

Programming

You will need a PIC II programmer for programming.
The chip used is a PIC16F505 which can be programmed from the board. I use programming pads instead of pins. I developed an adapter using Mill Max spring-loaded pins. You can solder a header to the programming pads if you wish. When programming, make sure that the receiver alarm switch is open. With the transmitter, make sure that there are no wires in the terminals and the tilt switch is parallel to the floor.

Two keys are used for the combination; Key 1 has eight bits and Key 2 has five bits. The combination codes are placed in line 81 and line 85. Both the transmitter and the receiver must have the same code to function. The input pins to the tilt switch and other switches (if used) are programmed to use the micro’s internal pull-up resistors. They are programmed to wake up the micro if there is a pin change. The micro determines if the wake-up was caused by a WDT or pin change using line 107.

Once the unit is awakened by a pin change, the switch results are placed in the first three bits of Key 2. The transceiver is turned on to transmit, and 16 bits of information are sent out using bit-banging 1200 baud. It transmits for about five seconds and then goes back to sleep.

To overcome any noise or random signals in the Linx module, I just made sure that the transmission is high (indicating a true signal) for a period of time and then check to see if there is a start signal sent.

Once this happens, the receiver gets the 16 bits of code and checks the code against its combination. If this matches, it decodes the first three bits of Key 2 and transfers this information to be displayed.

The display uses three bi-colored LEDs which are multiplexed. Each is flashed for a few milli-seconds. Their
cathodes are tied together; reversing the pins from Vss to Vpp will determine what their color will be depending on their input pin. (See Figure 7.)

Voltage detection is accomplished using a Microchip voltage detector with a 2.4 volt open drain. This is connected to an input pin which has an internal pull-up pin. When the voltage drops below 2.4 volts, it pulls this pin to ground. The WDT checks this every 2.3 seconds. If the voltage is low, the program jumps to the speaker program. This code produces a 2.7 kHz square wave for 100 milli-seconds (thus giving more of a click to save power), indicating that the battery needs changing.

**Using More Than One Transmitter**

If you are going to use more than one transmitter, make sure all the transmitters have the same combination.

Go to lines 62, 63, and 64, and swap S1 or S2 with Tilt, e.g., put Tilt in place of S1 (62) and move S1 to the Tilt (64). Now the receiver will read the new transmitter as S1. If you have trouble locating parts, there is a parts source on the website. In upcoming months, watch for hacks for this project posted in the feature article section on the Nuts & Volts website. Happy transmission!

---

**PARTS LIST**

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIP/SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>1 ea</td>
<td>ANT-418-PW-LP/ Linx</td>
</tr>
<tr>
<td>Battery Holder</td>
<td>1 ea</td>
<td>2 AAA</td>
</tr>
<tr>
<td>Box</td>
<td>1 ea</td>
<td>221/Serpac</td>
</tr>
<tr>
<td>C1</td>
<td>1 ea</td>
<td>10 µF 16 volt</td>
</tr>
<tr>
<td>IC1</td>
<td>1 ea</td>
<td>PIC16F505 Microchip</td>
</tr>
<tr>
<td>IC2</td>
<td>1 ea</td>
<td>TRM-418-LT Linx</td>
</tr>
<tr>
<td>S2</td>
<td>1 ea</td>
<td>RBS070500T OncQue</td>
</tr>
<tr>
<td>Speaker</td>
<td>1 ea</td>
<td>GT-0903A Soberton, Inc.</td>
</tr>
<tr>
<td>Terminal 1-4</td>
<td>2 ea</td>
<td>276-1388 RadioShack</td>
</tr>
<tr>
<td>Voltage Detector</td>
<td>1 ea</td>
<td>IC VOLT DET 2.63V Microchip</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECEIVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
</tr>
<tr>
<td>Battery Holder</td>
</tr>
<tr>
<td>Box</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>IC1</td>
</tr>
<tr>
<td>IC2</td>
</tr>
<tr>
<td>Opto 1-3</td>
</tr>
<tr>
<td>R1, 220 ohm, 1/6 watt</td>
</tr>
<tr>
<td>Speaker</td>
</tr>
<tr>
<td>S1</td>
</tr>
<tr>
<td>Voltage Detector</td>
</tr>
</tbody>
</table>
Wonder and Inspiration Delivered—Gifts for rocket scientists of today and tomorrow.
For full descriptions of the products featured here, plus hundreds more visit scientificsonline.com.

**Laxman "Inner-tainment" System**
Unparalled Experience in Focus and Relaxation
Truly in a class all its own, the Laxman ‘Innertainment’ System is the next generation of mind machines. The revolutionary technology combines the most effective light and sound technology with the features of a state-of-the-art multimedia device. The result is a sensory phenomenon that simultaneously tunes your brain waves to auditory and visual stimulation, creating a ground-breaking display of colorful shapes and a sensation unlike any other.

#31521-51 . . . . . . . . . $649.00

**Remote Control Machines Kit**
Assemble 10 Different Models Demonstrating Motors
This incredibly fun construction kit walks you through building your own motorized vehicles and machines and then control them with a wireless remote control unit. The unique six button infrared remote allows you to control three different motors simultaneously, moving each of them forward or in reverse, with easy-to-activate touch sensors. The three motors can be combined to make complex vehicles and machines in numerous configurations limited only by your imagination. Recommended for Ages 8 and up.

#31520-85 . . . . . . . . . $69.95

**DIY Discover Electronics Kit**
Everything You Need to Learn Basic Circuit Design
What are the basic electronic parts? How do they function? How are they related to one another? These questions and more can be answered by spending some time with our electronics kit. It contains over 130 standard parts — all of the most common electronics components, as well as a prototyping breadboard for you to get started on projects right away. Make a light detector, work with IC chips, create an interactive noise maker and more. No soldering required, and the included illustrated manual guides you through each of the projects step-by-step. After you build all of the projects you can use the parts for your own designs too. Recommended for ages 12 and up.

#31522-28 . . . . . . . . . $49.95

**Da Vinci Aerial Screw Kit**
Reinvent a fanciful Flight
A precursor of the modern day helicopter, the Aerial Screw designed by Leonardo da Vinci was designed to compress air in order to obtain flight. Now you can build this model straight from Da Vinci’s musings and marvel at how ahead of his time he truly was. Recommended ages 8 and up.

#31521-38 . . . . . . . . . $19.95

**The Swinging Sticks**
Mysterious, Continuous Moving Desk Display
Never ceasing, always swinging, this moving stick model appears to defy gravity and turn logic on its head. The constant, fluid motion of the revolving sticks creates an almost hypnotic effect that your friends, family, and clients will want to watch for hours. The perpetual motion illusion was created by an electrical engineer and designer to baffle and amaze all onlookers. Ideal for conference rooms, medical offices, exhibition areas, waiting rooms, display windows, and foyers, this display provides sophisticated style and unmatched entertainment. Requires 4 AA batteries (not included).

#30850-66 . . . . . . . . . $269.00

---

For full descriptions of the products featured here, plus hundreds more visit scientificsonline.com.
Eeks: Problems!

The first circuit you look at with one of your 10X probes is a wideband amplifier. The results are disastrous. The frequency response is terrible; rising and falling in amplitude across the spectrum and with a much lower bandwidth than expected. In a cascaded section, one amp’s output is too high and the following amp’s output is actually lower than the one feeding it. Yikes! You switch to another probe and get the same results! You also notice that at the higher frequencies, moving the probe or cable changes the displayed amplitude. Next, you frantically look at another prototype containing an oscillator and a couple of buffers to an output jack. Connecting a probe from channel 1 to the output jack verifies that a signal is present there. You connect a probe to the scope’s channel 2 and probe a section in the oscillator and see no signal at all. How can that be as you previously saw an output at the output jack?

Looking back at channel 1, the former signal is also missing. Moving the channel 2 probe to a different section of the oscillator, you now see a signal on both channels and at this point are somewhat confused. One last prototype that is supposed to produce fast rise time pulses is probed and the rise time is much slower than expected with a lot of overshoot and ringing at its leading and trailing edges. Oh no, you are thinking. My prototype designs are terrible and the new scope is defective! Well, don’t throw your protos in the trash bin and send the scope back to the seller just yet.

If your scope passed your initial tests, it’s probably working okay. If you have done similar protos in the past, then for the most part, they are probably doing at least a fair job. There is a very good chance that the problems lie in your probes and/or your probing!

Examining the Source of the Problems

You are probably thinking that since the scope has a 300 MHz bandwidth and the probes are rated at a 250 MHz bandwidth with a 1.4 Nsec rise time, they should give good performance up to 200 MHz and beyond — which they will under the right conditions. The key word here is right. Let’s cover a few things before we dive into probes. An oscilloscope’s rated bandwidth is the point where the displayed signal amplitude vs. frequency drops to -3 db (70%) of its DC or very low frequency value when a leveled sine wave source is feeding the vertical pre-amp(s). In scopes that follow a Gaussian response curve (and almost all do), this will follow a very flat frequency response to 1/3 of its rated bandwidth and then drop at an increasing rate to its -3 db point (i.e., 300 MHz bandwidth; DC to 100 MHz flat response). However, this doesn’t mean that there won’t be peaks and dips along the way. In quality scopes, these are minimized. A probe with the same bandwidth spec as
the scope may degrade this performance by virtue of its -3 db BW adding to the scope’s -3 db bandwidth, therefore intensifying the loss at the limits of their individual stated bandwidths. Some manufacturers design probes to match their line of scopes to preserve their rated bandwidth or even extend it slightly. Now let’s look at how a probe gets its rated bandwidth specs. This is done in a lab environment using sine wave generators with a 50 ohm source impedance immediately terminated with a 50 ohm load that has a BNC jack built into it. The ground lead and clip tip (witch’s hat) are not used in this setup, but rather the tip has a special tip-to-BNC adapter that matches up to the termination jack. This effectively removes most problems associated with ground leads (as will be discussed later). Also, the probe tip is looking into an equivalent 25 ohm impedance by virtue of the generator source impedance (50) in parallel with the termination impedance (50). This constitutes an almost ideal condition for measurement, but rarely is the normal setup for probing in the real world.

Figure 1A shows a typical 10x passive probe connected to the scope’s vertical input and the standard 10 megohm input resistance that it presents to all circuits probed. It also has a capacitive load on those circuits. This is the series combination of C and 9C. The typical capacitance the circuits under test will see at the tip will range from 10 to 14 pF, so I will use 12 pF as a middle of the road spec. Scopes have a certain amount of inherent input capacitance, along with the probe’s cable, etc., connected to it. To obtain a flat frequency response in a resistive divider network, the time constant of the probe’s attenuator network (9R in parallel with C) must exactly equal the time constant of the probe cable and scope input values (R paralleled by 9C). Since the probe’s tips are constructed with a fixed value of resistance and tightly controlled parasitic capacitance C, the RC values on the scope end must be adjusted to exactly match this. This is done with a capacitive trimmer mounted in a termination box which is attached to the cable’s BNC connector for the scope.

As mentioned, 9C is the combination of scope, cable, and trimmer capacitance. In the circuit shown, R probe = 9 megohm; C probe = 13 pF, and R scope = 1 megohm. Therefore, 9C must equal 9X13 or 117 pF to match the two time constants involved. With the aid of the scope’s calibrator, 9C is adjusted to present the traditional “perfect square wave” on the display.

With an input signal of DC to very low frequency sine waves (<100 Hz), the probe’s input impedance is basically all resistive and presents a 10 megohm load on the circuit being probed. At approximately 1,500 Hz, the probe’s input R and Xc will be equal in magnitude, and probe input Z will be reduced to about 70% of that 10 megohm value. Input Z will continue to reduce with increasing frequency injected into the probe tip. However, due to the matched RC time constants in the probe’s divider network, the 10:1 division ratio will be maintained. The probe will continue to give good performance up to 10 MHz and beyond, but as it enters the VHF range (30-300 MHz), problems start to occur. Referring to Figure 1B, the probe appears to the circuit as shown, when probing these higher frequencies. In this region, the probe’s resistance no longer enters the picture as the magnitude of impedance is almost totally capacitive (when using a very short direct ground connection). Also, the XL of the clip tip begins to be of some significance, but even more so is the increasing XL of the ground lead attached to the probe. These two components (Cin and L ground) will form a series resonant circuit at some point which can really mess up measurements. Even the best of probes have a resonant point regardless of the grounding system used.

High-end probe designers are constantly trying to move this resonant point up higher in frequency to push it up and well outside of the passband of the equipment being used. Small values of distributed ‘L’ and ‘C’ may be inserted at key points to flatten out response and raise the input impedance, but even with the best efforts, this will only show a certain degree of improvement.

So, in light of these facts, what do we end up with here? It is evident that in high frequency circuits, the probes Xc is decreasing and loading the test circuit more. At the same time, the XL of the ground lead is increasing and, at some point, will resonate with Cin. Also, the cable ground potential at the scope end is not the same potential as the probed circuit ground at the other end due to the ground lead’s (typically 5-6”) impedance. The scope faithfully displays its input signal, however that is only the signal that appears across Cin (in Figure 1B). The probed circuit is applying its signal across both Cin and Lgrd, thus producing a volt divider action (along with some other nasty things) at the actual scope input. At some point, the signal resonates
with Cin and Lgrd. Since a series resonant circuit produces a dead short across its terminals (in an ideal world), this puts a tremendous load on the probed circuit and greatly reduces signal amplitude. Oddly enough, since each leg (L or C) has maximum current and impedance at resonance, the voltage will soar across these components causing a very high displayed screen level when in reality, the circuit’s signal level is at its lowest point.

In my experience, most 10X probes will resonate in the 70 to 110 MHz region and will be somewhat subjective to the signal source R and C values. Due to those values, the resonant point can narrow, broaden, and or have a major or minor effect on signal amplitude. The probe’s reactance can also add horrendous overshoot and ringing, along with slower rise times on displayed square waves that otherwise are not present. Three things happen when a probe is attached to a test circuit:

1) The circuit’s signal is altered.
2) The signal is divided and distorted at the junction of Cin and Lgrd.
3) The signal sent to the scope’s vertical input will not be an exact reproduction of the signal present at the test circuit’s signal in normal operation.

The magnitude of these effects are dependant on the probe, the circuit under test, and the signal’s frequency content, making measurements quite unpredictable!

Now that we are armed with this new information, let’s go back and review the ‘problems’ we had earlier with those prototypes. First, the wide band amplifier is a simple circuit with a 300 ohm collector load. When operating at 150 MHz, the probe has a loading effect of <100 ohms Xc across that resistor. This load drops the amplifier output to 30% of what was really there. When operating with a 90 MHz signal, the probe is deep into resonance producing a much higher displayed signal than expected. Again, not really there in normal operation. Similar results are falsely displayed on subsequent stages of that proto.

In the oscillator circuit, the first point probed was in a critical feedback leg and the probe’s Cin to ground totally killed oscillations. The second point in that circuit was less critical and oscillations survived albeit with a large shift in frequency. The fast rise square waves have been slowed by the probe’s loading capacitance and ring at the probe’s resonant frequency. So, it’s bad enough that the displayed wave forms may not always follow what the probe is seeing but also, the connected probe is altering the test circuit operation. Worse yet, the results are unpredictable.

**What You Can Do About the Problems**

The first thing is to remove the clip tip to reduce series inductance, and use the shortest ground lead possible for the same reason. If possible, try to probe lower impedance points in the circuit to reduce loading effects. As far as probe resonances, they are most prominent at source impedances below 50 ohms, having lesser effects with source impedances above several hundred ohms. For the low Z sources, a low ohm value tip resistor can be added to dampen the resonant point. A 1/4 watt resistor wrapped around the tip and with the other lead cut short will suffice. This resistor now becomes the ‘new’ tip. Generally, this value will be in the 50-100 ohm range. Lastly, I do a thorough study of the circuit under test to try and predetermine the results of adding a probe to that circuit. These suggestions are a rule of thumb rather than an ideal ‘cure-all.’

