Everything For Electronics

Nuts & Volts

August 2005

www.nutsvolts.com

TAKING
THE TEETH
OUT OF
BLUETOOTH
PHRACKING

What the L is it?
The MIDI-nator
A Radio That Thinks
Executing 65,000 lines of Basic code per second the BasicX-24 is the KING of Basic programmable microcontrollers.

400 bytes RAM.
32K User program area.
19 I/O lines with 8 10Bit ADC’s.
Real multitasking and Serial UARTs.

Siteplayer is a true stand-alone mini web server.
Super easy to use.
Standard RJ-45 network interface.
Control or monitor anything over the web.

High quality serial 2x16 LCD with backlight
Easy to use.
2400 & 9600 Baud support
Software controllable backlight and contrast.
You Have The Power

- Fastest Rabbit ever with 51.6 MHz clock speed for data crunching and program execution.
- Up to 2000 mA of on-board power to drive your system.
- Balance features and cost with FLEX manufacturing. Pay only for what you need!

Speed Up Your System and Lower Design Risk With The ‘FLEX Ready’ PowerCore Module
The PowerCore is a complete Rabbit® system featuring our fastest Rabbit 3000 microprocessor, available on-board power supply, analog features, Ethernet, and a rugged A/D system. The PowerCore is “FLEX Ready” and can be configured with the exact options you need, and we quickly manufacture it. Development Kits include hardware, the Dynamic C development platform, and extensive libraries.

Configure Your PowerCore Online www.rabbitFLEX.com

Learn More about PowerCore
It’s easy to get started with a complete development kit that includes your PowerCore and development tools. For a limited time get a FREE Rabbit design book with your kit.

www.rabbitFLEX.com

Circle #37 on the Reader Service Card.
WHAT THE L IS IT?
Check inductors quickly with this PIC-based meter that also measures frequency.
by Tom Napier

THE MIDI-NATOR
Control musical instruments using a portable computer with this USB interface.
by Robert Lang

GAME ON
Build a USB interface in the handles of a game pad.
by Larry Brooks

THE ULTIMATE UTILITY METER
Part 2 — Operation.
by Michael Simpson

WIRESPONDENCE
Learn how people communicated before the Internet.
by David Medcalf

TAKING THE TEETH OUT OF BLUETOOTH PHRACKING
Dial into counter-hacks for unethered communicators.
by David Geer

TECHKNOWLEDGEY 2005
Events, Advances, and News from the Electronics World

Q&A
Focus on interfaces and reader suggestions on desoldering/soldering surface-mount ICs

STAMP APPLICATIONS
A BS2px ADC Trick and a BSI Controller Treat

OPEN COMMUNICATION
A Radio That Thinks

PERSONAL ROBOTICS
Review of the Hexcrawler HDATS

THE DESIGN CYCLE
Focus on the FLASH

IN THE TRENCHES
Recognizing and Encouraging Good Ideas

Reader Feedback
New Products
NV Bookstore
Electro-Net
Classifieds
News Bytes
Electronics Showcase
Tetsujin 2005
Tech Forum
Advertiser’s Index

Nuts & Volts (ISSN 1528-9885/CDN Pub Agree#0702530) is published monthly for $24.95 per year by T & L Publications, Inc., 430 Princeland Court, Corona, CA 92879. PERIODICALS POSTAGE PAID AT CORONA, CA AND AT ADDITIONAL MAILING OFFICES. POSTMASTER: Send address changes to Nuts & Volts, P.O. Box 15277, North Hollywood, CA 91615 or Station A, P.O. Box 54, Windsor ON N9A 6J5; cpcreturns@nutsvolts.com
Logic Analyzers

New LA-5000 Series

- 40 to 160 channels
- up to 500 MSa/s
- Variable Threshold
- 8 External Clocks
- 16 Level Triggering
- up to 512K samples/ch
- USB 2.0 and Parallel Interface
- Pattern Generator option

LA5240 (200MHz, 40CH) $1700 USB 2.0/Parallel
LA5280 (200MHz, 80CH) $2350 USB 2.0/Parallel
LA5540 (500MHz, 40CH) $2500 USB 2.0/Parallel
LA5580 (500MHz, 80CH) $3500 USB 2.0/Parallel
LA55160 (500MHz, 160CH) $7500 USB 2.0/Parallel

Small and portable LA-2124

- Small, Lightweight and Portable
- Only 4 oz and 4.75" x 2.75" x 1"
- Parallel Port Interface to PC
- Trigger Out

$800

Digital Oscilloscopes

- 2 Channel Digital Oscilloscope
- 100 MSa/s max single shot rate
- 32K samples per channel
- Advanced Triggering
- Only 9 oz and 6.3" x 3.75" x 1.25"

DSO-2102S $525
DSO-2102M $650
DSO-2102S(USB) $600
DSO-2102M(USB) $725

Link Instruments (973) 808-8990
17A Daniel Road East • Fairfield, NJ 07004 • Fax (973) 808-8786
www.Linkins2.com
Reader Feedback

Dear Nuts & Volts:

I just read TJ Byers answer to “Relay Diodes Explained” in the July 2005 issue. I agree with his discussion, except for the equation for t. One time constant – t – is equal to RC in an RC circuit, but is L/R in an RL circuit. It still takes five time constants to fully charge, but you’ll get quite a math error the way it was explained.

Ron Tinckham, Coordinator
Biomedical Engineering Technology
Santa Fe Community College

Author’s Response: Thanks for spotting this oversight. Here is a corrected diagram. – TJ Byers

Dear Nuts & Volts:

The article “The Field Effect Transistor” in the July issue was a good introduction to FETs and, in my opinion, easy to understand. Good stuff. But there appears to be an error in Figure 5.

The Source and Drain connections for the upper P-channel transistor should be reversed. For a P-channel device, conventional “ON” channel current should flow from Source to Drain and Drain voltage will be negative, with respect to Source voltage.

Ernie Worley
Stone Mountain, GA

Author’s Response: Thanks for correcting the error. In Figure 5, the upper transistor should have its topmost electrode marked S, and its electrode that is connected to the upper output wire should be marked D.

In addition, there is a typo mistake in the article. On page 74, it says "... /1KW ..." but that should have been a Greek letter omega, instead of the W. (I should have known better than to try to email a Greek letter!) Anyhow, I should have said "... /1,000 ohms ..."

Also, on page 74, my article has "20V/1KW" but the W once should have been a Greek letter omega. My email program accidently changed it so it looks like Watts. It should be "20V/ 1,000 ohms."

Dan Shanefield

Dear Nuts & Volts:

I received the June issue of Nuts & Volts and was perusing the Reader Feedback column when I noticed the letter from Mr. Jerry Nicholson, asking why waste someone’s time building a strobe flash unit for stop action photography when so many units are widely available from commercial vendors?

I think I speak for a good many of your subscribers when I say: “What would be the fun in that?”

Apparently, Mr. Nicholson has missed the fact that Nuts & Volts is, primarily, a publication devoted to hobby electronics, though I have noted there are quite a few professional engineers and technicians who are also sub-

continued on Page 74
“Lower costs, higher output—it’s easy to measure the value of eBay.

My company counts on me to get great deals on test equipment. That’s why I count on eBay. Oscilloscopes, lenses, transformers, signal generators... all the gear I want is there for less. So far, I’ve bought $40,000 worth of new and used equipment for just $20,000. With a well-equipped lab, we’re troubleshooting more efficiently and getting products to market faster.”

Stan Searing – eBay User ID: searing (750) ★
Application Engineering Manager, Pixim, Inc., a 50-person manufacturer of imaging platforms in Mountain View, CA.

Every day on eBay, great deals are made, new customers are found and business dreams fulfilled. Make eBay a part of your success story.

www.ebaybusiness.com
Circle #36 on the Reader Service Card.
Dr. Werner Hofer is among an international team of scientists who have created a prototype that demonstrates that a single charged atom on a silicon surface can regulate the conductivity of a nearby molecule. Computers and other technology based on this concept would require much less energy to power, produce much less heat, and run much faster.

The team tested the transistor potential of a molecule by using the electrostatic field emanating from a single atom to regulate the conductivity of a molecule, allowing an electric current to flow through the molecule. These effects were observed at room temperature, in contrast to earlier molecular experiments that had to be conducted at temperatures close to absolute zero and that achieved much smaller current amplification.

According to Hofer, "Our experiments demonstrate that we can control the current through a single molecule by charging a single atom on a silicon surface, while all surrounding atoms remain neutral. Our research brings us a step nearer to using molecular electronics which would not only prove more efficient and cheaper than current devices, but would also have the potential to power green technology because of the biodegradable nature of the device."

"Our prototype is a scientific breakthrough in molecular electronics. We have successfully shown the potential for devices of unheard-of smallness and unheard-of efficiency. This is the first time anyone has shown that a molecule is in fact a transistor."

Sniffing Out Lung Cancer

The foremost cause of cancer death among both men and women is lung cancer, but, surprisingly, no specific screening guidelines exist for the disease. X-rays and CT scans often turn up shadows in the chest area, but the shadows aren't necessarily indications of lung cancer. What has been missing is an accurate, cheap, noninvasive detection method.

In a recent study conducted at the Cleveland Clinic (www.clevelandclinic.org), researchers appear to have come up with a solution. They used the Cyrano electronic sniffer, manufactured by Smiths Detection Inc. (www.smithsdetection.com formerly Cyranos Sciences, Inc.), to examine the exhalations of 14 lung cancer patients and 45 healthy patients.

The "electronic nose" was programmed to detect certain characteristics in breath and used algorithms to create patterns that were viewable on a computer screen. The researchers found that the pattern characterizing the breath of lung cancer patients was distinctly different from that of healthy patients and of people with other lung diseases.

According to Serpil Erzurum, M.D., chairman of the Department of Pathobiology at the Cleveland Clinic Lerner Research Institute, "Use of the electronic nose could enable physicians to determine the appropriate course for a lung cancer patient's treatment at an earlier stage, rather than after the cancer has spread to other parts of the body and is more difficult to treat. The small, portable nature of the electronic nose also makes it easy to use in physician offices and outpatient settings."
last report, the device was priced at about $5,500.00, which is pocket change in the medical industry.

Computers and Networking

QuickTransit Derivative to Drive MacTel Machines

By now, you have likely heard that Apple Computer, Inc. (www.apple.com), is developing a line of Macs that will retain the Mac OS but use Intel processors instead of the current PowerPC™ chips produced by IBM. But a subsidiary and potentially more interesting rumor is that the new machines will be capable of running a huge range of existing applications that were compiled for non-Intel processors.

This feature is to be provided by a dynamic software translation tool called “Rosetta,” which is based on technology from Transitive Corp. (www.transitive.com). Transitive’s QuickTransit™ software is already available for Itanium, x86, PowerPC, and Opteron based systems and is shipping as a standard component of the Silicon Graphics Prism™ advanced visualization system. Here, it enables Prism users to take any application that currently operates on SGI® systems that are based on the MIPS® processor and IRIX® operating system and run it transparently on the new Silicon Graphics Prism system, which is based on the Intel® Itanium® 2 processor and Linux® OS.

At least in theory, this approach should eliminate major software compatibility issues between various incarnations of Macs and allow Mac owners to run virtually any off-the-shelf application, regardless of its intended platform.

XP for Old Clunkers

Addressing a different type of compatibility problem, the word is that Microsoft soon will be introducing a scaled-back version of the Windows XP operating system for users who want to upgrade their software but keep on using hardware that others have already relegated to the status of doorstops or boat anchors.

The Eiger version isn’t really intended for single-computer users but, rather, for institutions with hundreds or thousands of old PCs in operation. It will allow them to upgrade from Windows 95, 98, and NT 4.0, thereby gaining some management features (e.g., Active Directory and Group Policy Management) and access to current security patches. Eiger is also supposed to include Internet Explorer and Windows Media Player.

The minimum system requirements include a Pentium II processor, 128 MB of RAM, and a 500 MB hard drive. If your system doesn’t measure up to that level, it may be time to add an anchor rope as your final peripheral and go after a nice steelhead trout.

Flash to Replace HDs?

Wouldn’t it be nice to replace your hard drive with a device that is extremely rugged, has no moving parts, uses 1/20th of the power, and can read and write data at up to 57 and 32 MB/s, respectively? Sure it would, and Flash memory can easily provide that capability. The problem, of course, is that Flash chips tend to be prohibitively expensive for high-capacity needs.

Nevertheless, Samsung Electronics (www.samsung.com) has announced that it will be selling a new solid-state disk (SSD) product by the time you read this. Word on the street is that the device will be available with capacities ranging from 4 to 16 GB, built on arrays of eight-GB memory chips. Price information was not available at press time, but the SSD is expected to cost perhaps four times as much as a conventional hard drive on a per-byte basis.

However, the devices may find acceptance in military equipment and other applications in which the need to function in a harsh environment outweighs the cost disadvantage. Furthermore, the price of Flash memory is dropping faster than that of hard drives, so they could converge in a few years, thus making hard drive technology obsolete.

Circuits and Devices

Reduced Price on Color Scopes

Agilent Technologies, Inc. (www.agilent.com), recently introduced the DSO3000 series of

Rapid Virtual Hardware
w/Internet optimized in RVHE

Why grind through C or ASM Code?
50X times faster than most embedded BASIC & C modules.

$89 US

Visit:
www.rvhe.com
or call: 716.394.6711

Quick Specs
• 29-year stable core
• interpreted BASIC
• 500,000 instructions/sec
• Ethernet — Transparent Internet Support
• 6-channel, 10-bit A/D Converter
• 2 x Precision PWM
• 2 x RS232
• Real Time Clock
• 32 I/O Lines
• 28K user PGM memory
• 64KB of RAM
• Memory — all fast and internal <25nS
• Enter programs and debug in real-time through console port — no compiling.
• Expansion for many future virtual peripherals
• True Interrupt Support — not polled

ai applications inc.
Overcoming the impossible everyday
and wiring diagram, and instructions. You just have to provide your own solar panels, batteries, and solder. The kit sells for $49.95 plus shipping.

Industry and the Profession

Solar Generation Park Opens in Germany

The SunPower Corp., subsidiary of Cypress Semiconductor Corp. (www.cypress.com) recently announced that SOLON AG, Germany’s largest solar photovoltaic module manufacturer, has opened phase one of the “world’s largest” solar electric plant in Bavaria near Amstein, Germany.

Solarpark Gut Erlasse, a 12-MW solar electric plant, is located in a working agricultural field. Solar cells from SunPower are components of SOLON’s “Mover” power generation system, which is specifically designed for deployment in multi-megawatt solar power plants. Movers automatically tilt and rotate during daylight hours to directly face the sun, thus maximizing energy production.

According to SOLON, the system can generate up to twice the annual energy per square foot of a fixed solar array using conventional solar cells. Over the next five years, the company intends to employ $300 million worth of SunPower cells. More information about the Mover systems is available at www.solonmover.com but you will need to understand German to get much out of it.

2005 CES was Largest Ever

According to a recently released audit, the 2005 Consumer Electronics Show (CES) drew a record 145,868 attendees, including 22,000 international visitors and 40,000 senior-level executives from 110 countries, making it the largest annual trade show in North America. This constitutes a nine percent increase over 2004 and the highest number in the event’s 39-year history.

Participants included companies in the audio, accessories, broadcasting, cable, digital imaging, electronic gaming, emerging technology, home networking, home theater, mobile electronics, video, and wireless industries, and exhibits covered 1.5 million square feet of space.

If you missed this year’s event, you may want to sign up early for the 2006 CES, which will be held in Las Vegas, NV January 5 through 8. Just navigate to www.cesweb.org and sign yourself up.

Sun Buys StorageTek

In the second quarter of 2005, Sun Microsystems (www.sun.com) revenues decreased 1.6 percent as compared to the same period in 2004, but profitability improved from a $125 million loss to $19 million in the black. Giddy with the pocketful of cash, Sun decided to buy Storage Technology Corporation (StorageTek, www.storagetek.com) for $4.1 billion.

StorageTek, which sells tape and disk systems, raked up $2.2 billion in sales and a net income of $191 million in 2004. Combined, the new corporate entity will show annual revenues exceeding $13 billion.

Completion of the merger, which is expected to occur this fall, is subject to regulatory approval, StorageTek shareholder approval, and other customary closing conditions, but if you currently own StorageTek stock, you will be receiving a check for about $37.00 per share when it occurs. NV

Solar Charge Controller Kit

Building your own solar power source? You might be interested in the SCC3 12V solar power controller kit from CirKits (www.cirkits.com). You get a 20-A system that regulates battery charging from photovoltaic solar panels, providing extended battery life as compared to a direct-connect system. Applicable to lighting systems, cell phones, radios and small TVs, fans, and other low-voltage DC loads, it can also be fitted with an inverter to produce 110-VAC power. The kit includes a double-sided circuit board, all required components, a schematic and wiring diagram, and instructions. You just have to provide your own solar panels, batteries, and solder. The kit sells for $49.95 plus shipping.

Economically-priced, portable, digital-storage oscilloscopes (DSOs) with bandwidths from 60 to 200 MHz. The instruments offer two channels and a color display with an expanded waveform viewing area. Designed for engineers and technicians in a variety of industries, as well as educators teaching electronics, the scopes offer a 1 Gsa/s maximum sample rate, 4K memory per channel, and a 5.7” display.

The front panel design looks and operates like a typical portable scope, and an optional software connect package allows for printing and controlling the apparatus via USB. Four models are available as follows: DSO3062A (60 MHz bandwidth, $995.00), DSO3102A (100 MHz, $1,295.00), DSO3152A (150 MHz, $1,595.00), and DSO3202A (200 MHz, $1,895.00).

TechKnowledgy 2005

Agilent’s DSO3000 oscilloscopes offer two-channel operation, a 1 Gsa/s sample rate, and a color display. Photo courtesy of Agilent Technologies.
IR-TILE
Portable Infrared Illuminator
18 meters, 15v DC
$79.95

IR-PAK
Portable Infrared Illuminator
+ True Day/Night Color Board Camera
$269.95

IR-PACK
Portable Infrared Illuminator
$269.95

MB-1000DN
-TRUE Day / Night Color Board Camera
- Mechanically Switched IR Cut-Off Filter with VariFocal / Auto Iris ZOOM Lens
$219.95

MB-150
1/3" BW CCD Micro Board Camera
32 X 32 mm
3.6mm Lens
420 TVL of Resolution
$27.50

DSR400-80
80 GB, 4 Channel DVR Simplex, Half-Size with TCP/IP
$539.95

HVS-D2
1/4" Color Dome Camera
3.6mm Lens
380 TVL
$59.95

PCM-100
High Quality / Low Loss
100 Foot Video/Power/Audio Extension Cable
$29.95

MPX-241800
2.4 GHz Transmitter Module
1000mW, 8 Channel Mono Audio, 12VDC
Up To 2 Mile Range
$149.95

GNC-15
1/4" CCD Color Network Camera
3 External Video Inputs
$449.95

Prices Subject to Change Without Notice

Toll Free
800-308-6456

Local
678-405-0089

PolarisUSA Video
Video Security From The Professionals at Polaris

PolarisUSA Video, Inc. · 3158 Process Drive · Norcross, GA · 30071

Actual Images May Vary
In this column, I answer questions about all aspects of electronics, including computer hardware, software, circuits, electronic theory, troubleshooting, and anything else of interest to the hobbyist.

Feel free to participate with your questions, comments and suggestions. You can reach me at: TJBYERS@aol.com

What's Up:
This month focuses on interfaces. There are power supply interfaces that address internal DC resistance, AC resistance, and series diodes. PC sound audio interfaces are also defined. Readers have follow-up suggestions on desoldering/soldering surface-mount ICs.

Pardon My Impedance

Q. How is the internal resistance of a power supply measured and kept at a low value? How important is this?

Richard H. Abeles

A. The internal resistance of a power supply has a lot of influence on the output voltage. A typical power supply — Figure 1 — contains resistance, capacitance, and inductance. The internal resistance is mostly within the wiring of the unit, and while the regulator can react to voltage changes in its immediate vicinity, it can’t compensate for voltage drop in the output wires or panel connectors.

All you need to measure the internal resistance of any power source — including batteries — is a DVM and two resistors. The resistors are selected so that they measure the range of the power supply from minimum to maximum. For this example, the values are 10 mA and one amp, respectively. By subtracting E2 from E1, you get the voltage drop across R — the internal resistance. Using Ohm’s Law, the value of R is equal to E1 - E2 / I2 - I1. Let’s say the difference is 0.2 volts. Plugging the values in, we get an internal resistance of 200 milliohms. While this may not seem like a lot, it adds up as the output current increases. At five amps, 200 milliohms will consume one volt.

Like I said, this methodology can also be used to test dry cell batteries — even rechargeable. In fact, this is a method often used to measure the amount of charge left in a NiCd or NiMH battery. As the charge decreases, the internal resistance increases.

Figure 1

Power Supply Equivalent

Power Supply Internal Resistance
By keeping tabs on the internal resistance, you’re able to interpolate the amount of charge left.