There are two types of probes that will overcome most of these problems. One is the low Z passive probe shown in Figure 2A and the other is the active probe shown in Figure 2B. The first one is cheap and easy for home construction. It is merely a 1/4 watt carbon resistor soldered to the end of a 50 ohm coaxial transmission line with a mating BNC connector at the opposite end. The resistor leads should be cut short and act as the probe tip. The coax ground lead at that point should also be kept relatively short. These types of probes are much more immune to ground leads effects than other probes, but when making very critical measurements, that shield should be temporarily tacked to the circuit’s ground.

The upside of this probe is that it is “king of the hill” for high speed probing, and has superior fidelity, very fast rise
time, and very wide bandwidth. The downside is heavy loading and a high probe attenuation factor. For the two values of R shown, the attenuation is 10X with 450 ohms and 20X with 950 ohms. Also be aware that it is DC coupled. Ideally, these connect to a scope’s 50 ohm input port (which most quality scopes with >150 MHz BW have). In lieu of that, a 50 ohm termination will have to be added between the scope’s normal one meg input jack and the probe’s BNC termination. Unfortunately, the scope’s approximate 20 pF of input capacity at this port will still be present under this situation and will present an increasing VSWR vs. frequency, skewing results above 100 MHz. In spite of this probe’s shortcomings, it has very low input capacitance (<1 pF), thereby presenting an almost purely resistive load to the circuit under test; VHF frequencies and above will actually have less loading effect than the aforementioned 10X passive probes. As cautioned, the probe is DC coupled but is actually an advantage in standard five volt logic circuitry. In my experience, there was a 20% loading factor in probing high speed CMOS logic devices, but the fidelity is preserved and predictable.

The active probe is shown in simplified form in Figure 2B. Typically, the probe initially couples the signal through a very small coupling capacitor (although some are DC coupled through an RC network) into a high input impedance amplifier. The input network is adjusted to give a 10:1 attenuation ratio with a very small Cin (<1 pF). The amplifier will have a gain of X1 to X10. This gives the probe an attenuation ratio of anywhere from 1X to 10X. It is rare to find these probes with a 1X configuration (no attenuation). More commonly, they will be in a 5X or 10X configuration. In all cases, the output is converted to 50 ohms Z and sent down a 50 ohm transmission line to the scope’s vertical input. The down side of these probes include the Bulky probe tip (in some models), external DC power required, limited dynamic range, and a shocking sticker price averaging $2,000 to $3,000. The highest priced one I ever saw came in just under a whopping $16,000.

Their upsides are superior bandwidth (some >10 GHz), excellent rise time, and high R/ low C probe input specs. However, these phenomenal specs do not come without some strings attached. When dealing in precise and faithful probing in the realm of microwave frequencies that these probes are capable of, the probe’s accessories and techniques become almost as important as the probe itself to insure quality results. Depending on the probing situation, special grounding adapters have to be used and special resistive probe tips have to be interchanged (as many as a dozen or more). In some cases, special sockets have to be installed and soldered directly to the circuit board which will mate up to an accessory probe tip. Include a thorough understanding of the circuit being probed so that the correct accessories will be installed and it’s easy to see that these high-end probes are not for the amateur. Constructing one of these probes at the hobbyist level would be very difficult to say the least. However, in spite of the shortcomings of the common 10X passive probes, they are still the workhorse of the industry and are very worthwhile for general-purpose probing. Their dynamic range far outpaces any other type probe made and often approaches upper limits of 500-600 volts. I would always include a couple in my arsenal of probes.

What I Did About the Problem

I have always been intrigued by the concepts of the low Z passive probes and active probes. After years of frustration using the common 10X passive probes, I decided it was time to switch to one of these superior probes. Since I could not justify the expense involved in a commercial product, I thought I would design and construct one myself. Each probe has its benefits and drawbacks. The low Z has excellent fidelity, rise time, and bandwidth but gives way too high loading and attenuation. The active probe also has these great features but with the added benefit of low loading and low attenuation. However, it comes with the added burden of a bulky probe size (in my design), limited dynamic range, necessity of external power, and difficulty constructing and calibrating the input network. In mulling over the various pluses and minuses of these probes, I decided to construct a hybrid of the two, which I humorously call the “Passive-Active” probe. Figure 3 shows the completed unit.

The probe starts out in the traditional low Z style with a resistive divider feeding a 50 ohm transmission line, but with one exception: a much higher input impedance (i.e., 3,400 ohms as opposed to 1,000 ohms). This is fed to an active probe’s traditional amplifier circuit before being applied to the scope’s input. The amplifier makes up for most of the divider losses. This probe still suffers some of the unavoidable consequences of its commercial counterparts, such as a limited dynamic range, moderate circuit loading, and necessity of external power. Due to design constraints, the optimum dynamic range was determined to be 8V p-p input at its upper end with the low end of that range being 15 mV p-p input to obtain two divisions of vertical deflection (typical sensitivity for wide
band scopes). This should handle the normal range of signal levels encountered in high frequency circuitry. It will not handle very low amplitude signals applicable to radio receiver circuits, but that is a job intended for spectrum analyzers only.

As to circuit loading, there really are no high impedance circuits once we enter the VHF spectrum and above. Normally, most circuit source impedances will range from 25-500 ohms at these frequencies. Even reactive LC circuitry will have much lower impedance compared to low frequency counterparts. So, the 3,400 ohm loading factor of this probe will pose an acceptably small loading on most VHF circuitry. And more importantly, it imposes a very small reactive loading (>>1 pF). In high frequency measurement, the probe’s reactive component is much more critical than its resistive one in terms of circuit loading (as explained earlier). Finally, as to external power, this turned out to be of little inconvenience due to the amplifier’s onboard regulator and power plug. It required only a separate wall plug transformer of adequate voltage. I leave this wall wart plugged into an outlet strip mounted on the back of my scope cart. This makes probe installation quick and easy — just one added cable to connect/disconnect.

**Probe Design**

In designing this probe, a number of factors had to be considered. It all starts with the MMIC (monolithic microwave integrated circuit) amplifier which has a gain of 31 db (X34), a 1 db compression point (the very onset of saturation) of 12.5 dbm (approx. 2.5V p-p), and a frequency response roll-off of -4 db at 500 MHz. It also requires a 50 ohm source and load impedance to maintain these specs, along with good stability. Best performance with these amps is obtained with a bias (B+) current of 36 mA. The B+ supplying this current ideally would be through a load resistance of infinite impedance because this load is effectively placed in parallel with the 50 ohm termination impedance. A constant current source comes to mind but will not work here as per manufacturer’s application notes. If the bandwidth ratio was not quite so wide, a suitable RFC (radio frequency choke) could be used with a bias supply of 5 VDC. However, this circuit requires a very wide bandwidth ratio (1,000:1); no RFC would work due to their inherent self-resonance at some point, rendering them useless at frequencies above that. So, a pure resistance is required here to supply the bias current and I want that value to be as high as possible. Of course, the higher the resistance, the higher the supply voltage has to be to supply that current. A compromise had to be made here in terms of voltage, wattage dissipation, and shunt loading. I chose 18 volts which works out to 392 ohms for the supply resistor with a dissipation of 1/2 watt, without upsetting the output termination to a great degree.

Given that 392 ohms is not the ideal value here, the amp’s maximum output level is degraded, so I decided to spec that figure at +10 dbm (2.0V p-p) for best linearity. Given the amplifier’s gain with a 1:1 attenuation ratio, this would only allow for a max probe input impedance of 850 ohms and its dynamic range limited to 2.0V p-p on the upper end. These limits just would not satisfy a wide range of probing situations, but by increasing probe attenuation to 4:1, I could get the 8V p-p input level I was after at the upper end of range, and increase the input impedance to 3,400 ohms. The actual input impedance works out to 3,400 ohms shunted by <<1 pF. This provides an acceptable loading factor while maintaining the desired dynamic range.

It now becomes a 4x probe and it is easy to calculate the actual display amplitude vs. input signal amplitude — just double the displayed voltage and double it again (X4). Not as easy as a 1X or 10X probe, but still quite simple to compute in one’s head. The amplifier roll off, cabling connections, and board layout combined will add up to a little less than a -6 db (2x) loss at the upper limit of 500 MHz of the probe’s bandwidth, so the next problem to be solved was how to flatten this response curve. The straightforward answer was to shunt R1 and R2 with a compensation capacitance. The Xc needed for this compensation worked out to be 2,000 ohms at 500 MHz which has a value of 0.18 pF. It worked out in my favor on this one due to the fact that 1/4 watt carbon film resistors have a parasitic capacitance of 0.35 pF. Two in series would give me 0.175 pF — almost exactly what I needed! A call to KOA Speer’s (resistor manufacturer) engineering department confirmed that these resistors are made to exacting mechanical tolerances and that the parasitic is uniform from unit to unit with one minor exception. The laser etching used in the manufacturing process is slightly different from one group of values to the next; a group value being a considerable amount. After experimentation, a set of values was found to be approximately 0.175 pF. The values chosen were accomplished empirically due to the fact that the exact capacitance could not be predetermined. After considerable experimentation, a set of values was found to be 1,000 ohms in series with 2,400 ohms, with the correct parasitic capacitance to flatten out the response.

**Active Probe Parts List**

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.1 MFD/50V MLC ceramic</td>
<td>Mouser.com p/n 600 - CF 1/4 102J</td>
</tr>
<tr>
<td>C2</td>
<td>0.22 MFD/50V chip size 1812</td>
<td>Mouser p/n 600 - CF 1/4 242J</td>
</tr>
<tr>
<td>C3</td>
<td>0.47 MFD/50V chip size 1812</td>
<td>Mouser p/n 71 - CMF60392R00FHEK</td>
</tr>
<tr>
<td>C4</td>
<td>0.33 MFD/50V MLC ceramic</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>1,000 pF/50V MLC ceramic</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>4.7 MFD/50V tantalum electrolytic</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>1,000 ohm 1/4W carbon film</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>2,400 ohm 1/4W carbon film</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>51 ohm 1/4W carbon film</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>392 ohm 1W 1% metal film</td>
<td></td>
</tr>
<tr>
<td>MMIC</td>
<td>MAR-8A mini-circuits</td>
<td></td>
</tr>
<tr>
<td>18V Regulator</td>
<td>78L18</td>
<td>Mouser p/n 553-WDU18-300</td>
</tr>
<tr>
<td>Wall plug</td>
<td>Triad 18V/300 mA</td>
<td></td>
</tr>
</tbody>
</table>
curve. To confirm what the manufacturer told me, I tried out several sets of these and got identical results. I also tried out some others from different manufacturers and the results were very close. Just to be on the safe side though, stick with the numbers in the Parts List. The final specs on the probe work out to this:

- Attenuation ratio: 4:1 (4X probe)
- Frequency response: 0.5 to 500 MHz ±0.5 db
- Maximum tip input: 8V p-p
- Input impedance: 3,400 ohms - 0.2 pF
- Probe tip impedance: 3,400 ohms - <0.5 pF
- Rise time <500 pF
- -3 db point >750 MHz (estimated)
- Resonance: >1 GHz (estimated)

### Probe Construction

The construction of this probe is quite simple and low cost. I had an old Pomona box laying around that I used for the active board enclosure. The cables came out of my junk...
box and were cut to proper length. I paid $20 for the remaining parts needed. The wall plug transformer was the most expensive at $10. The probe components are installed in a modified Sharpie felt tip pen housing. The cap was removed and the pocket clip snipped off flush with the body. Then, a 1/8” hole was drilled into the end to accept the RG-174 cable. I then removed 1” of material from the end of the pen body, reached in with needle-nose pliers, and removed the ink cartridge. The protruding felt tip was then snipped flush with the end of the body. I stood the body up straight on a firm surface and got the remaining felt out by driving it back into the housing with a hammer and punch (a flat end nail of the proper size will also do). A little cleanup work was needed inside the housing, so I used various drill bits and rotated them by hand to remove the remaining plastic nibs. The housing will need a thorough cleaning to remove any remaining ink residue; the process can be a bit messy. I used a piece of plastic laminate (Formica) shaped to fit the interior all the way to the tip. Although Figure 4 shows this as a rectangular shape for drawing simplicity, the finished piece will be more bullet shaped near the tip end. The components C1, R1, R2, and R3 are all thru-hole components. Since a copper-clad board has too much stray capacitance, these parts lend themselves to better support in this application.

After I was satisfied I had a good fit in the housing with the laminate, I pre-drilled all the mounting holes. The actual probe tip was a broken needle from my wife’s sewing machine and it takes solder quite readily. This was soldered to one lead of C1 with its other lead dropped through its board hole and yanked back to hold it in place. The probe tip is then positioned on center with about 1/2” exposed beyond the laminate. A blob of epoxy cement is dropped on it to preset it. When cured, another blob is smeared over it again and half of C1, and is allowed to flow around both sides of the board. This gives the tip adequate support when cured. The component leads are dropped through their corresponding holes; their leads bent back and joined with a healthy dose of solder. When cooled, snip these flush with the board. The exposed section of the cable braid is actually pinched back to form two solder nibs where R3 and the ground lead connect; then get it pre-tinned.

Attach the RG-174 cable and secure it down with dental floss (the waxed type is best). Drill a thru-hole in the probe body at an appropriate spot for the ground lead to protrude. Push the ground lead through it from outside the housing and far enough so that the protruding end sticks out far enough to allow soldering to the cable’s ground braid when the probe board is partially inserted into the housing. When completed, the probe board is pushed in all the way until it is snug. Apply a slight pulling force on the ground lead while doing this. There should be about 3/8” of probe tip protruding from the housing end. In my probe, friction was all that was needed to keep it in place. Some wadded, non-conductive material would have been jammed into the open end had this not been the case.

The back of the probe body needed a little abrading to accept the cap with a nice snug fit. The finished active circuit is shown in Figure 5. This circuit starts out with a piece of 1” x 2” single-sided copper-clad board. A trace 3/16” wide x 1-1/4” long was etched right down the center of it. A couple of small islands were also etched out at the upper right corner to accept the regulator (TO-92) and its associated components.

On the long trace, a 1/8” hole is drilled where the MMIC amplifier will reside. This is located about 1/4” off center to the left along the axis of that trace. The remaining copper area at the edge of the hole was then removed to completely break the trace’s path. Also, two breaks were etched out where the chip capacitors will be installed. (A note here: When I refer to etching, I mean etching with a

---

**Figure 5**

Wireless Made Simple®

Quickly and cost-effectively make your product wireless.

**Featured Products:**

- LT Series Transceiver
  - 315 MHz
  - 47 MHz
  - 433 MHz
- Integrated Circuits
  - Control
  - Keyless Entry

**Function Relay Module**

Provides four latch or momentary relay outputs that are capable of switching external 12V or DC powered loads of up to 5 amperes.

- 315 MHz
- 418 MHz
- 433 MHz
- Dual Power Inputs
- 256 Unique Addresses
- Wide Operational Voltage
- FCC and Industry Canada Pre-Tested

**Contact:**

800-736-6677
159 Oak Lane
Merlin, OR 97732
linxtechnologies.com

---

50 NUTS+ Volts November 2010
rotary tool, knife, or whatever.) The remaining thru-holes were drilled and the remaining components were mounted. R4, C4, 5, 6, and the regulator are all thru-hole components and mounted from the other side of the board (phenolic side). The R4 lead length is not critical, just make sure it fits.