Eat My Volts

Q: I have a problem with my bench power supply in that it doesn’t hold the voltage constant. It’s a five-volt switching power supply from a reputable company, with specs that say it will provide 25 amps at five volts in the range of 4.75 to 5.25 volts at all temperatures and currents. It doesn’t. It varies anywhere between five volts and 3.5 volts. It seems to be worse at high output currents. Do you think the regulator is defective? Can it be fixed easily?

A: I doubt the problem is with the power supply itself, but in the way you are using it. If you’re like me, I’ll attach a couple of clip leads to the power supply’s binding post and route the power to the circuit I have on my bench. This is great for experimental purposes where the current is low. But as current increases, the resistance of the wires going from the power supply to your circuit becomes a significant part of the overall design.

Let’s say that the power supply is on an upper shelf of your test bench and your project is on the work surface. Scattered about the bench are your test instruments and five feet of #16 gauge wire (very common in automobile wiring) connecting the power supply to the project. Between the positive and negative runs, the total length is 10 feet, for a total resistance of 40 milliohms (0.04 ohms). At 10 amps, the voltage drop across the wires is 0.4 volts, 0.6 volts at 15 amps, and a hefty one volt at 25 amps. Moreover, if your circuit has switching elements, the input voltage will look like a roller coaster as the currents switch in and out.

The solution is to move the voltage sensing part of the regulator from inside of the power supply to the outside — commonly called remote sensing. It requires four wires (Figure 2): two that provide the real power and two that measure the voltage at the load — after the connecting wires. By doing this, the voltage drop across the power leads is nulled out and the voltage across the load remains constant.

But not all commercial power supplies have voltage sense inputs. Of course, you can try cutting into the circuit board to free board these inputs, but you have to do it on a case-by-case basis. Fortunately, you can roll your own using a LM317 or 350 volt regulator — or any adjustable switching buck/boost IC, for that matter. Simply route the voltage sense points to the load, as shown in Figure 2. Don’t be tempted to remove the 1N4148 diodes. They prevent the voltage regulator from going postal should the sensor inputs become free floating.
Watch Out for Those Spikes

Q. I have a power wheel chair, which, not surprisingly, needs frequent recharging. Unfortunately, the battery charger interferes with my radio and TV. Could you send me a circuit that would filter out this interference?

D. D.

A. I suspect your battery charger uses an off-line switching-mode power supply (SMPS) that’s causing spikes on the AC line. The ideal solution is to add a power-factor correction circuit to the charger — but that’s far too complicated and would void the warranty. Maybe a hash filter, like the one in Figure 3, might help.

While the circuit is simple, the choice of components isn’t. The impedance of the chokes isn’t as critical as the resistance of the coil. Any value between 50 uH and 100 uH will work — as long as the resistance of the coil is 32 milliohms or less. The capacitors, too, are critical. They must be metalized polyester caps with a working voltage of 250 VAC. Don’t be tempted to use ceramic capacitors. All components are available from Newark Electronics (800-463-9275; www.newark.com).

For safety sake, I’d put the circuit into a plastic construction box.

When East Meets West

Q. How can I simply combine the left and right audio signals from a VCR, DVD player, computer sound card, etc., to feed into a mono A/V switch? Could I simply solder the two wires together? I don’t see reduced volume as being a problem with the power amps and big speakers downstream of the switch. I would like to build several of these mixers using parts from my local RadioShack.

John S.

A. When two outputs are directly wired in parallel, they fight with each other. Most of the time, one of them is trying to push the other to a different voltage, which effectively causes stress and overload on the outputs. At best, you get an uneven mix with lowered output voltage and increased distortion. You even run the risk of damage to the equipment.

The right way to mix two or more signals is with isolation resistors (Figure 4) — which RadioShack still sells. The value of the resistor should equal the output impedance of the source — typically 10K. The voltage of the mixed signal will be reduced by the ratio of ROUT to RIN, where ROUT = (RL x RR) / (RL + RR) and RIN is the input impedance of the mono amplifier. You asked for a stereo mixer, but there is no limit to the number of signals you can mix using this method; simply stack them up, each with its own isolation resistor.

Don’t Bogart That Signal

Q. I have the audio line out of my computer connected to both computer speakers and a stereo receiver. As a result, the volume of the stereo receiver is lowered severely, and if the computer’s output volume is raised to compensate, distortion occurs. Do you have a low-distortion stereo preamp circuit to increase the sound level before it reaches the receiver?

A. What you have is a conflict between the impedance of the speakers and the stereo receiver. In other words, the speakers are sucking the life out of the audio signal, leaving little for the receiver input. The way to solve the problem is to put a signal buffer between the sound card and the speakers and receiver, like the circuit in Figure 5. The op-amps are high output devices configured as a voltage follower. This prevents the speakers from loading down the output of the sound card.

CMOS LED Driver

Q. I recently read some place that there is a commonly available CMOS driver for circuits such as the 4027 that would light up an LED. I
can’t find that number and I’m very close to just wiring up a 7555 to do just that and not waste any more time on my search. By not making it be astable, I think it will do the job without any problems.

Carl Fisher W0HIK

A

I think the chip you’re referring to is the 4049 hex inverter. It can provide up to 40 mA of drive current at 15 volts — 5 mA at five volts. When using this gate to drive an LED, you need to use negative logic. That is, a high input will drive the 4049 output low. I recommend that configuration because the output of the 4049 isn’t symmetrical. It can sink more current that it can source (5 mA versus 1.2 mA at five volts). Figure 6 shows how to wire the 4049 so that the LED goes on when the input is high. The value of the 1K resistor (typical for Vcc = 5V) is selected using the formula R = (Vcc - VLED) / ILED. See Table 1 for details.

Diodes in Series

Q

I have a bunch of 1N4004 diodes, which have a PIV of 400 volts. Now, if I connect two of them in series, does the PIV become 400V + 400V = 800V?

M. John

A

Yep — but with some qualification. Like all things electric, every device is made up of resistance, capacitance, and inductance. In a reverse-biased diode, the two dominant elements are leakage resistance and junction capacitance. The leakage resistance effectively acts like a voltage divider — and unless the leakage current of the diodes are exactly matched, there will be more voltage drop across one diode than the other.

The leakage current of a 1N4004 ranges from 0.05 mA to 1.0 mA, which translates to a resistance of 8,000 megohms to 400 megohms at 400 volts. Let’s say that one diode has a leakage current of 0.10 mA and the other has a leakage current of 0.15 mA. Their equivalent leakage resistance is 4,000 megohms and 2,667 megohms, respectively. This means that the first diode sees 480 volts and the second diode sees 320 volts — not so cool.

When you add in the unequal junction capacitive reactance of the two diodes, the disparity becomes even greater. Unless the diodes are perfectly matched in both respects, I wouldn’t use the stacked diodes beyond about three-fourths of their additive voltages: 600 volts for the 1N4004 pair. A solution to using unmatched diodes to their fullest potential is to place a high-value resistor in parallel with each diode (Figure 7).

In this situation, a 10-megohm resistor will equalize the voltage across the diodes and give them an equivalent PIV (peak inverse voltage) of 800 volts. Oh, don’t forget that each series diode drops an additional 0.7 volts. Two in series has a forward voltage drop of 1.4 volts, three equals 2.1 volts, etc.

![Figure 6](image)

Table 1. LED Driver

<table>
<thead>
<tr>
<th>LED Color</th>
<th>VLED</th>
<th>4049 Output Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1.2V</td>
<td>5V</td>
</tr>
<tr>
<td>Green</td>
<td>1.5V</td>
<td>10V</td>
</tr>
<tr>
<td>White</td>
<td>3.5V</td>
<td>15V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 mA</td>
</tr>
</tbody>
</table>

GET YOUR FCC COMMERCIAL LICENSE!

No costly school. No commuting to class. The Original Home-Study course prepares you to be an “FCC Commercial Licensed Technician” at home in your spare time! You don’t need a college degree to qualify, but you do need an FCC license. No need to quit your job or go to school. This proven course is easy, fast and low cost. NO PREVIOUS EXPERIENCE NEEDED!

GUARANTEED TO PASS
You get your FCC License or your money refunded.

Get your FREE facts now. Call Today! 800-932-4268 Ext. 102 or go online at www.LicenseTraining.com

COMMAND PRODUCTIONS • FCC License Training
P.O. Box 3000 • Sausalito, CA 94966-3000

This valuable license is your "ticket" to thousands of exciting jobs in:
- Communications
- Radio-TV
- Broadcasting
- Avionics
- Radar
- Maritime
- and more... even start your own business!

Earn up to $100 an Hour and More!
Voice Filter

Q: I'm looking for a simple circuit, preferably passive, that could filter line-level audio going into the AUX input of a PC sound card. I would like to capture a person speaking and digitize the audio at 16 kbits/sec in order to keep the file size smaller. However, I get distortion at frequencies above 8 kHz. I believe I need a low-pass filter that would cutoff at 8 kHz.

Dave Weber

A: What you want is a speech filter — essentially a bandpass filter with cut-off frequencies of 300 Hz and 3 kHz. This is usually done using a Sallen-Key filter configuration, shown in Figure 8. The speech filter consists of two sections. The first is a high-pass filter followed by a low-pass filter. The two op-amps provide no gain — they are simple voltage followers — but are necessary to buffer the two filters to maintain a high Q. In fact, the circuit has a loss of about -6 dB. Don’t worry, there will still be enough signal for the sound card. If you’re dead set on using a passive solution, you can try removing the op-amps and concatenating the filters, but don’t expect miracles.

MAILGBAG

Dear TJ,

I was just looking through the April 2005 issue and read your “Un-solder Solder” response. Several weeks ago, I came across a cheap way of doing simple reflow work and I’d like to share it with you. Find it at “Under $20.00 (USD) Air-Pencil Soldering Iron” at www.usbmicro.com/odn/documents/46.html.

James Bailey

Response: For resoldering those new chips, you might want to check out www.chipquik.

Bob J

Cool Websites!

If you wish for a graphics program that’s better than Microsoft’s Paint but don’t want to pay the price for PaintShop or PhotoPaint, check out Paint.NET from the folks at Washington State University. It’s free.

www.eecs.wsu.edu/paint.net/

Keep up to date on hurricanes — past, present, and future.

http://link.abpi.net/Lphp720050606A3

Don’t understand the new language of text messaging? Be cool, and LOL as you read through the Smiley Primer.

http://nl.internetxoiii/
Just fill out the catalog request form at www.jaycarelectronics.com/catalog

Check our website!
- Browse our website www.jaycarelectronics.com
- All of our 6,000+ products with search facilities.
- 128-bit secure on-line ordering - safe & secure.
- Over 3,500 product datasheets & application notes.
- And we’re from Australia, so you can trust us!
- Postage and Packing includes airmail to the USA

Electronic Shock Reaction Game
GH-1095 $27.50 + post and packing
This is a hilarious game for up to 4 players. Grab a controller and touch the centre button. When it changes colour, press the button on your controller. Don’t be the last, or you will receive a mild electric shock. But don’t press it too early either, or you will get one too! Loads of fun for all ages. Requires 3 x AA batteries.