The MMIC amp has one tapered leg with a corresponding color dot on its case — this is the RF input terminal. This was then soldered into place along with the two chip capacitors C2 and C3. Depending on the enclosure used, the cable installation will vary. In my case, the cables pass through grommeted holes in each end, and were pushed through the enclosure before soldering them to the circuit board. In prepping the cable ends, keep these leads short. Expose only about 1/8” of insulation on the center conductors. Twist the braids to form a wire for the ground lead, then push these leads into their corresponding holes and solder them to the board as close as possible. Ideally, there will only be about 1/8” of exposed wire/insulation at these connections. After all the soldering was completed, the board was secured to the enclosure on two pre-installed 1/2” standoff. One final comment about overall construction — plan ahead and after every machining operation, make sure the respective parts fit as intended before proceeding with soldering. Add the final power leads, connectors, etc., and the probe is ready to use. A word of caution here: Double-check all connections and polarities before initial power-up as the MMIC amp operates at 4 VDC and will not tolerate reverse polarity when fed from an 18 volt supply.

Testing the Probe

For a simple circuit, this probe required many dozens of tests throughout its design cycle to verify performance vs. circuit changes, so it came as no surprise to me that the finished unit operated as expected. In that cycle, various ground lead lengths of 1” through 6” were tried with only small changes in performance. Even though ground leads degrade performance somewhat, I wanted one for convenience of use. After some consideration, 4” was the best compromise and the circuit was optimized for that. This works because the low Z style probe is much more immune to ground lead problems than other style probes. With everything completed, the probe should work as advertised, but I still ran a battery of tests with capable test equipment to verify that. Upon completion, it would be reassuring if you could do the same even if you had to temporarily beg, borrow, or steal the necessary equipment to do so. One thing I want to point out here is that the probe has a 50 ohm output impedance and will perform best with scopes that have a 50 ohm vertical input port (most scopes having >150 MHz BW have this port). In lieu of this port, there are 50 ohm BNC/BNC terminations available that can be attached to the standard 1 meg vertical input jack. Bear in mind that using that input, there will be an increasing VSWR with increasing frequency due to the scope’s 20 pF of input capacitance at that jack. So, displays will be somewhat skewed above 100 MHz. Upon completion of this probe, I ran side by side comparison tests against a variety of my common 10X passive probes. The tests were performed on
a variety of commercial circuits that had known and documented signal levels at various frequencies from 10 to 500 MHz. The passive probes performed well up to 10 MHz and fair up to 25-30 MHz on most circuits, but not all. Once I entered the VHF region (30-300 MHz) all bets were off as the CRT displays were becoming erratic and unpredictable. At times, they registered only 20% of the actual amplitude level and at other times, the levels were much higher than the true levels. By comparison, the active probe performed very well in all circuits probed, giving a very close display to all documented levels. It only produced a small frequency shift (<1%) in sensitive areas of oscillator circuits as compared to the 10X probe (>8%). Also, the loading was quite good to acceptable in these circuits, but that loading was also quite predictable (i.e., 330 ohm collector load - 3,400 ohm probe Z - 10% loading). The 3,400 ohm probe impedance may seem alarmingly low to you and it well may be for low frequency circuits, but this probe is designed for high frequency circuits above 20 MHz where source impedances tend to drop dramatically from lower frequency circuits. So, it’s not as bad as it first appears — in spite of the fact that the probe’s impedance reduces further yet at higher frequencies. Consider that this probe has an input R of 3,400 ohms paralleled by 0.2 pF which would yield an input impedance of 2,100 ohms at 300 MHz. The common 10X probe has an input R of 10 meghohms paralleled by 12 pF. The 10 meg has no effect as the input is purely capacitive at this frequency, yielding an input impedance of 45 ohms; it gets worse as the frequency goes up. The active probes impedance looks quite stiff by comparison. The rise time on this probe is excellent but unfortunately since this probe is AC coupled by necessity, it can only handle square waves above a few hundred kHz; increasing the coupling capacitor values would improve this but there are limits.

Probing Tips and Thoughts

After using this active probe for a while, I have gained complete confidence in it and it has opened up a whole new world of investigation for me. It has also answered many unaccountable readings encountered in testing previous circuits that had mysterious operations. When using this probe (as well as any other probe), good high frequency techniques require that the probe cable be free of kinks and kept clear of the circuit under test. The probe tip should enter the test point perpendicular to the circuit board. Always grasp the probe near the cable end so as to minimize finger presence at the probe tip. Once again, I want to stress that the common 10X passive probe is the workhorse of the industry and a valuable asset to your collection of probes. But you must be aware of the fact that for other than general probing at high frequencies, many false readings will occur with it.

If you decide to build this probe, visit www.koaspeer.com. It has a wealth of information in its application notes, along with case outlines and demo board layouts for the MAR-8 MMIC amplifier. There’s also good info on a lot of their interesting products.
**Great Projects for Electronic Enthusiasts**

**Car Alarm Kits**

**Scrrecher Car Alarm MKII KA-1813** $17.50 plus postage & packing

The Scrrecher MK II is very effective and produces an ear-piercing scream that will scare the pants off any would-be thief. It is easy to construct and features entry delay with a soft warning tone, exit delay and high intensity deterrent LED.

- Kit includes PCB, siren, all electronic components and two adhesive warning stickers for no extra cost.

**Short Circuits III Kit - Scrrecher Car Alarm KJ-8062** $19.25 plus postage & packing

A more sophisticated alarm including entry/exit delay, flashing deterrent light, soft warning alarm and deactivating internal sirens. Thieves will make a hasty retreat!

- Kit includes PCB, siren and electronic components.
- PCB: 132 x 80 mm

Instructions are NOT included. Instructions to suit Short Circuits III project - Scrrecher Alarm Cat. KJ-8063 $1.25.

**Solar Powered Shed Alarm Kit**

**KJ-5494** $17.50 plus postage & packing

A lot of valuable items are stored in sheds or locations without access to mains power - a boat on a mooring, for example. What you need is a simple solar powered alarm that works with a variety of sensors - just what this kit does. It has 5 inputs, plus all the normal entry/exit delay etc. Short form kit only - add your own solar panel, SLA battery, sensors and siren.

Supply voltage: 12VDC

Current: 3mA during exit delay; 500mA IR connected

Exit delay: 22 seconds

Entry delay: 5-30s adjustable

Alarm period: 25s to 2.5 minutes adjustable

**Short Circuits III Kit - Low-Cost Intercom System**

**KJ-8080** $9.50 plus postage & packing

A low-cost method of communicating between two rooms. The remote unit is hands free so it’s also great as a baby monitor.

- Kit includes PCB, speakers and electronic components.
- 12VDC required.
- PCB: 105 x 60 mm

Instructions are NOT included. Instructions to suit Short Circuits III project - Low Cost Intercom Cat. KJ-8081 $1.25.

**Short Circuits III Book. Cat BJ-8505 $7.50**

**Hidden Bug Detector**

**AA-0216** $30.00 plus postage & packing

This unit is basically a broadband receiver. It operates over the incredible bandwidth of 100KHz to 2.2GHz. Clearly it requires the ‘bug’ to connect to the outside world by radio transmission preferably shortwave. It is no use for bugs that use telephone lines.

- Dimension: 100 x 60 x 25 mm
- Telescopic antenna included

**Post & Packing Charges**

<table>
<thead>
<tr>
<th>Order Value</th>
<th>Cost</th>
<th>Post &amp; Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25 - $49.99</td>
<td>$7.50</td>
<td></td>
</tr>
<tr>
<td>$50 - $99.99</td>
<td>$20</td>
<td></td>
</tr>
<tr>
<td>$100 - $199.99</td>
<td>$40</td>
<td></td>
</tr>
<tr>
<td>$200 - $499.99</td>
<td>$60</td>
<td></td>
</tr>
<tr>
<td>$500+</td>
<td>$75</td>
<td></td>
</tr>
</tbody>
</table>

Note: Products are dispatched from Australia, so local customs duty & taxes may apply.

Prices valid until 30/11/2010

**How to Order**

- **WEB:** [www.jaycar.com](http://www.jaycar.com)
- **PHONE:** 1-800-784-0263
- **FAX:** +61 2 8822 3118
- **EMAIL:** techstore@jaycar.com
- **POST:** PO. Box 107, Rydalmere NSW 2116 Australia

- **All Pricing in US Dollars**
- **Minimum Order Only $25**

*Australian Eastern Standard Time (AEST)

**Ultrasonic Antifouling System For Boats**

**KC-5498** $124.50 plus postage & packing

Many of you know that you can buy $2-5,000 imported marine growth electronic antifouling systems. Jaycar, with Silicon Chip have developed a similar system based on this technology and information in the public domain. This project uses the same ultrasonic waveforms and virtually identical ultrasonic transducers mounted in sturdy polyurethane housings. By building yourself (which includes some putting) you save a fortune! Standard unit consists of control electronic kit and case, ultrasonic transducers, potting and gluing components and housings. Research reveals only one transducer is needed for boats under 40ft. Basically all parts supplied in the project kit including wiring.

- 12VDC
- Suitable for power or sail
- Could be powered by a solar panel/wind generator
- Price includes epoxy
- For more details visit our website [www.jaycar.com](http://www.jaycar.com)

**Rolling Code Infrared Keyless Entry System**

**KC-5458** $37.75 plus postage & packing

This excellent keyless entry system features two independent door strike outputs and will recognize up to 16 separate key fobs. The system keeps the coded key fobs synchronized to the receiver and compensates for random button presses while the fobs are out of range. Supplied with solder masked and silk screen printed PCB, two programmed micros, battery and all electronic components. The receiver requires a 12VDC 1.5A power supply. Some SMD soldering is required.

**SD/MMC Card Webserver in a Box**

**KC-5489** $52.25 plus postage & packing

Host your own website on a common SD/MMC card with this compact Web server In a Box (WIB). Connecting to the Internet via your modem/router, it features inbuilt HTTP server, FTP server, SMTP email client, dynamic DNS client, RS232 serial port, four digital outputs and four analogue inputs. Requires a SD memory card, some SMD soldering and a 6-9VDC adaptor. Kit includes PCB, case and electronic components.

- PCB: 123 x 74mm

**Kit of the Month**

**SD/MMC Card Webserver In A Box**

Host your own website on a common SD/MMC card with this compact Web server In a Box (WIB). Connecting to the Internet via your modem/router, it features inbuilt HTTP server, FTP server, SMTP email client, dynamic DNS client, RS232 serial port, four digital outputs and four analogue inputs. Requires a SD memory card, some SMD soldering and a 6-9VDC adaptor. Kit includes PCB, case and electronic components.

- PCB: 123 x 74mm

**Order online:** [www.jaycar.com](http://www.jaycar.com)
NO PIC18LF4620??

Nope. Not this time. The venerable PIC18LF4620 microcontroller that has supported so many Design Cycle projects is being kicked to the curb this month in favor of the USB-enabled and pin-compatible PIC18F46J50.

The J in PIC18F46J50 tells us that this particular microcontroller is USB capable. The PIC18F46J50 is also a member of the nanoWatt XLP family which means it sleeps hard drawing only 850 nA while running its built-in real time clock/calendar. If the PIC18F46J50’s RTCC is not required, sleep current can drop as low as 13 nA.

Source voltages between 2.0 volts and 3.6 volts are welcomed by the PIC18F46J50. There are 15 5.0 volt tolerant I/O pins available if you choose to use the 44-pin TQFP version of the PIC18F46J50. Its PORTB and PORTC I/O pins retain the high current sink and source values of 25 mA that are normally found only on the 5.0 volt PIC variants. With respect to on-chip peripherals, the PIC18F46J50 generally has two of everything as compared to the PIC18LF4620. This is possible due to the inclusion of a feature called Peripheral pin select. Peripheral Pin Select allows the programmer to map certain PIC18F46J50 I/O pins to built-in peripherals.

Fred Eady’s First Rule of Embedded Computing comes into play here. The PIC18F46J50 has more goodies than the PIC18LF4620. However, the PIC18F46J50 pays for these additional goodies with SRAM and EEPROM. The PIC18F46J50 rings in with 3,776 bytes of SRAM versus the PIC18LF4620’s 3,986 bytes of SRAM and 1,024 bytes of EEPROM. Thus, as the Fred Eady’s First Rule of Embedded Computing states, “Nothing is free.” The PIC18F46J50 has the ability to redeem itself as far as its absence of EEPROM is concerned in that under program control, the PIC18F46J50 can emulate EEPROM with its program Flash. While both the PIC18LF4620 and PIC18F46J50 offer EEPROM alternatives, let us not forget that both microcontrollers can also deposit data into a microSD card ATM.

In a nutshell, the PIC18F46J50 is more versatile and fuel efficient than the PIC18LF4620. As far as firmware creation is concerned, the C programming language levels the playing field as the only programming differences in the PIC18F46J50 and PIC18LF4620 depend on which on-chip peripherals we decide to use.

A UNIVERSAL PIC18F46J50 DESIGN

The only way that I can think of to create a “universal” microcontroller design is to make all of the microcontroller’s I/O and peripherals available to the programmer/designer. Again, Fred Eady’s First Rule of Embedded Computing is observed. The “universal” microcontroller design’s printed circuit board (PCB) contains only enough electronic components to support the base operation of the microcontroller that is supports. That means that absolutely no external devices have access to the native universal design, which renders it virtually useless as an intelligent monitor and control device. To gain access to the universal design’s

A UNIVERSAL MICRO DESIGN

When I’m not writing, I’m soldering. With that, I figure most of you are not looking down the sights of a soldering iron as much as I am. So, instead of subjecting you to soldering up my SERVO-inspired experimental micro-SD card interface, I decided to design a simple and super-low-cost microSD interface card that you can build on your bench.

Our EDTP microSD Interface Card is wired to operate in SPI mode, thus allowing it to attach to any microcontroller capable of communicating via a SPI portal. However, you know me. If I went to the trouble of putting some fiberglass and copper under a microSD card socket, I’m going to come up with a microcontroller board to support the microSD card that gets clicked into that microSD card socket.
microcontroller, external devices must be attached to the microcontroller as the design dictates. Since the universal design is built up on its own PCB, one or more peripheral device PCBs may be required. In reality, this turns out to be a good thing as most any design targeting the universal design’s microcontroller can be implemented.

The PIC18F46J50’s 44-pin TQFP package allows us to start our universal design small. The daughterboard captured in Screenshot 1 measures in at 2.15 x 1.675 inches. The silkscreen has been disabled in Screenshot 1 to give you an unobstructed view of the traces and the component locations. Only the PIC18F46J50 and 16 supporting components are mounted on the daughterboard. As you can see, the design is not at all complex and lends itself to an inexpensive ExpressPCB double-sided PCB. Screenshot 2 shows just how simple the PIC18F46J50 daughterboard design really is. Only four traces are laid in on the bottom side of the fiberglass.

It took a few iterations to come to the finality of Screenshot 3. With all of the components in their final positions, I silkscreened in the PIC18F46J50 I/O pin labels. To keep the silkscreen chaos to a minimum, I suppressed the silkscreen part identifiers. You can get all of the part’s scoop by simply clicking on the part. I’ve provided the original ExpressPCB files in the article downloads for this purpose. All of the RPxx silkscreen legends call out pins that support the PIC18F46J50’s peripheral pin select feature.

Note that the TC1262-3.3 voltage regulator can be powered from an outside source, as well as the VBUS voltage from the USB portal. The power sources are mutually exclusive as the USB specification states that the

- SCREENSHOT 1. This is the initial component layout. The silkscreen has been disabled to give you an unobstructed view of the top-side traces.
- SCREENSHOT 2. Pretty simple, huh? The bottom-side trace pattern is minimal because the plane we will add later will make all of the ground connections on this side of the printed circuit board.
- SCREENSHOT 3. This screenshot reveals a 3.3 volt voltage regulator that can be powered by the USB portal or an external power source. Powering from an external source while powering from USB is a NO-NO.
- SCREENSHOT 4. Everything is in place and the ground planes have been applied. Note that the ground planes are simultaneously used as ground traces and shields.
USB portal is not to be powered from an external source. This is where universal comes in. By allowing an alternate input to the 3.3 volt regulator, you can nix the USB portal and use the D+ and D- pins as PORTC I/O pins while sourcing power from an external power supply or battery. The same idea goes for the 32.768 kHz crystal and its load capacitors hanging onto RC0 and RC1. If you have plans for the real time clock/calendar, pads for the required 32.768 kHz crystal are there for you. If you run with Mick Jagger and time is on your side, you gain two more PORTC I/O pins by simply not mounting the crystal and supporting capacitors.

I didn’t double-label the OSCx pins. However, you can choose to use the PIC18F46J50’s internal oscillator which would allow you to use OSC1 and OSC2 as RA7 and RA6, respectively. The pads for the 12 MHz crystal and its supporting load capacitors can also be left blank if you don’t wish to use the particular type of FOX crystal I’ve designed in.

The ICSP connection is designed to be used with a Microchip PICkit3 like the one pictured in Photo 1. If you don’t have a PICkit3, you’ll have to lash up an adapter for the programmer/debugger of your choice. The MPLAB Real ICE, MPLAB ICD2, MPLAB ICD3, and MPLAB PM3 programmers/debuggers are all supported if you can cable them in. The ICSP interface will also directly couple to a PICkit2.

I’ve added filled planes on the top and bottom sides of the daughterboard in Screenshot 4. Both planes are ground planes. Note that I have used various thermal feed through pads and vias to electrically connect the ground planes and their associated electronic components. For instance, you’ll find thermal connections that electrically...
connect the top and bottom ground planes at the PIC18F46J50’s VSS pins. Pin 3 of the ICSP portal is also a thermal ground feed through. Three other thermal feed through ground pads can be found at the pair of GND pads and the ground pin of the external power source connector. Good examples of feed through vias can be seen at the tab of the TC1262-3.3 voltage regulator. Feed through vias are placed everywhere a ground connection may be pinched off on the top-side ground plane. In all cases, the bottom ground plane uses the feed through vias to provide a ground path to the isolated top plane area. You can explore the various feed through vias, component connects, and thermal pads by altering the views of the ExpressPCB files in the download package and comparing the physical attributes of the PIC18F46J50 daughterboard to the graphics of Schematic 1.

Our universal design becomes truly universal when it is mated to external devices. To insure the success of that merger, all of the PIC18F46J50’s header pads, the ICSP pads, the pair of thermal GND pads, and the external power input pads are all on 0.1 inch centers. A fully populated daughterboard is the focus of Photo 2.

**BUILDING AN EDTP MICROSD INTERFACE CARD**

When I got the hots to do this project, I just couldn’t wait for a PCB. So, I threw together the microSD card contraption you see in Photo 3. Although it seems to be solidly constructed in the photograph, it took a couple of microSD card sockets and a couple of hours to get it all to stick together. That was enough to slap me back into reality.

The trace elements of the microSD interface card are routed in Screenshot 5. Pins 1 and 8 are not used in SPI mode. So, to keep this PCB as small as possible, there are no header connections for the unused pins.

Clicking on the microSD interface card components will tell a story that confirms the story being told by Schematic 1. A pair of pull-up resistors and a pair of power supply bypass capacitors support the microSD card socket and a tristate buffer. The MC74VHC1GT125DT tristate buffer isolates the microSD card’s output which allows other SPI devices to be serviced from the host’s SPI portal.

The interface card headers are labeled from the microSD card perspective. SDO – which is Microchip for MISO (Master In Slave Out) – connects to the PIC18F46J50’s SDI pin. SDI is Microchip for Master Out Slave In (MOSI) and connects to the PIC18F46J50’s SDO pin. The PIC18F46J50 is the SPI master device and provides the clock which emanates from the PIC18F46J50’s CLK pin. The microSD card and the tristate buffer outputs are activated with a low-going logic level on the CS pin. The header silkscreen legends are visible in Screenshot 6.

**LOADING THE BOAT**

As I mentioned earlier, we’re probably going to need an extra board or two to tie everything into a useful design. In that the microSD interface card headers won’t directly line up with the PIC18F46J50 daughterboard headers, we’re going to need to add a motherboard to provide a means to make the necessary connections.

Behold Photo 5. Now you know why I kept calling the...
PIC18F46J50 PCB a daughterboard. I decided to forego
the use of socket pins and tacked the daughterboard
down to a perfboard with double-sided plated-through 0.1
inch centered holes. As you can see, I also nailed the
interface card to the double-sided plated-through
motherboard.

If you believe Schematic 1, we should only have to
make six connections to attach the interface card to the
PIC18F46J50’s SPI portal. You can count’em in Photo 6.
The absence of header sockets allows the longer portions
of the PIC18F46J50 daughterboard header pins to
protrude just enough to make excellent wire wrap
connections. I’m sure you’ve counted the connections; my
RadioShack wire wrap tool got twisted exactly 12 times.

**SETTING SAIL**

Call it what you will, but “setting sail” is a seaman’s

**PHOTO 5.** Everybody is on the boat in this shot. It’s time
to set sail.

**PHOTO 6.** Six wirewrap connections are all it takes to
couple the microSD card to the PIC18F46J50.
Blitzkrieg debugging does not involve LEDs or serial ports, and depends on the Windows Device Manager to assist in indicating proper operation. **Screenshot 8** is the Device Manager status before attaching the daughterboard to the laptop USB portal. The demo application I've selected installs the PIC18F46J50 daughterboard as a HID-class device with Mass Storage Device capability. A drive letter will be assigned to the daughterboard and any files with the .TXT extensions will be displayed.

The results of our Blitzkrieg debugging mission shown in **Screenshot 9** are favorable. Following the connection of the daughterboard to the laptop's USB portal, a new disk drive entry was posted, an extra set of HID-class devices appeared, a storage volume was added, and a couple of USB bus controllers went into service. The file window in **Screenshot 10** seals the deal. I created the *newfile.TXT* file from my laptop. The *FILE.TXT* file was created by the demo application.

**I CHRIESTHEE**

Now that we have an operational hardware design, let's get rid of that daughterboard moniker. I think Universal Storage Control Module–46J50 or USCM-46J50 is more fitting. Remember that the USCM-46J50 can also support any other PIC microcontrollers with comparable pinouts. The PIC18F4520 (USCM-4520), PIC18LF4620 (USCM-4620), and PIC18F46K20 USCM-46K20) come to mind immediately. You can also add the PIC18F4XJ53 (USCM-4XJ53) family of USB-enabled parts to the list, as well.

I will make all of the hardware technology we’ve discussed available to you via the EDTP website. Our microSD card journey has just begun. **NV**

**SCREENSHOT 10**. This file window verifies the integrity of the PIC18F46J50 daughterboard and the EDTP microSD interface card. Our microSD card hardware is ready to rock and roll.

*Fred Eady can be reached at fred@edtp.com.*
Recap

Last month, we finished looking at the AVR memory architecture and wrote a bootloader that lets us upload programs to an AVR without having an external programmer. One of the things we learned in the memory series is that the AVR was designed around Flash EEPROM for program memory. Flash memory is great stuff and you probably have a few billion bytes of it in the form of media cards sitting around in odd places like your cell phone, digital camera, or music player. In addition to the ubiquitous media cards, Atmel has a family of ICs called DataFlash that allow you to use Flash in your circuit designs. Both the media cards and the DataFlash have something in common: they can be written to or read from using the SPI (Serial Peripheral Interface) bus which is probably the simplest serial communications protocol around.

In the next few Workshops, we will progress to using external Flash memory via SPI, but first we will learn about shift registers which lead logically to SPI. The shift registers we are using could be used with AVR hardware SPI, but we will first write our own software to use our shift registers mainly to show how easy it is and to help understand how these things work. We will look at the 74HC595 eight-bit serial-in-parallel-out and the 74HC597 eight-bit parallel-in-serial-out ICs. [We could also use the 74HC164 74HC165 pair, but the boat left the dock before I realized I had those lying around.] Finally this month, we will apply these chips to create yet another Cylon Eyes display, but this time we will have 16 LEDs to sweep and a full eight-bit DIP switch to allow the user to change the LED patterns. Instead of having to use 24 pins as we would if we did this parallel, we only use four of our AVR I/O pins.

As a bonus, we will do all this on four different development platforms. Figure 1 shows things wired up with the Butterfly, and Figures 10, 11, 12, and 13 show the soft SPI pins so that you can use any of these devices: the Butterfly (Workshop 1), the Arduino (Workshop 9), the Breadboarduino (Workshop 21), or the BeAVR40 (Workshop 22) to do the experiments this month.

Shift Registers

If you’ve had the good fortune of taking a college level course in digital logic, then you already know a lot about shift registers and their basic element: the flip-flop. These circuits are fundamental to the entire digital revolution and if you want to really understand how all your digital electronic servants work, you are going to need to understand these guys. Since our goal at this point is just to use them, I’ll leave the gory details to your Google self-education program and glide over the fundamentals.

A flip-flop is a circuit that can remember a bit state; either 0 or 1. The most common type of flip-flop is the D or delay flip-flop that records the input bit state on the rising edge and puts that value on the output on the falling edge. Prior to the falling edge, the output is the previous bit state. The rising or falling edge allows us to create a serial shift register with D-type flip-flops arrayed in a sequence such that each input records the prior flip-flop’s output on the rising edge, then puts that value on its output on the falling edge.

This is shown in Figure 2. [Caveat: Not all flip-flops work exactly the same.] You could do this equally well by having the reverse clock logic if the design calls for it. Each of the flip-flops will also have a clear pin so that you can set them all to 0 at once. When you string eight flip-flops together, then you consider the input of the flip-flop...
on one end as the serial in pin for the shift register and the output pin on the flip-flop on the other end as the serial data out pin. The Q# pins on each flip-flop hold the full eight-bit data state and can be read or written to for parallel I/O. Figure 3 shows a parallel byte of data — Q0 to Q7 — being latched into the register, then shifted out one bit at a time for each clock pulse while a new bit is clocked in. Unfortunately for Figure 3, I chose the same byte value (0x52) for both the parallel and serial I/O, and though it might have made a bit more sense to illustrate this with two different bytes, hopefully you’ll still get the general idea.

Suggested Resources

If you want further information on shift registers, I suggest you read the Wikipedia sections on flip-flops and shift registers. If you want to REALLY understand these things, get the book Code by Charles Petzold. He starts with mechanical relays to recreate digital logic elements that could have been built in the 19th century and shows how the fundamental computer concepts could have been implemented even back then. His approach helps separate the ideas from the implementation which really helps you understand how to make logic machines.

Serial-In-Parallel-Out Shift Registers — the 74HC595

The ‘595 — whose pin-out is shown in Figure 4 — is an eight-bit serial-in-parallel-out shift register IC available in a 16-pin DIP package [www.nxp.com/documents/data_sheet/74HC_HCT595.pdf]. The outputs can be in one of three states: VCC, GND, or disconnected (high impedance).

You can clear the register by toggling the /MR, and you can shift out data at 100 MHz. There are two registers: one for shifting serial bits and one for buffering the parallel output pins. Each register has its own clock; the serial being clocked by the SH_CP pin and the parallel by the ST_CP pin. Both transfer data on the rising edge of the clock.

Figure 5 shows how bits are clocked into this device. We use the 595 by presenting a bit of data on the serial data input pin 14 (DS) and then toggling the shift register clock input pin 11(SH_CP) as shown in Figure 5. We do this for the eight bits that we want to shift into the register, then we toggle the shift register clock input pin 12 (ST_CP) to cause the 595 to move the data from the serial shift register to the parallel output register. We can hook these in series so that the serial data output line pin 9 is connected to the next 595’s serial data input pin 14 (DS). The only difference is that we shift in 16 bits instead of eight as with the single 595.

Parallel-In-Serial-Out Shift Registers — the 74HC597

The 74HC597 (whose pin-outs are shown in Figure 6)
is sort of the sister chip to the 595 in that it reverses the process. It adds one non-SPI control line that is required to load the data from the parallel pins to the shift register before clocking the data out. For our purposes, we hook this line to the ST_CP line so that we latch bits and load bytes in one operation which doesn’t seem to hurt anything [www.nxp.com/documents/data_sheet/74HC_HCT597_CNV.pdf].

### Using the 74HC595 — Control 16 LEDs

Figure 1 shows a bit of a rat’s nest of wires on breadboards. The two ICs on the left are 595s and are used to control the 16 LEDs. The schematic for this is shown in Figure 7, but please note that this doesn’t show the IC VCC and GND connections with pins 14 and 8, respectively. Since our goal is to get some preliminaries on SPI, I’ve named the pin signals with their SPI equivalents.

In our software, we need to do several things to send out the 16 bits of serial data and have them show up on the two 595 outputs. First, we set the /SS (Slave Select) to 1 so that the bits will not show on the parallel output while they are being shifted into the devices (this locks the old data on the output until all the new data is input). Next, we present each of the 16 bits in sequence on the MOSI (Master Out Slave In) pin, followed by toggling the SCLK (Serial Clock) pin that tells the 595 to shift that bit into the serial register. Finally, after all 16 bits are shifted in, we set the /SS low which causes the serial bits in the serial shift register to be transferred to the parallel output register. The following code snippet shows how to turn on every other LED:

```c
// Set alternate LEDs on off
// 0x5555 HEX <> 0101010101010101 binary
Uint16_t myVar = 0x5555;

// Clear slave select
// so data won’t show while shifting
clear_ss();

// output 16 bits to the 595
for (i=0; i<=15; i++)
{
 // Put bit on mosi_pin
 if(is_bit_set(myVar, i))
 set_mosi_bit();
 else
 clear_mosi_bit();

 // Toggle the clock to output it
 toggle_clock();
}

// Set slave select to transfer data
// from serial to parallel registers
set_ss();
```

Since our purpose at this point is to get the 595 working, we’ll defer looking at the SPI macros in the code snippet (hey are in the source code).

### Using the 74HC597 — Read an eight-bit DIP Switch

We will test this IC using the circuit shown in Figure 8. We use the 597 by first toggling the storage register clock input pin 12 (ST_CP) to shift the parallel port input pin states (D0-D7) to the parallel register. Next, we toggle the parallel load line pin 13 (/PL) which causes the 597 to move the data present in the parallel input register to the serial shift register. Finally, we toggle the shift register clock input pin 11 (SH_CP) eight times to shift the
bits out on the serial data output pin 9 (Q) which we monitor with our MISO (Master In Slave Out) pin. We can see this process in action in the following code snippet:

Code Snippet:

```c
uint8_t my_data_in = 0;

// Clear slave select
// so data won’t show while
// shifting
clear_ss();

// load 8 bits from the 597 into
// my_data_in byte
for (i=7; i>=0; i--)
{
 // Toggle the clock to get the
 // next bit
 toggle_clock();

 // If data pin = 1 set it
 // in my_data otherwise
 // do nothing since my_data_in is
 // initialized to 0
 if (get_miso_bit())
 my_data_in |= (1 << i);
 else
 uart_send_bit(0);
}

// Set slave select to transfer data
// from serial to parallel registers
set_ss();
```

This snippet is part of Shift_Register.c code that you can get in the Workshop28.zip from Nuts & Volts. When you set the DIP switch to 0xAA (binary 10101010), run the program while communicating with Brays terminal, and move the lowest bit from 0 to 1 you get the output shown in Figure 9.

**Software SPI Pins**

SPI uses four pins: MOSI, MISO, SCLK, and /SS. For us to use these in software, we must designate specific pins from specific ports and then we must set them up for data direction (input or output). While any pins common to all the boards we are writing our code for would be okay to use, we will define the following:

```c
#define mosi_port PORTB
#define mosi_port_pin PORTB2
#define mosi_ddr DDRB
#define mosi_port_pins PINB

#define miso_port PORTB
#define miso_port_pin PORTB1
#define miso_ddr DDRB
#define miso_port_pins PINB

#define sclk_port PORTD
#define sclk_port_pin PORTD7
#define sclk_ddr DDRD
```

We then set the data direction as follows:

```c
void setup_pins()
{
 // Initialize MISO as input
 // set DDR pin register to 0
 miso_ddr &= ~(1<<miso_port_pin);

 // Initialize MOSI, SCLK, AND /SS as
 // outputs
 set DDR pin registers to 1
 mosi_ddr |= (1<<mosi_port_pin);
 sclk_ddr |= (1<<sclk_port_pin);
 ss_ddr |= (1<<ss_port_pin);
}
```
If the way I'm setting or clearing bits isn't clear from earlier Workshops, then I highly recommend that you refer to a tutorial: [TUT][C] Bit manipulation (a.k.a., "Programming 101") located at: www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=37871. This will also help when you look at the source code.