3 Stage FM Transmitter Kit
KJ-8750 $11.50 + post and packing
The circuit board may measure just 2"(L) x 11/16"(W), but it can transmit signals over half a mile in the open. It has flexible power requirements, with 6 to 12VDC input voltage (so a 9V battery would be suitable). It is quick to build, and fun to use. Kit supplied with circuit board, electronic components, and clear English instructions.

Performance Electronics for Cars Book
BS-5000 $14.95 + post & packing
Australia’s leading electronics magazine, silicon Chip, has developed a range of projects for performance cars. There are 16 projects in total, ranging from devices for remapping fuel curves, to nitrous controllers, and more! The book includes all instructions, components lists, colour pictures, and circuit layouts. There are also chapters on engine management, advanced systems, DIY modifications, and more. Over 150 pages! All of the projects described are available in kit form, exclusively from Jaycar. Check out our website for all the details.

Universal High Energy Ignition Kit
KC-5247 $37.95 + post and packing
Get better fuel efficiency and performance from your car! It produces a very intense 0.9ms spark which results in more complete fuel burning, lower emissions, and increased performance. It works with points, twin points, and reluctor ignition systems. Kit supplied with weatherproof diecast aluminium case, circuit board, and all electronic components. Works great on points ignition (ie. older cars). Can be used on newer cars with Hall-effect sensor.

Get the Video Quality You Paid For With Our Doctor Video Kit
KC-5390 $64.95 + post and packing
Copy protection is put in place on videos and DVDs for a good reason, but this robs you of the true high quality reproduction that it is capable of. Get the quality you paid for and strip out these annoying signals! It supports composite and S-video signals and can be configured for NTSC or PAL format. Kit includes case, circuit board, all electronic components, and clear English instructions. Note: Some SMD soldering required.

Caution: During signal conditioning, this unit removes copyright protection. Protections in crime, & Jaycar Electronics takes no responsibility for its potential for unlawful use.

Log on to www.jaycarelectronics.com/catalog for your FREE catalog!
1-800-784-0263

(www.jaycarelectronics.com)

* Post and Packing Charges
Order Value Cost
$25 - $49.99 $15.00
$50 - $99.99 $20
$100 - $199.99 $40
$200 - $499.99 $60
$500+ $75

Max weight 12lb (5kg) - heavier parcels POA. Minimum order $25.

Want a FREE Catalog?

400+ page Catalog

JUST ONE OF OUR MANY GREAT PRE-BUILT & TESTED PRODUCTS!

We Stock...
Electronic Components & Sub-Assemblies
Power Products & Accessories
Audio & Visual Equipment & Accessories
Computer & Telecoms Accessories
Burglar Alarms & Surveillance Equipment
Lighting Products & Accessories
Gadgets & Unique Gifts

A Great NEW Theremin Kit

PRE-BUILT OUR

Midi/PC Based Theremin Synthesizer Kit
KC-5410 $101.95 + post and packing
Many thousands of people are enjoying playing our traditional Theremin synth, but this new design blows that out of the water! It actually interfaces with a MIDI accessible synthesizer or a PC with a sound card. This allows it to play up to 120 different instrument selections, in 15 types by 8 variations. That is alot of sounds! These notes are then changed in pitch by moving your hand between the antenna and plate, just like the traditional theremin. See our website for a full list of great features. The kit includes the circuit board, machined and printed front panels, all electronic parts, and clear English instructions.

FREE Ship worldwide!
I love to travel. Yes, it has its inconveniences, but every time I feel the power of the jet I'm seated in lift off the runway, a smile crosses my face. The downside of travel is, of course, living without the conveniences of home. For me that includes my stock of electronic parts for experimenting. I do carry a few things when I travel, but just enough to keep me entertained and keep the good folks at the TSA from getting nervous when they inspect my bags. So, as I sit here in my hotel room, I have my trusty PDB, a shiny new BS2px module, and the ubiquitous photocell. Let's see what we can cook up, shall we?

The BS2px is the latest edition to the BASIC Stamp microcontroller line. In addition to increased speed, the BS2px adds two new commands that give the programmer access to features available in the core SX microcontroller: CONFIGPIN and COMPARE. CONFIGPIN is somewhat similar to manipulating the DIRS register in that it configures I/O pins, but it has four independent modes that allow for advanced pin behavior. CONFIGPIN mode 0 (SCHMITT) sets the I/O pin to Schmitt trigger mode, causing hysteresis to be added to the inputs. This can be very useful if the input of a pin is a bit noisy and hovering around the normal TTL (1.4 volt) or CMOS (2.5 volt — see below) threshold level. When set to Schmitt mode, a pin will transition from 0-to-1 when it crosses above about 85% of Vdd, or about 4.25 volts. A pin will transition from 1-to-0 when it crosses below about 15% of Vdd, or about 0.75 volts.

Here's how we can set P15 as a Schmitt trigger input:

```
CONFIGPIN SCHMITT, %1000000000000000
```

How might we use this mode? Well, one thing we could do with it is clean up slow-rising or falling waveforms. Combined with COUNT or PULSIN, one could measure the frequency of a sine wave input. (Note: Make sure the input to the pin does not go below Vss.) CONFIGPIN mode 1 (THRESHOLD) sets the pin input threshold. On reset, all pins are configured for TTL threshold level 1.4 volts. We can raise this up to 2.5 volts (50% of Vdd) by configuring the pins as CMOS inputs. Note that the CMOS threshold will change the behavior of some commands. RCTIME, for example, will return a smaller value when using the “standard” circuit and measuring while a pin is high because the span between five volts and 2.5 volts (CMOS) is smaller than the span between five volts and 1.4 volts (TTL). This can actually be helpful when we have a very large “R” constituent in RCTIME.

Run this little program with a standard RCTIME circuit (Figure 1) to see the difference between the two modes.

```
Main:
  DO
  CONFIGPIN THRESHOLD, %1000000000000000
  GOSUB Read_Pot
  DEBUG CRSRX, 8, 2, DEC potVal, CLREOL
  CONFIGPIN THRESHOLD, %1000000000000000
  GOSUB Read_Pot
  DEBUG CRSRX, 8, 3, DEC potVal, CLREOL
  PAUSE 100
  LOOP

Read_Pot:
  HIGH PotPin
  PAUSE 1
  RCTIME PotPin, 1, potVal
  RETURN
```

Figure 1. Standard RCTIME Circuit.
Figure 2 shows the program output. CONFIGPIN mode 2 (PULLUP) allows us to enable ~20K pull-up resistors on selected I/O pins. This can simplify external circuit design if we can live with active-low inputs (remember that we can easily make an active-low input look active-high using the invert operator).

Finally, CONFIGPIN mode 3 (DIRECTION) sets the pin direction — very much the same as modifying the DIRS register. The following lines of code perform exactly the same function:

```
DIRS = $000000000000001111
CONFIGPIN DIRECTION, $000000000000001111
```

Both lines set pins P0-P3 to outputs; the difference being that the second line only works on the BS2px module.

The second new command that the BS2px offers is called COMPARE. This allows us to enable and use the onboard comparator. All SX micros have a comparator with inputs on RB.1 and RB.2; these pins map to P1 and P2 on the BS2px. Depending on configuration, the output of the comparator can be routed to RB.0 which maps to BS2px P0.

One of the things that BASIC Stamp users frequently wish for is an ADC — even a simple eight-bit ADC will do in many applications. Well, we can use the BS2px comparator, an additional output pin, and a couple RC components to make one. Really.

In fact, my old pal Scott Edwards (for those of you that are new to Nuts & Volts, Scott is the originator of the “Stamp Applications” column) did this using a hardware comparator and the B81 (see column #25 — available for download from Parallax and from Nuts & Volts). The process is actually pretty simple: we will use the PWM instruction to generate a voltage (through the RC network) that feeds one side of the comparator. The other side of the comparator will be the input for the voltage we want to measure (0 to 5 volts). When the voltage we generate crosses the level that we're measuring, we can detect a change in the comparator output and know that we've reached the input voltage. Figure 3 shows the connections.

The code is equally simple: the subroutine that measures the input basically “sneaks up” on the input voltage by running a loop until the comparator output says we've crossed the input level.

In Scott’s original article, he included another version that used a binary search method to speed up the conversion, but with the speed of the BS2px, it’s not necessary to get that fancy. I did give it a try, but found that it was a bit noisy — perhaps due to components on my PDB. That...
said, I never saw any ADC input fluctuations using the subroutine above, so that’s what I’m going to stick with.

To fancy things up a bit, though, the main code converts the ADC reading to millivolts. With a five-volt input, each bit is equal to 19.6 millivolts (5.00 / 255 = 0.0196). We can use the */ (star-slash) operator to do the fractional multiplication for us and get the result as shown in Figure 4.

```
Main:
DO
  GOSUB Get_ADC
  mVolts = adcVal */ 139B
  DEHXX CRSRXY, 9, 2,
  DECl adcVal, ", ",
  CRSRXY, 9, 3,
  DECl (mVolts / 1000), ", ",
  DECl mVolts
  PAUSE 100
LOOP
```

So, we end up using as many pins as if we installed the ADC0831, but with fewer parts and fairly simple code. It’s a nice trick to have in a pinch.

In this program we’re not having P0 track with the comparator output, but it can be done (using mode 1). This is especially useful if we’re using pin polling – by configuring P0 as a polled pin, the comparator can cause an action automatically. We could, for example, use POLLRUN to switch to another program slot based on a change in the comparator status.

One of the things that I frequently remind my friends to do is have a look at the help file. Please do that – it’s the most up-to-date source of information for BASIC Stamp modules. The BS2px is the fastest of the BS2 family, so there are a few commands with syntax changes which may force us to update our programs (notably SERIN and SEROUT). Remember, conditional compilation is always available and will let us move easily between the BS2px and other BASIC Stamps (except where CONFIGPIN and COMPARE are used). In fact, both BS2px demos this month have the following bit of code at the top of the program:

```
Check_Stamp:
#IF ($STAMP <> BS2PX) #THEN
  #ERROR "This program requires the BS2px"
#ENDIF
```

Since CONFIGPIN and COMPARE are only available on the BS2px, this will cause a dialog that alerts us to change the Stamp module if we have the wrong type installed.