I'll admit to getting confused trying to remember which pin represented which signal so that I could properly connect my software SPI signals from each of the platforms to the 595 and 597. To help with this, you can refer to Figures 10, 11, 12, and 13, which show the Butterfly, Arduino, Breadboardino, and BeAVR40, respectively, with the soft SPI pins labeled.

Yet Another Cylon Eyes Project

Figure 1 shows the circuit being controlled by an AVR Butterfly, but the source code is written to run on any of the devices shown in Figures 10, 11, 12, or 13. The full program has a bunch of sweep patterns and speeds selectable from the DIP switch, but here we'll look at an excerpt snippet that shows how the plain old Cylon Eye sweep is run. We first create an array of values that will sweep the lit LED from right to left and then we run that array forward and backward as shown:

```c
/*
To create a 16 LED Cylon Eye effect
output this array 0 to 15 then 15 to 0
0000 0000 0000 0000 == 0x0001
*/
```

Figure 10, Butterfly Soft SPI Pins.

FIGURE 10, Butterfly Soft SPI Pins.

FIGURE 11, Arduino Soft SPI Pins.

FIGURE 11, Arduino Soft SPI Pins.

FIGURE 12, Breadboardino Soft SPI Pins.

FIGURE 12, Breadboardino Soft SPI Pins.

FIGURE 13, BeAVR 40 Soft SPI Pins.

FIGURE 13, BeAVR 40 Soft SPI Pins.
```c
uint8_t i = 0;
uint16_t ce[] = { 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000 };

// Sweep right to left
for (j=0; j<=15; j++)
{
 // Clear slave select
 // so data won’t show while shifting
 clear_ss();
 // output 16 bits to the 595
 for (i=0; i<=15; i++)
 {
 // Put bit on mosi_pin
 if(is_bit_set(ce[j], i))
 set_mosi_bit();
 else
 clear_mosi_bit();
 // Toggle the clock to output it
 toggle_clock();
 // Set slave select to transfer data
 // from serial to parallel
 set_ss();
 // Wait a while
 _delay_ms(100);

 // Set slave select to transfer data
 // from parallel to serial
 set_ss();
 // Wait a while
 _delay_ms(100);

 // Sweepleft to right
 for (j=15; j>=0; j--)
 {
 // Clear slave select
 // so data won’t show while shifting
 clear_ss();
 // output 16 bits to the 595
 for (i=15; i>=0; i--)
 {
 // Put bit on mosi_pin
 if(is_bit_set(ce[j], i))
 set_mosi_bit();
 else
 clear_mosi_bit();
 // Toggle the clock to output it
 toggle_clock();
 // Set slave select to transfer data
 // from parallel to serial
 set_ss();
 // Wait a while
 _delay_ms(100);

 // Set slave select to transfer data
 // from serial to parallel
 set_ss();
 // Wait a while
 _delay_ms(100);

 // Clear slave select
 // so data won’t show while shifting
 clear_ss();
 // output 16 bits to the 595
 for (i=15; i>=0; i--)
 {
 // Put bit on mosi_pin
 if(is_bit_set(ce[j], i))
 set_mosi_bit();
 else
 clear_mosi_bit();
 // Toggle the clock to output it
 toggle_clock();
 // Set slave select to transfer data
 // from parallel to serial
 set_ss();
 // Wait a while
 _delay_ms(100);

 // Set slave select to transfer data
 // from serial to parallel
 set_ss();
 // Wait a while
 _delay_ms(100);
```
Give the Gift of Nuts & Volts!

Give a one year (12 issues) subscription to a friend and they will receive an extra **THREE FREE ISSUES**! That’s right! A total of 15 issues in all!

U.S. Price:  
1 Yr – $26.95

Subscribe online at:  
www.nutsvolts.com

or call:  
877-525-2539 (toll free)  
818-487-4545 (outside US)

Not only will they get  
15 great issues, but they will also receive:

- Access to the digital edition
- Discounts in the Webstore
- Online only content and downloads
- And so much more!

**Go now to**  
www.nutsvolts.com  
to enter your gift order!

*Be sure to use promotion code Y0WXMS when ordering.*
There is no editor for uBasic per say, although it would make a great tool if it could syntax check scripts before loading them into your Canon (hint, hint). So, if there’s no uBasic editor, what program does one use to create a script? Most people probably use Notepad because uBASIC scripts are text files without formatting commands.

SOME CHDK SYNTAX

One way to teach syntax is to explain with examples. So, let’s look at the two scripts I’ve worked with so far. I selected these scripts because they are appropriate for my near space missions. The first example allows my PowerShot A550 to take pictures when the flight computer commands it to. I would use this script in conjunction with a sun sensor. When the near spacecraft rotates to the proper sun angle, the flight computer would instruct the camera to take a picture. Controlling the camera based on sun angle prevents some of the wasted images that occur when the camera shoots an image while it is pointed directly at or directly away from the sun. A script like this would also allow the flight computer to orient the camera with a servo before recording an image. This script uses the camera’s USB port like a cable release:

```
goto "loop"
end
```

Here’s an explanation of the syntax in this short script.

**REM**

REM is short for remark. uBasic ignores remarks; they’re placed in the script just for us humans.

```
@title Remote Button
```

@title indicates the title or name of the script. This is the title that shows up on the camera’s LCD screen once you start the script.

```
: loop (colon loop)
```

The colon signifies a label. Labels are locations you can send programs to using `goto` and `gosub`.

```
wait_click n
```

`wait_click` is a command that tells the camera to wait for any button to be pushed. It’s not required that a number appear after the `wait_click`. However, if there is a number, then the number is a timeout that the script waits in milliseconds. Either after a button is pushed or when the timeout occurs, uBASIC goes to the next line in the script. Timeouts can be life savers if something is wrong with the script or the camera hangs.

```
is_key k “remote”
if k=1 then shoot
```

The `is_key k “remote”` statement asks if the last button pushed was the one called `remote`. If true, then the variable `k` is set to 1 (true). If not true, then the variable `k`
is set to 0 (false). Any button name can appear in quotes after the is_key command. If the command is written is_key m “up”, then the variable m is set to one only if the last key pressed was the camera’s up key.

if k=1 then shoot

This is the standard if-then statement. If the variable k was set to 1 (because the previous line of script set it to one when the last button pressed was the remote button), then the command shoot is executed. If variable k was not the last button pressed, then the shoot command does not take place. Associated with the if-then command is else. The else command indicates what the script is suppose to do if the conditional statement is not true. So, for example:

if k=1 then shoot else goto no_go

Notice that a command follows the if-then-else statement. More than one command can follow an if-then-else. That makes the following script record an image, increment a counter, and display the value of the counter when a condition is valid (that is, k=1). When the condition is invalid, it increments a different counter and displays its value.

if k=1 then
 shoot
 n=n+1
 print “image” n
 else
 k=k+1
 print “fail” k
 endif

shoot

The shoot command clicks the camera’s shutter. In other words, the camera takes a picture. The shoot command runs the camera through the focus process before recording an image.

goto “loop”

Whether the camera took a picture or not, the next line of script sends uBASIC to the label named loop. The label begins with a colon in the script, but is referenced by a goto or gosub command wrapped in quote marks.

end

Just like other versions of BASIC, end marks the last line of the script. If uBASIC comes across this line, all execution halts. The second script we’ll look at is a simple intervalometer. This script is appropriate for a BalloonSat that is not carrying a programmable flight computer. In the old days (circa 2003!), students would build intervalometers with 555 timer ICs. Now they can fly a Canon camera and add this simple script to its SD card.

rem Modified by NearSys 3 Sept 2010
@title Intervalometer
:interval
for n=1 to 200
  sleep 10000
  shoot
next n
end

There are two new commands in this script.

for n=1 to 200
  :interval
next n

The for-next command is for simple loop control. In this example, the commands between the for and the next are repeated 200 times (in the example above, the camera will take 200 photographs before stopping). The variable controlling the looping in this example is named n. Therefore, the end of the loop must reference this variable. Using different variables permits scripts to nest for-next loops. By the way, variables in uBASIC are any lower case letter (a to z) and can hold any number between -999,999 and +999,999. There’s no need to define variables in uBASIC scripts.

sleep 10000

The sleep command pauses the execution of the script in units of milliseconds. In this example, the camera pauses for 10 seconds every time it records an image.

OTHER COMMANDS

uBASIC permits you to control all the functions of your Canon camera like you were pressing its buttons. Many readers have scrolled and clicked buttons on their digital cameras before. These buttons have names that can be referenced in a uBASIC script with the click command. So, rather than setting up your camera by clicking a series of buttons, you can load a script to do it for you. Here’s how the syntax works:

click “up”

This command momentarily presses the up button. The up button is the top button in the scroll button on many cameras. The other three in the scroll button are down, left, and right. The name of the button follows the command click and is wrapped in quote marks. Now click only presses the button for a moment. If a button must be held down for other options to be selected, then use the press command. So, for example, I might press and hold the menu button so the up button can activate a new feature that isn’t available while the menu button is not held down. The syntax for the click, press, and release commands are all the same, with the name of the button wrapped in quote marks after the command. The script for pressing and holding the menu button while clicking the up button to bring up an option, and then clicking the right button to select it would look like this:

press “menu”
click “up”
click “right”
release “menu”

A few other buttons demonstrate the power of using CHDK.

November 2010  NUTSVOLTS  69
The set_zoom command changes the camera’s zoom setting. Cameras zoom in steps (not in analog like manual cameras) and the amount of zoom is specified by the variable \( n \). Depending on the camera, it can have 9, 15, or 129 zoom steps. Related to setting zoom in absolute terms, the zoom can be adjusted from its current setting with the following command:

\[
\text{set\_zoom\_rel } x
\]

This is a relative setting where \( x \) can be a positive or negative number. The value of \( x \) is added to the current zoom setting to move it in or out. A camera’s desired zoom setting can be dependent on the camera’s current zoom setting. To get the current zoom setting, use the following command:

\[
\text{get\_zoom } x
\]

The current setting of the camera’s zoom is loaded into the variable \( x \). The value in the variable \( x \) can be evaluated and acted upon with an \texttt{if-then} statement. Related to the \texttt{shoot} command is the \texttt{shoot\_half} command. This command is equivalent to pressing the shutter button only half way. Doing so refocuses the camera and is necessary after zooming the lens since cameras don’t refocus themselves after zooming. For a near space mission, I might use a camera at a minimum zoom setting to get a context picture of the ground and then take a second picture at a higher zoom. Cool, isn’t it?

\[
\text{print }
\]

The \texttt{print} command displays text on the camera’s LCD screen. For example, a script would use \texttt{print “picture” n} to display the word “picture” followed by the number stored in variable \( n \). The following script snippet takes a picture, increments the number of pictures taken, and displays the results on the camera’s LCD screen. It’s useful for determining how successful a near space mission was upon recovery, but before you get a chance to extract the SD card.

\[
\text{shoot } \quad n=n+1 \\
\text{print “picture” } n
\]

\[
\text{shut\_down }
\]

This command powers off the camera. It’s used at the end of a camera’s sequence of actions to shut the camera off.

Scripts can get pretty complex. For example, a camera can monitor a part of its field of view and when a change occurs within that field, the camera can take a picture. This allows people to use Canons to record wild life and

---

**GIZMOS THAT BRING YOUR DREAMS TO LIFE!**

- 3 watt LED strip $10.00
  - Not just bright... Stupid Bright!!

- Noritake Vacuum Fluorescent Display
  - Regular $50 now $25.00 each
  - Works with all micros and arduino

- Atmega 8/168/328 Development board $35

- Atmel STK500 USB ISP programmer $38

- Lego Flashlights
  - Keychain $7.95
  - Head Lamp $11.95
  - 7 Inch Lamp $19.95
  - Dynamo Lamp $21.95
  - Let that light shine in the next generation!

- 1000’s of LED’s in stock
  - 1.3mm, 3mm, 5mm, and 10mm from $.40
  - 1/2 watt $9.95
  - 1 watt Stars $3.60
  - RGB $1.50
  - UV, IR, Surface Mount

- RGB LED Strips
  - 12v LED Bars
  - LCD Displays

- Basic robot animal kits start at $25

- Robot Kits Are Here:
  - Completely configurable, expandable, and modifiable.
  - Visual programming.
  - Great for kids age 10 and up
  - With student workbook.
  - Starting at $95
  - Ask about school discounts

5797 NW Cornelius Pass Road
Hillsboro Oregon 97124

To see the best deals join our online mailing list or stop by our retail store!

www.SurplusGizmos.com

503-439-1249

---

70 NUTS AND VOLTS November 2010
lightning. One limit in CHDK is the size of the script. No script can have more than 8,196 (8k) characters. Help files about CHDK and uBASIC syntax can be found at http://chdk.wikia.com/wiki/CHDK. After writing a script in Notepad, follow these steps to save it to an SD card:

• Click File.
• Click the Save in window.
• In the Save in window, locate your SD card and go to CHDK and then SCRIPTS.
• In the Save as type: window, select All Files.
• In the File name: window, type the file’s name and end with a .bas (like nearspace.bas).
• Click the Save button.

Be sure you unlock the SD card before inserting it into your PC and lock it before reinserting it into your Canon.

Onwards and Upwards,
Your near space guide  

THE OWNERSHIP, MANAGEMENT, AND CIRCULATION STATEMENT OF NUTS & VOLTS MAGAZINE, Publication Number: 1528-9885 is published monthly. Subscription price is $26.95. 7. The complete mailing address of known office of Publication is T&L Publications, Inc., 430 Princeland Ct., Corona, Riverside County, CA 92879-1300. Contact Person: Tracy Kerley. Telephone: (951) 371-8497. 8. Complete Mailing address of Headquarters or General Business Office of Publisher is T&L Publications, Inc., 430 Princeland Ct, Corona, CA 92879. 9. The names and addresses of the Publisher, and Associate Publisher are: Publisher, Larry Lemieux, 430 Princeland Ct., Corona, CA 92879; Associate Publisher, Robin Lemieux, 430 Princeland Ct., Corona, CA 92879. 10. The names and addresses of stockholders holding one percent or more of the total amount of stock are: John Lemieux, 430 Princeland Ct., Corona, CA 92879; Larry Lemieux, 430 Princeland Ct., Corona, CA 92879; Audrey Lemieux, 430 Princeland Ct., Corona, CA 92879. 11. Known Bondholders, Mortgagees, and other security holders: None. 12. Tax Status: Has not
teen changed during preceding 12 months. 13. Publication Title: Nuts and Volts 14. Issue Date for Circulation Data: October 2009-September 2010. 15. The average number of copies of each issue during the proceeding twelve months is: A) Total number of copies printed (net press run); 44,451 B) Paid/Requested Circulation (1) Mailed Outside County subscriptions: 29,164 (2) Mailed In-County subscriptions: 0 (3) Paid Distribution Outside the Mail including Sales through dealers and carriers, street vendor, and counter sales and other paid distribution outside USPS: 6,394 (4) Paid Distribution by other classes of mail through the USPS: 0; C) Total Paid Distribution: 37,413 D) Free or Nominal Rate Distribution by mail and outside the mail (1) Free or Nominal Rate Outside-County Copies: 0 (2) Free or Nominal Rate In-County Copies: 0 (3) Free or Nominal Rate Copies Mailed at other classes through the USPS: 0 (4) Free or Nominal Rate Distribution Outside the mail: 158; E) Total Free or Nominal Rate Distribution: 158; F) Total Distribution: 37,571; G) Copies not distributed: 6,880; H) Total: 44,451; Percent paid circulation: 99.58%. Actual number of copies of the single issue published nearest the filing date is September 2010; A) Total number of copies printed (net press run) 44,254; B) Paid/Requested Circulation (1) Mailed Outside County subscriptions: 28,164 (2) Mailed In-County subscriptions: 0 (3) Paid Distribution Outside the Mail including Sales through dealers and carriers, street vendor, and counter sales and other paid distribution outside USPS: 6,394 (4) Paid Distribution by other classes of mail through the USPS: 0; C) Total Paid Distribution: 36,098; D) Free or Nominal Rate Distribution by mail and outside the mail (1) Free or Nominal Rate Outside-County Copies: 0 (2) Free or Nominal Rate In-County Copies: 0 (3) Free or Nominal Rate Copies Mailed at other classes through the USPS: 0 (4) Free or Nominal Rate Distribution Outside the mail: 0; E) Total Free or Nominal Rate Distribution: 0; F) Total Distribution: 36,098; G) Copies not distributed: 0; H) Total: 44,254; Percent paid circulation: 100.0%. I certify that these statements are correct and complete. Larry Lemieux, Publisher - 9/30/10.

November 2010  
NUTS & VOLTS 71
# Electronics

## Teardowns

**Learn How Electronics Work by Taking Them Apart**
by Bryan Bergeron

"The text is written as if Dr. Bergeron, who is a highly experienced electronics practitioner, is speaking directly to the reader with a point-by-point commentary about each teardown, complete with clear explanations of the operation and function of every component. By the time the product is completely disassembled, the reader understands the design tricks, component selection, and packaging choices that enabled the product to reach the market."

From the Foreword by Forrest M. Mims III

Amp up your knowledge of electronics by deconstructing common devices and analyzing the revealed components and circuitry. *Teardowns: Learn How Electronics Work by Taking Them Apart* contains 14 projects that expose the inner workings of household appliances, workbench measuring instruments, and musical equipment. Discover how resistors, capacitors, sensors, transducers, and transistors function in real circuitry.

**Reg Price $24.95**  
**Sale Price $21.95**

## Programming the Propeller with Spin

**by Harprit Singh Sandhu**

*Programming the Propeller with Spin: A Beginner's Guide to Parallel Processing* walks you through the essential skills you need to build and control devices using the Propeller chip and its parallel processing environment. Find out how to use each of the identical 32-bit processors — known as cogs — and make the eight cogs effectively interact with each other. The book covers Propeller hardware and software setup, memory, and the Spin language.

**$29.95**

## Build Your Own Electronics Workshop

**by Thomas Petruzzellis**

**BUILD YOUR OWN DREAM ELECTRONICS LAB!**

This value-packed resource provides everything needed to put together a fully functioning home electronics workshop! From finding space to stocking it with components, to putting the shop into action — building, testing, and troubleshooting systems. The best part is, this book will save you money.

**Reg Price $29.95**  
**Sale Price $24.95**

## TRONIX Book 1

**by Gary Gibson**

**Hands-On Electronics Experiments!**

This is the beautiful, fully-illustrated manual for a hands-on lab to help you build 40 of the most interesting experiments you have ever seen on a solderless circuit board, and as you do, you learn how the basic components work in a circuit. You will enjoy hours of fun creating all kinds of sounds and light displays.

**$14.95**

## Holography Projects for the Evil Genius

**by Gavin D J Harper**

New in the best selling Evil Genius series, this is a step-by-step guide to the improved art and science of holography, complete with explanations of the techniques, materials, processes, and tools needed to create impressive holograms. The book features more than a dozen distinct projects with more than 100 holograms posted on an associated website.

**$24.95**

## 30 Arduino Projects for the Evil Genius

**by Simon Monk**

**30 Ways to Have Some Computer-Controlled Evil Fun!**

Using easy-to-find components and equipment, this do-it-yourself book explains how to attach an Arduino board to your computer, program it, and connect electronics to it to create fiendishly fun projects. The only limit is your imagination!

**$24.95**

## PICAXE Microcontroller Projects for the Evil Genius

**by Ron Hackett**

**Whip Up Some Fiendishly Fun Picaxe Devices**

This wickedly inventive guide shows you how to program, build, and debug a variety of PICAXE microcontroller projects. PICAXE Microcontroller Projects for the Evil Genius gets you started with programming and I/O interfacing right away, and then shows you how to develop a master processor circuit.

**$24.95**

## Master and Command C for PIC MCUs

**by Fred Eady**

**Master and Command C for PIC MCU, Volume I** aims to help readers get the most out of the Custom Computer Services (CCS) C compiler for PIC microcontrollers. The author describes some basic compiler operations that will help programmers — particularly those new to the craft — create solid code that lends itself to easy debugging and testing. As Eady notes in his preface, a single built-in CCS compiler call — such as output_bit — can serve as a basic aid to let programmers know about the "health" of their PIC code.

**$14.95**
**An Arduino Workshop**

From the
Smiley Workshop
C Programming for
Microcontrollers
by Joe Pardue

Book $44.95

Kit $66.95

The book *An Arduino Workshop* and the associated hardware projects kit bring all the pieces of the puzzle together in one place. With this, you will learn to: blink eight LEDs (Cylon Eyes); read a pushbutton and 8-bit DIP switch; sense voltage, light, and temperature; make music on a piezo element; sense edges and gray levels; optically isolate voltages; fade an LED with PWM; control motor speed; and more!

**An Arduino Workshop Combo**

Reg Price $ 124.95

Subscriber’s Price $119.95 Plus S/H

---

**Free Shipping!**

Only $129.95
Or
$24.95 each.

---

**Special OFFERS**

Buy 3 of the Evil Genius Books and get FREE U.S.P.S. shipping!

---

**Other available titles**


---

**CD ROM SPECIALS**

Nuts & Volts
6 CD-ROMs & Hat Special!

That's 72 issues. Complete with supporting code and media files.

---

### Projects

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Description</th>
<th>Price 1</th>
<th>Price 2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Piezoelectric Film Speaker Kit</strong></td>
<td>New! As seen in this month’s issue, here is a great project to amaze your friends and to demonstrate a unique way of producing sound. Kit contains one piece of piezoelectric film, speaker film stand, PCB, components, audio input cable, and construction manual. All you’ll need to add is a battery and a sound source. For more info, please visit our website.</td>
<td>Subscriber’s Price $69.95</td>
<td>Non-Subscriber’s Price $74.95</td>
</tr>
<tr>
<td><strong>16-Bit Micro Experimenter Board</strong></td>
<td>Ready to move on from 8-bit to 16-bit microcontrollers? Well, you’re in luck! In the December 2009 Nuts &amp; Volts issue, you’re introduced to “the 16-Bit Micro Experimenter.” The kit comes with a CD-ROM that contains details on assembly, operation, as well as an assortment of ready-made applications. New applications will be added in upcoming months.</td>
<td>Subscriber’s Price $55.95</td>
<td>Non-Subscriber’s Price $59.95</td>
</tr>
<tr>
<td><strong>Garage Door Alarm PCB &amp; Chips</strong></td>
<td>As seen in the November 2010 issue. Is Your Garage Door Open? This project uses the latest in wireless technology, and is a fun and easy project to build. We provide the difficult parts: the transmitter and receiver PCBs with their matching programmed MCUs. The other components can be found at your favorite parts house. Includes an article reprint.</td>
<td>Subscriber’s Price $29.95</td>
<td>Non-Subscriber’s Price $31.95</td>
</tr>
<tr>
<td><strong>Xmas Tree Kit</strong></td>
<td>The microprocessor-controlled Xmas Tree comes with 8 preprogrammed light display sequences. All you need is a soldering iron and a couple of batteries, and you’ll be ready to show off your electronic tree! To see a demo video, please visit <a href="http://www.nutsvolts.com">www.nutsvolts.com</a></td>
<td>Subscriber’s Price $38.95</td>
<td>Non-Subscriber’s Price $41.95</td>
</tr>
<tr>
<td><strong>128x64 Graphic Display Kit</strong></td>
<td>New application for the 16-Bit Micro Experimenter LCD displays ... they have been around for quite some time, but what if you could have both characters, as well as graphic displays at the same time? With this kit, we will show you how easy and inexpensive this technology can be using the 16-Bit Micro Experimenter.</td>
<td>Subscriber’s Price $45.95</td>
<td>Non-Subscriber’s Price $48.95</td>
</tr>
<tr>
<td><strong>Magic Box Kit</strong></td>
<td>This unique DIY construction project blends electronics technology with carefully planned handcraftsmanship. This clever trick has the observer remove one of six pawns while you are out of the room and upon re-entering you indicate the missing pawn without ever opening the box. Includes an article reprint.</td>
<td>Subscriber’s Price $39.95</td>
<td>Non-Subscriber’s Price $45.95</td>
</tr>
<tr>
<td><strong>rCube Talking Alarm Clock Kit</strong></td>
<td>Available in blue, black, red, and green. All components are pre-cut and pre-bent for easier assembly and the microcontrollers are pre-programmed with the software. Kits also include PCB, AC adapter, and instructions on CD-ROM.</td>
<td>Subscriber’s Price $49.95</td>
<td>Non-Subscriber’s Price $54.00</td>
</tr>
<tr>
<td><strong>Nixie Tube Clock Kit</strong></td>
<td>Nixie tube clocks fuse the spirit, drama, and eerie beauty of cold war technology with modern inner works to create uncommon handcrafted timepieces. Now with optional case choices! Get more info @ our webstore. K9 includes article reprint, complete instructions, and parts list.</td>
<td>Subscriber’s Price $146.95</td>
<td>Non-Subscriber’s Price $159.95</td>
</tr>
<tr>
<td><strong>NixieNeon Clock Kit</strong></td>
<td>Using Neon and Nixie bulbs, this clock displays the precision movement of time and is programmable to display “Time Chaos” at different intervals. The NixieNeon Clock then resets itself to the correct time in an eye-catching ballet of luminosity. The PCB is 7.25”x 7.25” and consists of over 400 components. Reg Price $195.95 Sale Price $159.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Complete Idiot's Guide to Solar Power for Your Home
by Dan Ramsey / David Hughes

The perfect source for solar power — fully illustrated. This book helps readers understand the basics of solar power and other renewable energy sources, explore whether solar power makes sense for them, what their options are, and what's involved with installing various on- and off-grid systems.

$19.95

50 Green Projects for the Evil Genius
by Jamil Shariff

Using easy-to-find parts and tools, this do-it-yourself guide offers a wide variety of environmentally focused projects you can accomplish on your own. Topics covered include transportation, alternative fuels, solar, wind, and hydro power, home insulation, construction, and more. The projects in this unique guide range from easy to more complex and are designed to optimize your time and simplify your life!

$24.95

The WindPitch Wind Turbine Kit

The Whirlybird Three-Phase Wind Turbine Kit is one of the great projects from the series of articles by John Gavlik, "Experimenting with Alternative Energy." In Parts 6 and 7, he teaches you how to produce the most electricity utilizing the wind. For kit details, please visit our webstore.

Subscriber's Price $75.95
Non-Subscriber's Price $79.95

Do you know how many watts (YOUR MONEY) are going down the drain from "THE PHANTOM DRAW?"

If you are interested in your own power usage we at Nuts & Volts Magazine believe that this is the best way to help you determine your electrical energy use in ON and OFF home appliances.

To order call 1.800.783.4624 or online www.nutsvolts.com $29.95 plus S&H

Run Your Diesel Vehicle on Biofuels
A Do-It-Yourself Manual
by Jon Starbuck, Gavin D J Harper

CONVERT TO BIODIESEL FOR A MORE ENVIRONMENTALLY FRIENDLY RIDE! Run Your Diesel Vehicle on Biofuels has everything you need to make the switch from expensive, environment-damaging carbon fuel to cheap (and, in many cases, free), clean fuel for your vehicle. Practical and decidedly apolitical, this unique guide focuses on technical details, parts, and instructions.

$24.95

Solar Energy Projects for the Evil Genius
by Gavin D J Harper

Let the sun shine on your evil side — and have a wicked amount of fun on your way to becoming a solar energy master! In Solar Energy Projects for the Evil Genius, high-tech guru Gavin Harper gives you everything you need to build more than 30 thrilling solar energy projects. You'll find complete, easy-to-follow plans, with clear diagrams and schematics, so you know exactly what's involved before you begin.

$24.95

Fuel Cell Projects for the Evil Genius
by Gavin D J Harper

FUEL YOUR EVIL URGES WHILE YOU BUILD GREEN ENERGY PROJECTS!

Go green as you amass power! Fuel Cell Projects for the Evil Genius broadens your knowledge of this important, rapidly developing technology and shows you how to build practical, environmentally conscious projects using the three most popular and widely accessible fuel cells!

$24.95

B3-Phase Wind Turbine Kit

The Hydrocar Kt

The Hydrocar is used in a couple of great projects from the series of articles by John Gavlik, "Experimenting with Alternative Energy." In Parts 10 and 11, he teaches you how to produce the most power by evaluating the pitch (setting angle) of the profiled blades. For kit details, please visit our webstore.

Subscriber's Price $79.95
Non-Subscriber's Price $84.95

WindPitch Kit

The WindPitch Wind Turbine Kit is a miniature real-working wind turbine and is one of the great projects from the series of articles by John Gavlik, "Experimenting with Alternative Energy." In Parts 8 and 9, he teaches you how to operate the Polymer Electrolyte Membrane "reversible" fuel cell. For kit details and a demo video, please visit our webstore.

Subscriber's Price $84.95
Non-Subscriber's Price $89.95

November 2010 NUTSVOLTS 75
How a PNP Transistor Works

In this experiment, we will build a simple circuit to observe a PNP transistor serving as a current amplifier.

1. Build the Circuit.
   Using the schematic along with the pictorial diagram, place the components on a solderless breadboard as shown. Verify that your wiring is correct.

2. Do the Experiment.
   Theory: In this circuit, when you press switch S1, the electrons will flow from the negative of the battery through the 3,300 ohm resistor, Switch S1, LED1, the Base-Emitter junction of Q1, and then back to the positive of the battery. At the same time, electrons flow through R2 (the 220 ohm resistor), LED 2, the Collector-Emitter junction of Q1, and back to the positive of the battery. There must be Base-Emitter current before any current will flow in the Collector-Emitter circuit. This act of a smaller current controlling a larger current is referred to as amplification.

   Within limits, as we increase the current in the Base-Emitter circuit, it will increase the current flowing in the Collector-Emitter circuit. By adjusting the value of R1, you can use an ammeter to observe the change in currents.

   Procedure: Connect a nine-volt battery to the battery snap and press the pushbutton switch to cause current to flow. Both LEDs should light up. When you release the pushbutton switch, both LEDs should turn off.

Classifieds

KITS/PLANS

High Voltage Kits
Solid State Tesla Coils, High Voltage Kits, and Components
- Plasma Speakers
- Class-E Tesla Coils
- Audio Modulation Coils
- Lightning Detectors
- Flyback Drivers
- DRSSTC
- Books

www.EasternVoltageResearch.com

EXCLUSIVE U.S. DISTRIBUTOR

QKITS.COM

50 AMP PWM 1-888-GO 4 KITS

50 AMP DIGITAL PWM
(OPTIONAL DISPLAY)
FM Transmitters
Timers
Audio Amplifiers
Motor Controllers
PIC Programmers / Arduino

High Quality Electronic Kits & Modules

$59.95
UK1133

50 AMP DIGITAL PWM

www.canakit.com

POOR MANS SPECTRUM ANALYZER

Turns any oscilloscope or PC into a 20kHz to 2.1GHz RF Spectrum Analyzer. Available as a kit or kit with built and tested boards.