Custom Prop Control Made Easy

One of the reasons I’m currently traveling is to work with a group of folks who enjoy building Halloween and other holiday props/displays as a hobby. Interesting group, if I do say so myself. All kidding aside, I’ve found the people most steeped in the scary stuff of Halloween to be as “normal” as your next-door neighbor — in fact, they just might be your next-door neighbor, albeit with an interestingly dark hobby.

Some of these folks are new to programming and working with customized controllers, so what my colleague, John Barrowman, and I have been doing is showing them how they can take a general-purpose controller like the BASIC Stamp and make it behave like a purpose-built prop controller (that often costs more money and is fixed at one behavior).

To give you an example, a simple prop timer will wait for an input, create a delay before activating the prop control output, hold the output on for a period of time, then turn the output off and hold it off for a while so the prop cannot be immediately retriggered. One of the most popular off-the-shelf products that fits this description is called the Universal Dual Timer II (UDT2) by a company called Terror By Design (trust me, Denny and his crew are really nice people, despite the scary company name). The UDT2 is very popular among Halloween prop builders in that all of the timing is set with simple knobs.

One of my recent prop project “show-and-tells” was a light-activated prop controller that works like a digital version of the UDT2. It uses a photocell to measure light as the trigger, and even has a random timing feature that can give a prop more dynamic behavior. Let’s build it, shall we?

Since the requirements are so simple, we’ll use a BS1 for the prop controller. Start by creating the light sensor circuit shown in Figure 5. Note that the RC circuit for the BS1’s POT instruction is configured differently than RC circuits used with the BS2’s RCTIME. The reason for this is that POT is actually an active command: it makes the pin an output, charges the capacitor, then actively discharges and checks the capacitor voltage level to do the reading. Stamp Applications column #15 (also written by Scott Edwards) gives a detailed explanation of POT versus RCTIME. Also note the small value of the capacitor in the circuit; this is necessary due to the very large dark resistance of the CdS photocell.

The thing about POT that makes it a bit trickier to use than RCTIME is that it requires a calibration constant in the syntax. The purpose of this constant is to scale the resulting RC measurement to a maximum of 255 so that it will fit into a byte (remember, the BS1 doesn’t have much
memory). While we could derive the scale value empirically, there’s a tool built into the editor that will do it for us.

From the Run menu, select Prop Scaling. This will open a small dialog that lets us set the pin connected to the RC circuit. After that selection is made, click Start and the editor will download a small program to the BS1 (yes, this overwrites the program that was previously there). What we want to do now is adjust the RC circuit for the smallest Scale value.

The way we adjust the CdS photocell circuit is by shielding it from light. Using one of the larger sensors out of a CdS multi-pack from RadioShack®, I found that the Scale value was 159. (Figure 6 shows the POT Scaling dialog.) To test the Scale value, click on the POT Value checkbox and watch the value change as the light falling on the sensor changes. What we’d like to have is a nice range from 0 (very bright) to 255 (dark). Why do we get a small value when the light is bright? Well, a photocell is a light dependent resistor, and the resistance is inversely proportional to the amount of light falling on it.

What we’re going to do for the prop controller is monitor the input and when the light falling on the sensor drops (reading goes up), we’ll trigger the prop. In this mode, we can detect the presence of a “victim” that blocks the light reaching the photocell.

The first thing to do is measure the ambient light and set a threshold. Here’s how we do it:

```
POT lSense, 159, thresh
thresh = thresh * 12 / 10
```

The POT instruction reads the current light level, and then the next line sets the threshold to 120% of that reading. By setting the threshold higher than the original reading, we ensure that a real change is made before the prop trips (we’re adding hysteresis to the light detection logic). The nice thing about auto-calibrating in software is that we can recalibrate the prop any time we want simply by resetting the BASIC Stamp module.

With the threshold set, we drop to the main loop of code that waits for the light hitting the sensor to drop.

```
Main:
  RANDOM rndVal
  POT lSense, 159, light
  IF light < thresh THEN Main
```

Notice that the RANDOM function is called during this loop too. What this does is stir the Stamp’s pseudo-random number generator until we get a trigger level input. This is a great way to add true randomness to a program (since
we cannot predict when the prop will be triggered).

With the prop triggered, the first timing function is the pre-event delay, and this is the time we want to make somewhat random. I say somewhat random because we understandably want the time to fall within a given range.

Sequence:

\[
\begin{align*}
\text{mxTimer} &= \text{DlyMin} \\
\text{mnTimer} &= \text{DlyMax} \\
\text{GOSUB} \text{ Random_Timer}
\end{align*}
\]

In order to keep the program easy to maintain, the constants section will hold all the prop timing values. For the pre-event delay, we will use a random time between DlyMin and DlyMax. Let's drop down to the timing code:

Figure 7. Prop-1 ULN2x03 Configurations.

Random_Timer:
\[
\text{span} = \text{mxTimer} - \text{mnTimer} + 1 \\
\text{secs} = \text{rndVal} \div \text{span} + \text{mnTimer}
\]

Timer:
\[
\begin{align*}
\text{IF} \ \text{secs} &= 0 \ \text{THEN} \ \text{Timer_Done} \\
\text{PAUSE} 1000 \\
\text{secs} &= \text{secs} - 1 \\
\text{GOTO} \ \text{Timer}
\end{align*}
\]

Timer_Done:
\[
\text{RETURN}
\]

This subroutine actually has two entry points: the top, at Random_Timer randomizes the value of secs based on the current value of the random number generator (in rndVal) and the values passed in mnTimer and mxTimer. This code also takes advantage of the modulus (\(\div\)) operator. By dividing the random value by the span plus one (one of our timing extremes) we get a number between zero and the span. When we add the minimum timing value, the result in secs will be between those passed in mnTimer and mxTimer.

Let's work through an example: Perhaps we want a randomized delay between five and 10 seconds. The span is calculated as 10 minus five plus one (six). Since the modulus operator returns the remainder of a division, using six as the divisor will give us a value between zero and five. By adding our minimum value of five, we finally end up with a value between our targets of five and 10.

The value in secs is used as a counter for the subroutine entry at Timer. This is pretty simple; while secs is greater than zero, we will PAUSE for one second (1,000 milliseconds), decrement secs, and then check it again. When the value of secs does reach zero, the subroutine will terminate and we’ll return to the main program.

With the randomized timing done, the rest of the prop control sequence is fairly simple.

Prop = IsOn
secs = OnTime
GOSUB Timer
Prop = IsOff
secs = OffTime
GOSUB Timer
GOTO Main

As you can see, there is nothing mysterious at all about this. We simply activate the prop control output, start the timer, deactivate the prop output, then run the timer for the required downtime before the next possible trigger event.

Let me point out again that the program uses defined symbols so that any changes we want to make all happen in the same place in the code. Here are the constant declarations for the prop timer:

\[
\begin{align*}
\text{SYMBOL} & \quad \text{DlyMin} \quad = 5 \\
\text{SYMBOL} & \quad \text{DlyMax} \quad = 15 \\
\text{SYMBOL} & \quad \text{OnTime} \quad = 5 \\
\text{SYMBOL} & \quad \text{OffTime} \quad = 30
\end{align*}
\]
This version of the program uses a timing resolution of one second. In some cases, this may be a bit coarse. If more resolution is required, it’s easy enough to change events to a Word, and update the PAUSE statement in the Timer subroutine to 100 milliseconds. Since there’s not quite enough variable space left to pass fraction seconds in mntimer and mxtimer, we’ll also need to add a line to the end of the randomizing section of the timer routine.

\[\text{secs} = \text{secas} \times 10 \]

This will correct the value for the increased resolution.

Using Photocells with the Prop-1 Controller

If you connect the circuit shown in Figure 5 to a Prop-1 controller, you’ll find that it doesn’t behave as you expect. What gives? Well, all of the I/O pins on the Prop-1 are connected to the input side of a ULN2803 driver – the driver is preventing the POT instruction from working properly. We have a few choices to correct this.

The first is the easiest — simply remove the ULN2803 from its socket. This choice is only viable, though, if we’re using the TTL outputs from the Prop-1 and have no need for the high-current side (see Figure 7, top diagram).

The second choice is to put the POT circuit on P7, and then replace the ULN2803 with a ULN2003. When doing this, the ULN2003 must be inserted such that it is bottom-aligned with the ULN2803 socket. This will open the connection to the P7 circuit (see Figure 7, middle diagram). Note that when using a POT circuit on P7 or P6 of the Prop-1 controller, you must remove the input configuration (SETUP) jumper on the pin being used.

Finally, and the least desirable, is to do a bit of “surgery” on the ULN2803. Use this choice only if the first two are not available. Remove the ULN2803 and cut off the input and output legs that correspond to the pin that you’ll use. Note that ULN2803 pins 1 and 18 correspond to P7, ULN2803 pins 2 and 17 correspond to P6, and so on. Do not remove ULN2803 pins 9 or 10 — this will prevent the high-current outputs from working properly. The bottom diagram in Figure 7 shows a ULN2803 modified to allow a POT circuit to work on P0. Again, do this only as your last resort, and make sure you have a spare ULN2803 or two before you start “operating.”

Okay, I’d say that’s about enough from the road. Halloween is just a couple months away — you’d better get busy with those props! Until next time — when I’m home and comfy – Happy Stamping. NV
For nearly a decade we've been the leader in hobbyist FM radio transmitters. Now, for 2005, we introduce our brand new FM30 series of FM Stereo Transmitters! We told our engineers we wanted a new technology transmitter that would provide FM100 series quality without the advanced mixer features. They took it as a challenge and designed not one, but TWO transmitters!

The FM30 is designed using through-hole technology and components and is available only as a do-it-yourself kit with a 25mW output very similar to our FM25 series. Then the engineers redesigned their brand-new design using surface mount technology (SMT) for a very special factory assembled and tested FM35WT version, with 1W output for our export market! Both are designed around an RF tight vinyl clad metal enclosure for noise free and interference free operation. All settings are done through the front panel digital control and LCD display! All settings are stored in non-volatile memory for future use.

Both the FM30 and FM35WT operate on 13.8 to 16VDC and include a 12VDC plug in power supply. The stylish metal case measures 5.55" x 6.45" x 1.5"H and is available in either white or black. (Note: The end user is responsible for complying with all FCC rules & regulations within the US, or any regulations of their respective governing body).