Qkits Ltd

Looking for solar stuff and kits?

www.nutsvolts.com

ROBOTICS

MaxSonar
Ultrasonic Ranging is EZ

LV-MaxSonar-EZ
- Power-up calibration
- Smallest MaxSonar
- 1 inch resolution
- Low power, 2.5V-5.5V

MaxSonar-WR (IP67)
- Beam pattern choice
- Weather resistant
- Standard ¼” fitting
- Quality narrow beam

XL-MaxSonar-EZ
- Compact packaging
- Weather resistant
- Standard ¼” fitting
- High acoustic power

MaxSonar-WRC (IP67)
- Custom Designs

www.canakit.com

www.kelvin.com

www.maxbotix.com

www.nutsvolts.com

New for 2010

VIDEO AGC/SYNC PROCESSING KIT
All Board Mounted Parts
w/ Instruction Manual CD
Choice of Non-programmed or Pre-programmed AVR Microcontroller

www.jlklelectronics.com

**COMPONENTS**

**RF PARTS™ CO.**
Tubes, Transistors, Power Components
Email: rfp@rfparts.com • Web: www.rfparts.com
800-737-2787 Fax 888-744-1943

**Brillidea**
purveyor of prototyping goods
+RGB LED Ribbon +LED Lumen +RGB LED Pixels +3.0" LCD w/ composite video input
www.brillidea.com

**uM-FPU V3.1**
Floating Point Coprocessor
32-bit IEEE 754 SPI or I2C DIP-18, SOIC-18
New full featured Compiler Extensive floating point support, GPS input, FFT, 12-bit A/D, matrix operations, user-defined functions.
www.micromegacorp.com

**Nixie Power**
2-18V In. 4-8W / 150-200VDC Out 0.95" x 0.95" x 0.35"
$9.95 (Shipping included)
www.tayloredge.com/nixie

**DESIGN/ENG SERVICES**

**HARDWARE WANTED**

**SURPLUS**

**SURPLUS ELECTRONIC PARTS & ACCESSORIES**

Surplus Material Components
SMC ELECTRONICS
www.smcelectronics.com

Surplus - Obsolete - Used electrical or electronic find it here or sell it here!
no ties ~ no commissions ~ it's free!
www.SecondHandRadio.com
24 Hour Circuit for Electronic Candle

I’m looking for a simple circuit for a 24 hour electronic candle that uses very little power. The candle would drive a single LED. It would run for x hours (say five), then turn off; 24 hours after it was first activated, it would automatically turn back on for the predefined time.

I’ve found several ideas, but most of them surrounded the 555 chip which has a very limited time frame.

#11101
Scott Lapp
Simi Valley, CA

Fluke Scope and RF

I’ve had a Fluke 99B Series II scopemeter (100 MHz) for a number of years and it works great.

I’ve started working with amateur radio and would like advice on using this scope to measure RF. I think I need an RF probe. I currently have the set of 10:1 probes that come with the scope.

Can the scope — using the proper probes — be used at the actual antenna feed output from the transceiver?

#11102
Jerry Lopez
Georgiana, AL

Probing Question

I am going to build two EHT measurement probes: one at 800 M ohms and the other at 45 G ohms. I will also use a 3140 op-amp or a LM358 op-amp, but need a schematic of the components around the op-amp so that I can change the impedance of the EHT measurement probe and use it with either a multimeter or oscilloscope to check the output of the flyback voltage and signal valves.

Russell Kincaid was kind enough to show me how to get a 10K and 25K sign signal out of a signal generator and an amp to power a flyback for my project, for a sign output from the flyback.

Also, I have a Conar Model 251 oscilloscope 1Q MHz. Can anyone point me to a website that has the value of the fuse for this scope and maybe a manual?

#11103
James New
Jacksonville, FL

Part Identification and Availability

We are repairing printed circuit boards, but cannot locate schematics. We are looking for 32-pin microcontrollers. ID 3s are 14345 with 9122 listed below. That’s it. Also, bypass capacitors and holders, U-3A 99X.

No manufacturer logos. Have tried obsolete part vendors. No luck. Can anyone help?

#11104
Glenn Fischer
GA

Using Up Batteries

With so many devices we use today having a power regulator in them, our batteries become ineffective before they really run out of power. For instance, a digital camera will use fresh alkaline batteries for a very short time. What can be done with these batteries that have plenty of life in them, but not enough to get past the power regulator? Is it possible to blink an LED until there is like half a volt or less in each battery? What interesting things can these "dead" batteries do until they are truly dead?

#11105
Rick Montzka
Anoka, MN

Remote Start

I am buying my wife a car, but she will not get the garage. So, I agreed to buy her a remote start. I have looked around for one with a clock that will start the car every weekday. So far, no luck. I’m thinking one could program a PIC to start the car like at 8:30 am for 15 minutes, except Saturday and Sunday. Of course, with an override switch for vacations. Any ideas?

#1 I'm assuming this is only to happen when the car is home.

The Idec Smart Relay would be perfect; [www.idec.com/usen/products/Catalogs/SmartRelay/SmartRelay.html](http://www.idec.com/usen/products/Catalogs/SmartRelay/SmartRelay.html) IDEC offers a software package that you can test the logic. It has a built-in clock/calendar with automatic daylight savings time. The demo package can be used with or without a relay for 15 days.

If you use the 24 VDC version, you would have DC power available; you'll need some DC power for the remote interface. An OptoFET is a really reliable interface across any remote button. Per your suggestion — make it start the car at 8:30 and turn it off at 8:45 — two outputs are needed. One for OFF and one for ON. One input would be used for Enable/Disable.

#2 I put an electric engine heater on the car. That was more economical than the gasoline to warm up the car.

Check if a block heater can be ordered when buying a new car. Block heaters that go in place of a frost plug can be ordered from an auto parts store like NAPA. There are also electric heaters that can be connected with hoses.

A small block heater can be
plugged in overnight or plugged in all the time, so the car engine is always warm. It can also be turned on with a wireless switch module. Purchase a light timer that can be set for Monday through Friday; check the switch rating if it is big enough for your heater. Also, a warm engine starts easier.

Keith Berning
Jenera, OH

#3 I checked with my local car accessories store; www.creativecar audio.net. They have the system you need. Not only is it programmable by time, it can program by temperature.

Dennis Hewett
Frontenac, KS

RS-232 to Audio and Back

I have puppets which I can control with a servo controller board attached to the serial port of the computer. I want to record the serial out to audio, burn a CD, and then play the audio from the CD and send the output to the servo controller board, as though it were coming from the serial port of the computer. Anyone have an idea or could help design a hardware solution to this need?

I think I have a solution for you. What I came up with is to use a modem chip: the MX614. It can create the sound signals that correspond to the digital stream in and out of the serial port, which can then be recorded on a CD for playback to control the puppets.

In order to verify it works, I actually built the circuits and checked it out. I was able to send a bunch of ASCII data out the serial port, through the circuit with the MX614, and into another computer's audio in, capture it, and then record it to a CD. I then reversed the flow, so to speak, played the CD, and fed the audio out back into the circuit and then to the serial port, and displayed the data on a terminal window. The data was exactly the same as I had sent. I used the terminal window program called Etima Advantage Serial Port Terminal program as the interface to/from the serial port. It can send raw data you type into a window, or send a whole file. Any terminal program should work. The MX614 chip expects digital levels, so a MAX232 type chip was used to interface the serial port with RS-232 voltages (± 9-12 volts) values to the 5V digital levels.

The primary article I used as an example for setting up the MX614 chip can be found at www.cromton.com/hamradio/mx614_article.pdf. If you decide to set it up to try, while I generated the audio fine using just a plug-in prototyping board, the board’s capacitive effects apparently scuttled it working for receiving the audio, so I had to recreate the circuit on a soldering type prototype board. You don’t need any of the PushToTalk (PTT) parts of the circuit. The speed of this solution is based on 1200 baud, hopefully that is fast enough.

Pete
Fairfax, VA

Noise Suppression in PIC Projects

We develop products with PIC tech, but are unable to beat the noise. Can anybody suggest a solution?

Use a ground plane, avoid radiating loops (watch for current return), separate noisy parts from sensitive parts, use self-shielding techniques (twisted pair), and shielding/filter techniques. Use filtering on ADC inputs to avoid problems with aliasing and noise. Use adequate power supply bypassing. Slow down transitions if you can. Use oscillator dithering techniques if you can. Use a resonating snubber to quiet down switching supplies (application note from Maxim). Fortunately, books have been written about this subject. Noise Reduction Techniques in Electronic Systems, by Henry W. Ott is the reference. Controlling Noise and Radiation in Mixed-Signal and Digital Systems, a web seminar by Nicholas Gray from National Semiconductor is another good resource. My personal favorite is Linear Technology Application Note 47, High Speed Amplifier Techniques, by Jim Williams (good explanations — probes, ground plane, loop pick-up when measuring, what to expect from scopes and probes, what are the pitfalls; about 50 references). Microchip Technology also has some good resources; look for application notes by Bonnie Baker.

Walter Heissenberger
Hancock, NH

What is the least expensive system to use to program a PIC16F876A? I got one as a sample from Microchip; now I don’t know what to use to talk to it.

I bought the PICIT2 programmer from microchip.com and find it very easy to use. I have very little experience with programming PICs, but with the PICIT2 I can load code and burn it onto the chip. I have had
almost no problems with it.

Ray via email

#2 The least expensive system to program a PIC16F876A is just about free, if you have a reasonably well-stocked parts box and a computer with an RS-232 serial port. The programmer circuit in Figure 1 was designed by Ralph Gable, WA2PUX, and appeared in the August 2003 issue of QST Magazine. It is based on the so-called "JDM" programmer. However, the schematic in that article contained several errors, so I have redrawn it. One advantage of this circuit is that it works with serial ports that don't meet the RS-232 voltage standards. The circuit requires a clean, stable 13 volt supply from an adjustable benchtop power supply, or you can add an LM317 adjustable regulator to the circuit to supply this voltage. Connect the "flagged" wires in the circuit to the appropriate pins on a socket for the PIC and you're ready to go. This programmer will work with many different PICs, not just the '876. On the software side, download the free trial version of PICBASIC PRO from www.ic-prog.com to write your programs. To load the programs into the PIC with this programmer circuit, I use IC-Prog 1.05 which is a freeware application available at www.ic-prog.com. It has worked well for me in both Windows 98SE and XP environments.

Dan Gravatt
Lawrence, KS

[#7101 - July 2010]
Measuring Frequency

I'm looking for a simple solution that measures the frequency of a pulse (.5 Vss). It does not need to measure higher than 1 kHz. Is there anything out there off-the-shelf or a kit; a small board with an LCD display?

If "discretion is the better part of valor" then consider these ideas. Obtain a digital voltmeter that measures frequency, as well as the usual parameters. Alternatively, obtain a digital storage oscilloscope that is a plug-in to a PC. Its math function usually includes the measurement and display of the frequency of a waveform. Either will be a welcome addition to your electronic capability. Start with a search of the advertisers in this magazine. Jameco Electronics has an impressive array of DVMs that measure frequency, as well.

William A. Hanger
Churchville, VA

[#7103 - July 2010]
Servo Motors

I am building a kinetic sculpture. I have a 5' wide plywood disk that weighs 50 pounds. I need to be able to spin the disk anywhere from between 60 to 500 rpm. Once the disk reaches a given rpm, I need the disk to maintain it precisely. Using just a normal AC motor doesn't work because the rpm seems to be constantly fluctuating. I am told that I need a .25 HP servo motor to achieve this. Any other ideas?

You left many important details out of your question, like the supply voltage you have available and exactly what "precise rpm" means. For most art projects, an adjustable frequency drive controlling a simple AC induction motor is entirely adequate. For under $400, you can buy a 120 VAC, 1/2 HP drive from Grainger (model 3XA39).

Couple this to a cheap three-phase motor (I cannot recommend one since I don't know your mechanical requirements), and you can either use the up/down pushbuttons on the drive's front panel to control the rpm or fit a remote speed potentiometer. They have other models for 240 VAC input, too.

Dan Danknick
Santa Ana, CA

[#7104 - July 2010]
PWM Signal Generator for Camshaft-Pump Control

I am looking to do some development work of an injection pump in conjunction with a camshaft signal. I am looking to drive a coil with a resistance of 1.6 ohms (at 20 C), and an inductance at 1 kHz of 1.72 mH. The signal needs to be a (frequency 4 kHz) PWM peak and hold type with two parts: a V_boost and a V_hold (or V_batt). V_boost needs to be adjustable between 30 and 70V, and the current adjustable from 4 to 12A; V_hold should be adjustable between 6 and 18V. A zener diode should be used to drain the current from the coil when the driver is deactivated; V_zener should be 28V. The signal out sequence will be based on feedback from a once-per-rev Hall-effect sensor; conversion to TTL would be fine.

Before you start, please consider a shaft pickup that has more resolution than once per revolution. Unless the engine is to be run at a nearly constant speed or will be accelerated very slowly, the coarse timing suggested will not follow the run-up of a fast-accelerating engine that may double its speed in one or two revs of the camshaft. At least for developmental purposes, use an absolute position encoder or add a shaft digitizer with multiples of 12 outputs along with the once-per-rev pickup. From the higher resolution encoders, you can decode those desired outputs for the two, three, and four lobes.

My experience with processor control of timing of this sort is that the processor ultimately gets busied up with so much other mundane stuff that it cannot accurately and timely do the main job which must be done on a tight schedule.

Other comments are: The peak (pick) circuit can be common to all drivers since their timing does not overlap; and the coil discharge function should be back into the pick supply rather than into a zener.

At 4 kHz and four to 12 amps, there is appreciable energy to waste in the zener. Also, almost the same energy is recovered in the discharge function as is supplied in the pick function (less IR and magnetic losses). The driver circuit – when not active – should keep the coil near ground or at a negative voltage so as to avoid electrolytic or Galvanic action to the copper windings.