FM30
Digital FM Stereo Transmitter Kit, 0-25mW White $199.95

FM30B
Digital FM Stereo Transmitter Kit, 0-25mW, Black $199.95

FM35WT
Digital FM Stereo Transmitter, Assembled, 1W, White $299.95

FM35B
Digital FM Stereo Transmitter, Assembled, 1W, Black $299.95

Tunable FM Stereo Transmitter

- Fully synthesized 88-108 MHz for no frequency drift
- Linear level inputs and output
- New all design, using SMT technology

A cut above the rest, the FM25B features a PIC microprocessor for easy frequency programming without the need for look-up tables or complicated formulas! The transmit frequency is easily set using Dip switches: no need for tuning coils or “tweaking” to work with today’s digital receivers. Frequency drift is a thing of the past with PLL control making your signal rock solid all the time - just like commercial stations. Kit comes complete with case set, whip antenna, 120 VAC power adapter, 1/8” Stereo to RCA patch cable, and easy assembly instructions, and the SMT parts are factory preassembled - you’ll be on the air in just an evening!

FM25B
Professional Synthesized FM Stereo Transmitter Kit $139.95

Professional Synthesized AM Stereo Transmitter

- Fully synthesized 88-108 MHz for no frequency drift!
- Ideal for school
- Microprocessor controlled
- Simple settings

Run your own radio station! The AM25 operates anywhere within the standard AM broadcast band, and is easily set to any clear channel in your area.

- It is widely used by schools - standard output is 100 mW, with range up to 1/2 mile, but its jumper settable for higher output where regulations allow. Broadcast frequency is easily set with dip-switches and is stable without drifting.
- The transmitter accepts line level input from CD players, tape decks, etc. Includes matching case & knob set and AC power supply!

AM25
Professional Synthesized AM Radio Transmitter Kit $99.95

Digital FM Stereo Transmitters

- Rock stable PLL synthesized
- Front panel digital control and display of all parameters!
- Professional metal case
- Super audio quality!
- 25mW and 1W models!

Our FM100B is the updated version of a truly professional frequency synthesized radio transmitter station in one durable, handsome cabinet. It is used all over the world by serious hobbyists as well as churches, drive-in theaters, and schools. No one else offers all of these features at this price! The included frequency display and audio level meters assist in easy operation. The “B” version now includes some additional functionality including a line level monitor output, improved stereo separation, spectral purity, audio clarity, and adjustable RF Output. An exclusive selectable microphone mixer and auto AGC circuit combines your local mic audio with your music input or mutes the music when mic audio is present. You don’t even need an external mixer!

- Sound quality is impressive; it rivals commercial stations. Low pass input filtering plus peak limiters put maximum “punch” in your audio, and prevent overmodulation distortion. No wonder everyone finds the FM100B to be the answer to their transmitting needs...you will too! The kit includes a sharp looking metal cabinet, whip antenna, and built-in 110/220 volt AC power supply. An external antenna connection allows hook-up to high performance antennas like our TM100 and FM200. We also offer a high power export version of the FM100B that’s fully assembled with one watt of RF power for miles of program coverage. Many islands and villages use it as their local radio station! The export version can only be shipped outside the USA if accompanied by a signed statement that the unit will be exported. (Note: the end user is responsible for complying with all FCC rules & regulations within the US, or any regulations of their respective governing body).

FM100B
Super-Pro FM Stereo Radio Station Kit, 5uW-25mW $269.95

FM100BEX
High Power Version, 5uW-1Watt Output $349.95

FM100BWT
High Power Version, 5uW-1Watt, Factory Assembled $429.95

Radio Transmitter

- Fully weatherproof-rugged PVC construction
- Nuts and bolts or 75 ohm systems
- Tunable for a perfect match over the entire 88-108 MHz band
- 25 watt RF power maximum

A great first kit, and a really neat AM transmitter! Tunable throughout the entire AM broadcast band. 100 mW output for great range! One of the most popular kits for schools and scouts! Includes matching case for a finished look! The AM-1 has been the leading Scouting project for years and years. Try out your kit skills and at the same time...get on the air!

AM-1C
Tunable AM Radio Transmitter Kit $34.95

AC125
110VAC Power Supply for AM-1C $9.95

Tunable FM Radio Transmitter

- Selectable pre-emphasis 50 or 75 mSec for worldwide operation
- Linear level input with RCA connector

The FM10A has plenty of power and our manuals go into great detail outlining all the aspects of antennas, transmitting range and the FCC rules and regulations. Runs on internal 9V battery, external power from 5 to 15 VDC, or an optional 120 VAC adapter is also available. Includes matching case!

FM10C
Tunable FM Stereo Transmitter Kit $44.95

FM10C
110VAC Power Supply for FM10C $9.95

Tru-Match FM Broadcast Antenna

- We've been besieged with calls asking us where to get a good quality FM Broadcast antenna. Remember, matching your antenna to your transmitter is the single most important link in your transmitter setup – and a good antenna and match are the secret to getting maximum range.
- When we say “match” we mean electrical impedance match...if the proper impedances are not maintained between transmitter and antenna, power is reflected away from the antenna and back into the transmitter! This can cause the final amplifier stage to be damaged, not to mention spurious signals and lousy range. Don't forget, there are three important factors in your broadcast range: antenna, antenna, and antenna! Buy this kit and get the most from your FM Broadcasters!

TM100
Tru-Match FM Broadcast Antenna Kit $69.95

Professional FM Stereo Radio Station

- Rock stable PLL synthesized
- Front panel digital control and display of all parameters!
- Professional metal case
- Super audio quality!
- 25mW and 1W models!

Ramsey Kits Are Always Cool, Even In The Summer Heat!
The Hottest Items! Our Most Popular Kits!

Audio/RF Signal Generator
- DDS and SMT technology!
- 0 Hz to 5 MHz at 0.1Hz resolution!
- 0 to 10V peak to peak output level
- Sine, Square, or Triangle waveform

Features include:
- Generates sine, square, or triangle waveforms.
- DDS and SMT technology for high accuracy.
- 0 Hz to 5 MHz at 0.1 Hz resolution.
- 0 to 10V peak to peak output level.

SMT and DDS technology is used throughout the SG560 for ultimate performance and reliability. If you’re looking for a lab quality signal generator at a super hobbyist price, the brand new SG560 fits the bill...and a whole lot more!

SG560WT Audio/RF Signal Generator, Factory Assembled $329.95

Electrocardiogram Heart Monitor
- Visible & audible display of your heart rhythm
- Re-usable sensors included!
- Monitor output for your scope
- Simple & safe 9V battery operation

Enjoy learning about the inner workings of the heart while at the same time covering the stage-by-stage electronic circuitry used in the kit to monitor it.

The three probe wire pick-ups allow for easy application and experimentation without the cumbersome harness normally associated with ECG monitors. The fully adjustable gain control on the front panel allows the user to custom tune the differential signal picked up by the probes giving you a perfect reading every time! Multiple “beat” indicators include a bright front panel LED which flashes with each heart beat, an adjustable audio output to hear the beat, and of course, the monitor output to view on a scope, just like in the ER! Operates on a standard (and safe) 9VDC battery. Includes matching case for a great finished look. The ECG1 has become one of our most popular kits with hundreds and hundreds of customers wanting to get “Heart Smart”!

EGC1C Electrocardiogram Heart Monitor Kit With Case $44.95
EGC1WT Factory Assembled & Tested $89.95
EGC1P10 Replacement Reusable Probe Patches, 10 Pack $7.95

Plasma Generator
- Generates 2” sparks to a handheld screwdriver!
- Light fluorescent tubes without wires!
- Build your own plasma balls!
- Generates an up to 25V @ 200Hz from a solid state circuit!

This new kit was conceived by one of our engineers who likes to play with things that can generate large, loud sparks, and other frightening devices. The result... the PG13 Plasma Generator designed to provide a startling display of high voltage!

It produces stunning lighting displays, drawing big sparks, to perform lots of high voltage experiments. In the picture, we took a typical clear “Decora” style light bulb and connected it to the PG13 - WOW! A storm of sparks, light flashes and plasma filled the bulb. Holding your hand on the bulb doesn’t hurt a bit and you can control the discharge! It can also be used for powering various other experiments: let your imagination be your guide! Can also be run from 5-24VDC so the output voltage can be directly adjusted.

PG13 Plasma Generator Kit $64.95
PS21 110VAC input, 16VAC output power supply $19.95

Laser Show
- What a Light Show!
- Just like the fancy laser displays at concerts and theme parks, but inexpensive and fun to build! Uses two small motors, mirrors and a standard laser pointer as the basics. Front panel controls adjust the pattern and size. PLUS...a line level audio input is included, that automatically modulates the laser pattern to your favorite music! Uses safe plastic mirrors. Runs on 6-12VDC for safe low voltage operation.

LLS1 Laser Light Kit $44.95

Speedy Radar Gun
- You be the Cop with your own radar!
- One of our most popular science fair projects! Sensitive doppler shift radar provides a digital readout in either Km/Hr, MPH/Hr, or Feet/Sec! Features an 100mph range for average size vehicles. Actual doppler shift can be monitored with the built-in earphone jack. Includes the nifty case shown, and runs on 12VDC. Uses two standard coffee cans (not provided), so you don’t drink a hole in your car!

SG7 Speedy Radar Kit $59.95

Tri-Field Meter
- Watch RF, electric, and magnetic fields!
- Even Mr. Spock would like this one! 3 separate field sensors provides a cool readout on the two Sci-Fi styled LED bargraphs. You can walk around the house and “see” RF, electrical, and magnetic fields! Uses the latest Hall Effect sensors for super sensitivity. Includes the stylish case set shown. Runs on 4 standard AA batteries, not included. Long and Prosper!

TFM3C Tri-Field Meter Kit $64.95

Ion Generator
- Generate a breath of fresh air!
- Generates negative ions along with a blast of fresh air without any noise! Learn how modern spacecraft use ions to accelerate through space and generate a steady state 75Kv DC negative at a steady 4000A current! That’s a LOT of ions! Great for air pollution removal in small areas by a simple force it ion repulsion. No fans, motors, blades or noise, just swiftly moving charged air! Runs on 12VDC.

IG7 Ion Generator Kit $64.95

Electronic Learning Labs

PL130 PL300 PL500
- Learn and build!
- 130, 300, & 500 In One!
- Super comprehensive training manuals!

Whether you want to learn the basics of electricity, the theory of electronics, or advanced digital technology, our lab kits are for you! Starting with our PL130, we give you 130 different electronic projects, together with a comprehensive 162 page learning manual. A great start for the kids...young and old.

Step up to our PL500, which gives you 500 separate electronic projects along with 162 page learning manual! The PL500 walks you through the learning phase of digital electronics.

If you’re looking for the ultimate lab kit, check out our PL500. Includes a whopping 500 separate projects, a 152 page starter course manual, a 78 page advanced course manual, and a 140 page programming course manual! The PL500 covers everything from the basics to digital programming! Learn about electronics and digital technology the fun way and build some neat projects!

PL130 130 In One Learning Lab Kit $42.95
PL300 300 In One Advanced Learning Lab Kit $69.95
PL500 500 In One Super Learning Lab Kit $169.95

Get The Catalog!
Get the brand new 2005 Ramsey Hobby Catalog! 64 value packed pages of the newest goodies around! Order your copy on-line or give us a call!

www.ramseykits.com
800-446-2295

More than just friendly on-line ordering!
Clearance Specials, Ramsey Museum, User Forums, Dealer Information, FAQ's, FCC Info, Kit Building Guides, Downloads, Live Weather, Live Webcam, and much more!

www.ramseykits.com
590 Fishers Station Drive
Victor, NY 14564
(800) 446-2295
(585) 924-4560

More than just friendly on-line ordering!
Clearance Specials, Ramsey Museum, User Forums, Dealer Information, FAQ's, FCC Info, Kit Building Guides, Downloads, Live Weather, Live Webcam, and much more!

www.ramseykits.com
800-446-2295

More than just friendly on-line ordering!
Clearance Specials, Ramsey Museum, User Forums, Dealer Information, FAQ's, FCC Info, Kit Building Guides, Downloads, Live Weather, Live Webcam, and much more!

www.ramseykits.com
800-446-2295

Where
Electronics
Is Always
Fun!

Build It!
Learn It!
Achieve It!
Enjoy It!

Circle #39 on the Reader Service Card.
Prices, availability, and specifications are subject to change. Visit www.ramseykits.com for the latest pricing, specials, items and conditions. Copyright 2005 Ramsey Electronics, Inc...so there!
Only of you who follow electronics either as a career or hobby know that over the past years, electronics has evolved from an all analog world to a mostly digital world. Most electronic products today incorporate digital techniques. And in fact, it is hard to name a modern electronic product that does NOT contain a single chip computer called an embedded controller that runs the show.

Yet, analog has not disappeared completely. It won't ever go away because all physical phenomena in nature are analog. Voice and music are analog, video is analog, and most signals from sensors and transducers are analog. Yet despite all this natural "analogness," so much of it has already become digital. Music CDs and MP3 players are digital. The new high definition TVs are digital. Cameras are digital. And so it goes.

Now, the final frontier of electronics, radio — or wireless as we call it again today — is now going digital.

Cell phones are now mostly digital. Satellite and High Definition AM/FM radio is all digital. This rampant conversion is happening right now, but thanks to some breakthroughs and continuously improving integrated circuits, the digitization of radio is on the fast track.

One term for it is software-defined radio (SDR). Not only is the radio going digital, but it is becoming software, programs that run on a digital computer, or processor. My column this month is to introduce you to SDR and the new companion technology cognitive radio.

DSP to the Core

The core technology in SDR and cognitive radio is digital signal processing (DSP). DSP is the computer equivalent of analog signal processing. All radios process signals from antenna to speaker and from microphone back to the antenna. Those processes have in the past been purely analog.

Typical familiar analog processes are amplification, filtering, up/down conversion, mixing, equalization, compression, modulation and demodulation, encoding and decoding, and so on. Today, much of this is done digitally.

In a nutshell, a digital version of the analog signal is fed to a fast microprocessor along with a special program written to perform one of the analog functions mentioned above. The new digital output of that process is then converted back to analog. And the results are similar to what you would expect from an analog circuit. And no one can tell the difference.

Figure 1 shows a simplified block diagram of a digital signal processor. The analog signal is applied to a fast analog-to-digital converter (ADC). This device digitizes the analog signal into a stream of binary words that represent the analog voltage variations. Remember, to capture the full content of the analog signal, the sampling and digitization rate has to be at least twice the highest frequency in the analog signal.

For example, to convert analog audio with frequencies to 20 kHz into digital, the sampling rate has to be no less than two times that or 40 kilo samples per second (KSPS). You may already know that CD audio is sampled at 44.1 KSPS. That is a sample every 22,675 microseconds. A 4.2 MHz video signal needs a converter that will sample at 8.4 mega samples per second (MSPS) or faster. A 10 MSPS rate would work well or one sample every 100 nanoseconds.

To do radio, we need ADCs that can sample at many hundreds of MHz. Current ADC technology easily converts signal at frequencies up to about 250 MHz. And the technology is continually improving. A New York company called Hypres uses a cryocooled (< 4 degrees Kelvin!) ADC that can sample at well over 1 GHz.

The stream of binary words from...
the ADC goes into a random access (read/write) memory (RAM). The digital signal processor (DSP) is a specially designed microprocessor that has been optimized for DSP.

For example, it uses two memories rather than just one, a high speed RAM for the data, and a read-only memory (ROM) where the programs are stored. This is called Harvard architecture. The DSP also has special hardware and instructions that implement a multiple and accumulate (MAC) operation that is central to all DSP.

All signal processing — analog or digital — can be expressed as mathematical equations. To process the data, all you have to do is implement a computer that will solve that equation. One or more programs in the ROM implement mathematical algorithms that define how the digital data in the RAM is to be processed. It could be an algorithm that describes a band pass filter, a spectrum analysis, or modulation.

The DSP processes the data and generates a new stream of binary words that represent the process output. It is also stored in RAM. Finally, these new RAM data is converted back to digital by a fast digital-to-analog converter (DAC). The result is a processed analog signal that cannot be distinguished from that processed in traditional analog circuits.

Most of you who are unfamiliar with DSP are probably wondering why in the world would we go to so much complexity and expense to replace some relatively simple analog circuits with a mega-complicated digital computer. The main answer is probably, “just because we can.” Lots of things in electronics are like that.

For example, who really needs 3 GHz personal computers? Anyway, the ADCs, DACs, and DSP chips are now fast enough and cheap enough so that they can be used virtually anywhere today. And overall, they will take up less space and use less power than their analog predecessors. And they require no adjustment or calibration.

A really key benefit of DSP is that you can achieve some processing results that essentially cannot be done easily or at all in analog. Filters with super sharp selectivity and the desired phase response are really easy to implement in DSP. And with DSP, performance levels can easily exceed anything you can get with an analog filter.

Another good example is a spectrum analysis. Using the fast Fourier transform (FFT) — a popular mathematical algorithm — you can easily look at a sampled analog signal and output a Fourier analysis that tells the individual sine wave frequencies and amplitudes of the entire content.

The hottest and fastest growing wireless technology called orthogonal frequency division multiplexing (OFDM) can only be done with DSP. Finally, the digital output is fully compatible with the inputs and outputs of products today. Most products are already digital such as cell phones, MP3 players, even the new HDTVs.

One of the best examples of how DSP has changed communications products is the modem. The early PC modems were large plug-in cards with ICs, filters, and all manner of analog circuits. Today, a modem is implemented fully in a single DSP chip. All filtering, modulation/demodulation, etc., is done in a tiny DSP.

The actual digital signal processing is usually accomplished by a specialized microprocessor optimized for this type of work. However, there are other ways to do it. For example, any digital computer or microprocessor can be programmed to do DSP. However, it must be fast enough.

If the signals to be processed are very low frequency, then a PC or standard embedded controller can do it. For high frequency signals like radio waves, your processor needs to be super fast so processing can take place in real time. In some cases, the speeds are so great even a fast DSP can’t keep up. In such cases, a programmable logic device (PLD) — such as a fast field programmable gate array (FPGA) — can be used.

Software-Defined Radio

A software-defined radio (SDR) is one in which some or all signal processing functions are done on a DSP in software. The most common software radio today uses a standard
superheterodyne receiver design where the incoming signal from the antenna is fed to a band pass filter to select the signal frequency, then to a low noise amplifier (LNA). See Figure 2.

The amplified signal then goes to a mixer along with the sine wave from a local oscillator (LO), usually a frequency synthesizer. The mixer output is the difference between the input signal frequency and the LO frequency. This process is called down conversion since the output is a lower intermediate frequency (IF). Good selectivity is easier to obtain at lower frequencies. Crystal, ceramic, or surface acoustic wave (SAW) filters are the most commonly used IF filters.

At the IF output, the signal is fed to the ADC for conversion to digital. From there, a DSP does all other operations such as additional down conversion, filtering, demodulation, and other functions called for. The resulting processed signal is then converted back to analog in a DAC, then fed to a power amplifier and speaker.

In some designs, the mixer translates down directly to the original modulating (baseband) signal. This is called direct conversion. It works well and allows the DSP to provide the filtering. However, this technique works only for AM signals including SSB. To handle FM or PM forms of modulation, another method is needed. Most communications products today use some digital form of phase or frequency modulation (BPSK, QAM, FSK, etc).

Figure 3 shows a receiver that works with FM and PM. The signal is first filtered with a band pass filter, then amplified in a low noise RF amplifier (LNA). The resulting signal is applied to two mixers. Also applied to the mixers are signals from the local oscillator usually a frequency synthesizer. The two LO signals are 90 degrees out-of-phase with one another. We call these signals in-quadrature.

The mixer outputs are called the in-phase (I) signal and the quadrature (Q) signal. The LO frequency is set to the incoming signal so this is a direct conversion receiver. The I and Q signals both contain the original information but there is a 90 degree shift between them. Both signals are digitized by identical ADCs. The ADC outputs are put in RAM as before. With both the I and Q versions of the signal, the DSP can perform the demodulation and other processing. Virtually all cell phones today use some form of this arrangement in their receiver.

In a SDR transmitter, the opposite process is implemented. The voice to be transmitted is first digitized by an ADC then encoded to compress it so that it can be transmitted at a lower rate that consumes less bandwidth. The digitally encoded signal is then converted by the DSP into signals that implement the desired modulation like FSK or QPSK.

The DSP outputs both I and Q versions of the signal. These I and Q signals are fed to mixers with a quadrature LO and up converted to the desired output frequency. The resulting composite signal is then sent to a power amplifier (PA) and then the antenna.

The ultimate goal of SDR is to do all processing digitally. To do this, we have to eliminate the mixers. The mixers do translate the high radio frequencies down to an IF that can be digitized by commercial ADCs. You can buy 12- and 14-bit ADCs that will sample at up to about 250 MSPS. That is pretty fast, but not for all radios.

Most modern radios operate in the microwave region (>1 GHz). ADCs that sample that fast are not commonly available. However, if the radio frequencies are fully below about 100 MHz, you can make the entire radio with the DSP. It would look like that shown in Figure 4.