William A. Hanger
Churchville, VA
### ADvertiser INDEX

**AMATEUR RADIO AND TV**
- PolarisUSA Video, Inc. ................................................. 13
- Ramsey Electronics, Inc. ............................................ 22-23
- V-Module .................................................................... 30

**BATTERIES/CHARGERS**
- Cunard Associates ...................................................... 37

**BUYING ELECTRONIC SURPLUS**
- Jaycar Electronics ......................................................... 53

**CCD CAMERAS/VIDEO**
- Circuit Specialists, Inc. .............................................. 82-83
- PolarisUSA Video, Inc. .................................................. 13
- Ramsey Electronics, Inc. ............................................ 22-23

**CIRCUIT BOARDS**
- AP Circuits .................................................................. 28
- Cunard Associates ......................................................... 37
- Dimension Engineering .................................................. 42
- Electronic Surplus ........................................................ 9
- ExpressPCB .................................................................. 52
- PCB Pool ...................................................................... 13
- Saelig Company, Inc. .................................................... 33
- V-Module .................................................................... 30

**COMPONENTS**
- Cana Kit Corp. .............................................................. 65
- Electronix Express ......................................................... 49
- Fun Gizmos .................................................................. 37
- Jameco ......................................................................... 21
- Linx Technologies .......................................................... 50
- Mouser Electronics ...................................................... 19
- V-Module .................................................................... 30

**COMPUTER**
- Hardware .................................................................. 28
- Electronic Surplus ......................................................... 9
- Matrix Multimedia ........................................................ 37

- Microcontrollers / I/O Boards
  - Abacom Technologies ................................................. 30
  - Basic Micro ................................................................. 33
  - Bitscope ..................................................................... 7
  - Fun Gizmos ................................................................. 37
  - I/O Bridge .................................................................. 28
  - Matrix Multimedia ...................................................... 37
  - Microchip .................................................................. 3
  - microEngineering Labs ............................................... 71

- MISC./SURPLUS
  - All Electronics Corp. .................................................. 4
  - Electronic Surplus ........................................................ 9
  - Scientifics .................................................................. 43
  - Surplus Gizmos ............................................................ 70

- MOTORS
  - BaneBots .................................................................. 51

- PARLIERINGS
  - Basic Micro ................................................................. 33
  - Bitscope ..................................................................... 7
  - Cana Kit Corp. ............................................................. 65
  - Circuit Specialists, Inc. .............................................. 82-83
  - Command Productions ............................................... 8
  - Cunard Associates ......................................................... 37
  - DesignNotes.com, Inc. ................................................. 37

- RF TRANSMITTERS/RECEIVERS
  - Abacom Technologies ................................................. 30
  - Linx Technologies ......................................................... 50

- ROBOTICS
  - BaneBots .................................................................. 51
  - Fun Gizmos ................................................................. 37
  - Jameco ......................................................................... 21
  - Lemos International Co., Inc. ..................................... 13
  - Lynxmotion, Inc. .......................................................... 42
  - Pololu Robotics & Electronics ...................................... 20
  - Robot Power .................................................................. 37
  - Solarbotics/HVW .......................................................... 42

- SATELLITE
  - Lemos International Co., Inc. ..................................... 13

- SECURITY
  - PolarisUSA Video, Inc. ................................................. 13
  - Terminal Arts ................................................................. 37

- ENCLOSURES
  - Integrated Ideas & Tech. ............................................... 32

- KITS & PLANS
  - Cana Kit Corp. .............................................................. 65
  - DesignNotes.com, Inc. ................................................. 37
  - Images Co. .................................................................. 65
  - Jaycar Electronics ......................................................... 53
  - NetBurner .................................................................. 2
  - NKC Electronics .......................................................... 37
  - PAI ................................................................. 29
  - QKITS ........................................................................ 37
  - Ramsey Electronics, Inc. ............................................ 22-23
  - Solarbotics/HVW ......................................................... 42

- SOFTWARE
  - Matrix Multimedia ....................................................... 37

- TEST EQUIPMENT
  - Bitscope ..................................................................... 7
  - Circuit Specialists, Inc. .............................................. 82-83
  - DesignNotes.com, Inc. ................................................. 37
  - Dimension Engineering ............................................... 42
  - Jaycar Electronics ........................................................ 53
  - LeCroy ....................................................................... 5
  - NKC Electronics .......................................................... 37
  - Saelig Company, Inc. .................................................... 33
  - Trace Systems, Inc. ....................................................... 51
  - NetBurner .................................................................. 2
  - Mouser Electronics ...................................................... 19
  - PCB Pool .................................................................... 13
  - PolarisUSA Video, Inc. ................................................. 13
  - Pololu Robotics & Electronics ...................................... 20
  - Robot Power .................................................................. 37

- TOOLS
  - DesignNotes.com, Inc. ................................................. 37
  - ChangeNotes.com ......................................................... 2

- WIRE, CABLE AND CONNECTORS
  - DesignNotes.com, Inc. ................................................. 37
  - Jameco ......................................................................... 21

- WEB SERVICES
  - I/O Bridge .................................................................. 28

- WIRE/CABLE
  - Bitscope ..................................................................... 7

- DESIGN/ENGINEERING/REPAIR SERVICES
  - Cana Kit Corp. .............................................................. 65
  - ExpressPCB ................................................................. 52
  - NKC Electronics .......................................................... 37
  - PAI ................................................................. 29
  - Technical Arts ............................................................... 37

- EDUCATION
  - BaneBots .................................................................. 51
  - Command Productions ............................................... 8
  - ExpressPCB ................................................................. 52
  - I/O Bridge .................................................................. 28
  - Linear Technologies ...................................................... 37
  - NKC Electronics .......................................................... 37
  - RobotPower ................................................................. 37
  - Solarbotics/HVW .......................................................... 42

- EMBEDDED TOOLS
  - Mouser Electronics ...................................................... 19
  - NetBurner .................................................................. 2

- V-Module .................................................................... 30

- NOVEMBER 2010 NUTS & VOLTS 81
Triple Output
Bench Power Supplies

The new CSI3303S & CSI5505S regulated DC power supplies are high reliability, variable DC Power Supplies with built in short circuit and thermal protection. These power supplies are suitable for the laboratory, electronics, communications equipment maintenance, production line, scientific research and educational institutions. Both units are equipped with protection circuits that protect the units from short circuits and over temperature by shutting the unit down for safety. Both units allow independent, serial and parallel mode operation. 

Technical Specifications:

Independent mode: 2 independent 0-30V outputs
Series mode: CSI3303S Output from 0-60V & 0-3A
CSI5505S Output from 0-60V & 0-5A
Parallel mode: CSI3303S Output from 0-60V & 0-3A
CSI5505S Output from 0-10A & 0-60V

Both units also provide a 5V fixed output @ 3A

Load regulation: <0.1%+3mV (rating current <3A)
<0.2% +3mA
Ripple and noise: <1mVrms 5Hz-1MHz
<3mArms
Voltage accuracy: +/-0.5%rdg+2byte
Current accuracy: +/-0.5%rdg+2byte
Display resolution: +/-0.5%rdg+2byte
Rated output: 5.0V +/-0.1V 3A

Tracking characteristics
Series specifications:
Load regulation: less than 50mV
Ripple and noise: (5Hz~1MHz) <=3mVRMS

Parallel characteristics:
Load regulation: less than 50mV
Ripple and noise: (5Hz-1MHz) CV less than 1mV=6A), CV less than 1.5mV (>6A)

17mm
9mm

Once again Circuit Specialists brings you a quality product at a great price!

Item #
0 to 3A CSI3303S
$159.00 4+ $155.00 ea.
www.circuitspecialists.com/CSI3303S

0 to 5A CSI5505S
$194.00 4+ $179.00 ea.
www.circuitspecialists.com/CSI5505S


display.jpg

USB Digital Storage Oscilloscopes

<table>
<thead>
<tr>
<th>Specifications</th>
<th>40MHz</th>
<th>60MHz</th>
<th>100MHz</th>
<th>200MHz</th>
<th>500MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>40 MHz</td>
<td>60 MHz</td>
<td>100 MHz</td>
<td>200 MHz</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
</tr>
<tr>
<td>Sample Depth</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>200 MHz</td>
<td>300 MHz</td>
<td>500 MHz</td>
<td>700 MHz</td>
<td>1 GHz</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
<td>10 MS/s</td>
</tr>
<tr>
<td>Sample Depth</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
<td>1 Mpts</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Auto / Manual / Single</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Slope</td>
<td>Hi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Level Adj.</td>
<td>Hi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Type</td>
<td>Rising edge / Falling edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Source</td>
<td>EXT / CURVE / EXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Inputs</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer Size</td>
<td>102K-512K per ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Size</td>
<td>10K-512K per ch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>12-bit up to 14-bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range</td>
<td>0-5Vp-p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Range</td>
<td>0-50mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Impedance</td>
<td>1M ohm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling Mode</td>
<td>AC / DC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Scale</td>
<td>10Vp-p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Range</td>
<td>9x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timebase Range</td>
<td>0.5us - 20ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Accuracy</td>
<td>0.1%+2mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripple and Noise</td>
<td>&lt;1mVrms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>&lt;0.1%+3mV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain range</td>
<td>+/- 5%rdg+2byte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage accuracy</td>
<td>+/-0.5%rdg+2byte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aardvark II
Dual Camera
Wireless Inspection Camera

The Aardvark Wireless Inspection Camera is the only dual camera video borescope on the market today. With both a 17mm head that includes three attachable accessories and a 9mm head head for tighter locations. Both cameras are mounted on 3ft flexible shafts. The flexible shaft makes the Aardvark great for inspecting hard to reach or confined areas like sink drains, AC vents, engine compartments or anywhere space is limited. The Aardvark II comes with a 3.5 inch color LCD monitor. The monitor is wireless and may be separated from the main unit for ease of operation. Still pictures or video can also be recorded and stored on a 2GB MicroSD card (included). The Aardvark’s monitor also has connections for composite video output for a larger monitor/recorder and USB interface for computer connection. Also included is an AC adapter/charger, video cable and USB cable. Optional 3ft flexible extensions are available to extend the Aardvark’s reach (Up to 5 may be added for a total reach of 18 feet!).

Full specifications at www.CircuitSpecialists.com/Aardvark

Item #
AARDVARK $249.00

www.circuitspecialists.com/DSO-2150
www.circuitspecialists.com/DSO-2250
www.circuitspecialists.com/DSO-3200
www.circuitspecialists.com/DSO-3200A
www.circuitspecialists.com/DSO-5200
www.circuitspecialists.com/DSO-5200A
www.circuitspecialists.com/SpectrumAnalyzer
www.circuitspecialists.com/VideoAnalyzer
www.circuitspecialists.com/LogicAnalyzer
www.circuitspecialists.com/Counter
www.circuitspecialists.com/TemperatureSensor
www.circuitspecialists.com/Average
www.circuitspecialists.com/Resistance
www.circuitspecialists.com/Conductivity
www.circuitspecialists.com/Temperature
www.circuitspecialists.com/Humidity
www.circuitspecialists.com/Voltage
www.circuitspecialists.com/Current
www.circuitspecialists.com/Frequency
www.circuitspecialists.com/Video
www.circuitspecialists.com/Oscilloscope
www.circuitspecialists.com/PowerSupply
www.circuitspecialists.com/DualCamera
www.circuitspecialists.com/USB
www.circuitspecialists.com/SDCard
www.circuitspecialists.com/MemoryCard
www.circuitspecialists.com/FlashDrive
www.circuitspecialists.com/FlashMemory
www.circuitspecialists.com/Computer
www.circuitspecialists.com/ComputerPeripheral
www.circuitspecialists.com/ComputerNetwork
www.circuitspecialists.com/ComputerSoftware
Programmable DC Electronic Loads

These devices can be used with supplies up to 360VDC and 30A. It features a rotary selection switch and a numeric keypad used to input the maximum voltage, current, and power settings. These electronic DC loads are perfect for use in laboratory environments and schools, or for testing DC power supplies or high-capacity batteries. It also features memory, and can also be connected to a PC, to implement remote control and supervision.

360V/150W (CSI3710A) $349.00
www.circuitspecialists.com/CSI3710A

360V/300W (CSI3711A) $499.00
www.circuitspecialists.com/CSI3711A

200MHz Hand Held Scopemeter with Oscilloscope & DMM Functions

Includes 1 Year USA Warranty

You get both a 200 MHz Oscilloscope and a multi-function digital multimeter, all in one convenient lightweight rechargeable battery powered package. This power packed package comes complete with scopemeter, test leads, two scope probes, charger, PC software, USB cable and a convenient nylon carrying case.

Item # DSO1200
www.circuitspecialists.com/DSO1200
60MHz Hand Held Scopemeter with Oscilloscope & DMM Functions

- 60MHz Handheld Digital Scopemeter with integrated Digital Multimeter Support
- 60MHz Bandwidth with 2 Channels
- 150MSa/s Real-Time Sampling Rate
- 50Gs/s Equivalent-Time Sampling Rate
- 6,000-Count DMM resolution with AC/DC at 600V/800V, 10A
- Large 5.7 inch TFT Color LCD Display
- USB Host/Device 2.0 full-speed interface connectivity
- Multi Language Support
- Battery Power Operation (Installed)

$739.00

Item # DSO1060
www.circuitspecialists.com/DSO1060
60MHz Hand Held Scopemeter w/ Oscilloscope, DMM Functions & 25 MHz Arbitrary Waveform Generator

- All the features of the DSO1060 plus a 25 MHz Arbitrary Waveform Generator
- Waveforms can be saved in the following formats: .gbc, .gbf, .csv, .dmp, and .dict
- Can record and save 1000 waveforms
- DC to 25 MHz Arbitrary Waveform Generator

$529.00

Programmable DC Power Supplies

- Up to 10 settings stored in memory
- Optional RS-232, USB, RS-485 adapters
- May be used in series or parallel modes with additional supplies.
- Low output ripple & noise
- LCD display with backlight
- High resolution at 1mV

Model	CSI364A	CSI364A	CSI364A
DC Voltage | 0-18V | 0-36V | 0-72V
DC Current | 5A | 3A | 1.5A
Power (max) | 90W | 180W | 180W
Price | $199.00 | $199.00 | $199.00

The CSI503S is a regulated DC power supply which you can adjust the current and the voltage continuously. An LED display is used to show the current and voltage values. The output terminals are safe 4mm banana jacks. This power supply can be used in electronic circuits such as operational amplifiers, digital logic circuits and so on. Users include researchers, technicians, teachers and electronics enthusiasts. A 3 ½ digit LED is used to display the voltage and current values.

Item # CSI503S
www.circuitspecialists.com/CSI503S

BlackJack SolderWerks

Our Premium Line Up for Soldering, Repair & Rework

Rugged design at an affordable price. Blackjack SolderWerks from Circuit Specialists Inc. is the industry cost/performance leader and continues our reputation of providing high value products to our customers.

BK2000 Compact Soldering Station
$39.95

BK2050+ 70W Soldering Station
$79.00

BK3000LF Thermostatically controlled Soldering Station
$59.95

BK4000 Hot Air System w/ Soldering Arm
$119.00

BK5000 Hot Air System w/ Soldering Arm & Desoldering Station
$229.00

www.circuitspecialists.com/blackjack
<table>
<thead>
<tr>
<th>Parallax GPS Module</th>
<th>PMB-648 GPS SiRF Internal Antenna</th>
<th>PMB-688 GPS SiRF Internal/External Antenna</th>
<th>RXM-SG GPS Module w/External Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>#28146; $79.99</td>
<td>#28500; $34.99</td>
<td>#28501; $39.99</td>
<td>#28505; $79.99</td>
</tr>
<tr>
<td>Built-In Patch Antenna</td>
<td>Built-In Patch Antenna</td>
<td>Built-In Patch Antenna or optional External (#28502)</td>
<td>Included External Antenna</td>
</tr>
<tr>
<td>Breadboard-friendly 4-pin SIP</td>
<td>Included cable connects to breadboard or prototype with stripped wires</td>
<td>Included cable connects to breadboard or prototype with stripped wires</td>
<td>Four general purpose I/O pins provide expansion for pin intensive projects</td>
</tr>
<tr>
<td>2 modes of operation:</td>
<td>TTL/CMOS I/O</td>
<td>TTL/CMOS outputs</td>
<td>3.3 V CMOS asynchronous serial @ 9600 baud default for controllers, or USB for PC</td>
</tr>
<tr>
<td>RAW - Unformatted data</td>
<td>TTL/CMOS, RS232 Outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart - Syntax Formatted</td>
<td>TTL/CMOS outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom ASIC GPS Controller</td>
<td>SIRFstar III GPS Controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracks up to 12 satellites</td>
<td>Tracks up to 20 satellites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position: 2DRMS ~ 2m,</td>
<td>Position: 2DRMS ~ 5m,</td>
<td>Baud Rate: 9600 bps</td>
<td>Baud Rate: 9600 bps (Optional 4800, 19200, 38400, 57600)</td>
</tr>
<tr>
<td>WAAS support</td>
<td>WAAS support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velocity: 0.1 m/s</td>
<td>Velocity: 0.1 m/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time: +/- 1 us</td>
<td>Time: +/- 1 us</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate: 4800 bps</td>
<td>Baud Rate: 4800 bps (Optional 9600, 19200, 38400)</td>
<td>Baud Rate: 4800 bps (Optional 9600, 19200, 38400, 57600)</td>
<td></td>
</tr>
</tbody>
</table>

Order GPS Modules at www.parallax.com or call Sales toll-free at 888-512-1024 (Mon - Fri, 7:00 a.m. - 5:00 p.m., PST).

Friendly microcontrollers, legendary resources.

Prices subject to change without notice. Parallax and the Parallax logo are trademarks of Parallax Inc.