You still need a band pass filter to somewhat narrow the receive/transmit frequency range and you still need an LNA to get the signal strength up to a level that can be used by the ADC. In the transmitter, you still need an external power amplifier. But other than that, all other processing like filtering, modulation/demodulation, whatever is handled by the DSP. For example, you could easily do an entire AM broadcast band radio in a DSP.

The most current widespread use of SDR as described in Figure 3 is in cell phone base stations. Base stations must support current digital technology cell phones (GSM, CDMA), as well as older analog and digital systems (AMPS, TDMA). This is still done by using multiple radios. But with a single SDR, the entire cell phone spectrum is digitized and DSP used to separate out the different signals with different modulation schemes and encoding.

A forthcoming SDR application is the military’s Joint Tactical Radio System (JTRS). This is an attempt by the military to create a general-purpose radio that can serve all of the services regardless of the modulation and coding systems used. It will prevent military personnel from having to fiddle with frequencies.
modes of operation, and other technical aspects, and concentrate on the communications itself which is always critical in battle and non-battle situations.

Cognitive Radio

All radios today operate in a fixed frequency spectrum with specific modulation, multiplexing, encoding, and data protocols. If two radios are to communicate, they must be identical in those technical specifications. If not, they will not talk to one another, that is interoperable. This works okay for most applications, but in the military, there are multiple radios of every sort, not only for voice but also for video and data.

It is often difficult — if not impossible — for the Army to talk to the Air Force or the Marines to the Army and so on. Most radios do not interoperate with other radios. This greatly curtails communications unless multiple radios are available. This problem also exists in law enforcement, search and rescue, and other public services. The fireman cannot talk to the police who cannot talk to the Coast Guard and so on. It is a huge problem and only getting worse. A potential solution is a special adaptive or smart SDR. It is being called cognitive radio.

Cognitive radio is an extension of SDR that combines the flexibility of the SDR with some intelligent features that allow the radio to learn and adapt. This smart radio will observe what the user does and remember selections and operations. It will also monitor the environment, meaning the frequency spectrum so it is aware of what is going on across a wide swath of spectrum. It will automatically adjust itself to the prevailing conditions to ensure that the communications take place. It will change frequency to avoid interference. It will change modulation modes to improve communications reliability or adapt to new conditions. It will boost transmitter power to overcome noise at the receiving end. And so on.

This smart radio will help conserve spectrum space by allowing the radio to operate in an area not currently used by anyone else. In other words, massive frequency reuse on the fly. And a neat aspect of a cognitive SDR is that it can download new software and reconfigure itself as the situation requires. The Federal Communications Commission (FCC) does not permit that now, but it is changing its rules to test and potentially allow future cognitive radio concepts to be implemented.

Cognitive radio is not here yet but it is being researched and tested. It will no doubt appear first in the military’s JTRS radios. We may eventually see it in another 10 years, but it will change radio forever.
A MESMERIZING "CLOCK WATCHER'S" LED CLOCK FROM AUSTRALIA

Jaycar Electronics, based in Australia, has developed a new clock kit that blows other clock kits out of the water. It was developed in conjunction with Silicon Chip Magazine, an Australian-based electronics magazine.

The project is based around an AVR microcontroller, to take care of processing the display. It has a regular looking array of LEDs (arranged similarly to a bank of seven-segment LEDs) that displays the time in 12 or 24 hour mode. The real excitement however, is in the 60 LEDs around the circumference that make up the seconds counter.

When the clock is running, the "seconds" are kept by a chase LED running counter-clockwise from the 12 o'clock position back to the relevant "seconds" position. The first "second" sweep from the 12 o'clock position to its permanent location takes exactly one second. This position then remains illuminated. The next second (while only travelling 58/60 as far), still takes one second. This procession continues until the entire 60 seconds are lit up. Even though the sweep at 45 seconds is only 25% as far as the first, it still takes one second to make the journey. When the entire face has filled, one minute has elapsed, the digital clock increments by one, and the whole process starts all over again.

The kit is supplied complete with a 7-3/8" diameter circuit board which is a double-sided, plated through PCB with overlay, all PCB components, a pre-programmed AVR microcontroller, and clear instructions. It only requires a 9VAC wall adaptor.

Price for this kit is $82.95 + P/P. Use part number KC-5404 when ordering.

For more information, contact:

JAYCAR ELECTRONICS
Tel: 800-784-0263
Web: www.jaycarelectronics.com
Circle #44 on the Reader Service Card.

SPRACKET® SPEAKER MOUNTING SYSTEM

The Spracket® is a conductive speaker mounting system which allows you to connect speaker wire directly to the bracket. Its innovative design simplifies the process of mounting a speaker box to a wall. In addition, when using the Spracket, you create the flexibility to transport the speaker to multiple locations. Spracket is unlike other speaker mounting systems. It offers a unique marriage of a speaker bracket and connecting system, which eliminates the problems inherent to all previous speaker bracket designs (Hang And Hear®).

Current speaker bracket designs often require two pairs of hands to mount a speaker to a wall. The wire must reach the speaker being held by person A while person B inserts the positive and negative wires into the speaker connectors. The excess wire then has to be fed back into the wall, out of the bracket's way. Often, the wire will hang up on the bracket or disconnect and fall back into the wall. And so the process starts over. Even if none of these complications arise, two people are still needed to complete the installation. After hanging a speaker with standard wall brackets, one can’t be sure if the two pieces are seated properly and that the speaker won’t fall down with the slightest vibration.

Spracket has a sturdy nylon 66 w/15 percent glass fiber construction and incorporates gold-plated copper contacts for maximum conductivity. Spracket is designed to hold up to a 50-pound speaker to a wall.

The Spracket incorporates positive and negative gold-plated copper contacts, isolated in a composite "J" mount design. The speaker wire from the wall is attached to the back of the Spracket utilizing bolts through the two contacts. The Spracket is then attached to the wall in the upright position, using all four mounting holes. Two wires are attached to the second Spracket, then connected to the speaker terminals. The Spracket is then...
mounted upside down to the back of a speaker. Only one pair of hands is necessary for installation. When the speaker is hung on the wall, sound provides confirmation that the Spracket is safely seated and operational.

The Spracket can be wired and mounted to any wall inside or outside your home, office, mobile home, or boat, or to areas of the home or business that seldom need a speaker system installed, such as a guestroom, conference room, or a dining area. Installations on unusually high wall mountings are also simplified. Speakers can then be easily moved from these locations for cleaning purposes or to relocate to another indoor or outdoor Spracketed location. The Spracket often has wide-range appeal to audiophiles, home-owners, pre-fab contractors, businesses, and boat or mobile home owners.

For more information, contact:

CEWL CONNECTIONS
3350 Sports Arena Blvd. Ste. D
San Diego, CA 92110
Tel: 800-889-3246
Web: www.cewlconnections.com
Circle #66 on the Reader Service Card.

The ezKEY is a simple-to-use adapter that allows you to use any PS/2 compatible computer keyboard with a microcontroller, Stamp module, or other embedded device. Access to the connected keyboard is through a standard 2-wire, 9600 baud, TTL level serial interface. This allows the end-use application to talk to the keyboard without any knowledge of the PS/2 protocol, keyboard scan codes, or PS/2 command set. The ezKEY takes all the scan codes and turns them into single byte ASCII codes relieving processor strain from the end-use controller.

The ezKEY commands allow the application to initialize the connected keyboard and review keystrokes. The ezKEY also comes with a 40-character buffer to help store keystrokes between readings. The ezKEY automatically controls the status of the num lock, caps lock, and scroll lock LEDs and monitors the states of the shift keys. This allows the ezKEY to report the correct ASCII code without the end-use application having to monitor status and make any necessary changes, such as whether to use lower-case or upper-case.

The ezKEY comes with a SIP module that measures only 2.1 by 0.551 inches. A four-pin header is provided to supply power to the adapter and access the serial data lines. The ezKEY is also provided with a standard PS/2 receptacle to plug your keyboard into.
With the addition of the ezKEY, Multilabs has created a complete user interface solution for microcontroller systems. The ezVID series of video modules, ezMOUSE PS/2 mouse adapter, and the ezKEY can all be used together to create a complete user input/output solution. For more information, contact:

MULTILABS
Lake Forest, CA
Tel: 949-458-7625
Email: support@multilabs.net
Web: www.multilabs.net
Circle #50 on the Reader Service Card.

MICROCONTROLLER MODULE

The new MicroBolt embedded microcontroller module from Micromint is aimed at industrial control applications. The module uses a Philips LPC2106 microcontroller and can be programmed in C or assembly language. The MicroBolt measures 1.47 inches long and 0.74 inches wide. The module features 128K bytes of program space and 64K bytes of SRAM running on a powerful 60 MHz, 32-bit ARM processing core. Other features include 19 digital I/O, a real-time clock calendar, two UARTs, six PWM channels, an SPI bus, and an I2C bus. The MicroBolt can be used as a hardware replacement for Parallax Inc.’s BASIC Stamp. Micromint, Inc., offers a development package consisting of a development board with power supply, a MicroBolt Module, and a demo version of ImageCrafts ICCARM C compiler. The MicroBolt costs $99.00. For more information, contact:

MICROMINT, INC.
115 Timberlachen Cir. Ste. 2001
Lake Mary, FL 32746
407-262-0066 or 800-635-3355
Fax: 407-936-0257
Web: www.micromint.com
Circle #75 on the Reader Service Card.

SERIAL TO ETHERNET CONVERSION SYSTEM

NetMedia, Inc., now offers a serial to Ethernet Conversion System. The SitePlayer Telnet™ System (SPTS – $79.95) allows the user to communicate directly with a device, through Telnet. With SitePlayer Telnet, users will be able to make an RS232 serial device accessible from anywhere there is an Internet connection. Once connected, the Telnet system acts as a transparent cable between the user and their device, allowing bi-directional communication between the user and the device. It can be configured using a standard web browser and can be password protected.

The durable aluminum case is compact, measuring 2.2” x 2.7” x .95”. Other features include: a fully configurable RS232 serial port; a baud rate selection from 50 to 115,200; parity selection odd, even, or none; flow control selection; data bit selection; and six available control signals. Flash ROM software updates can be uploaded to the device. It is configurable for up to four IP addresses, has a single LED which indicates online status, and includes an external power adaptor. The system is completely assembled and includes the SitePlayer Telnet module (also sold separately – SPT1 – $29.95). Two SitePlayer Telnet devices can be used to create an Internet bridge between two serial devices.

For more information, contact:

NET MEDIA, INC.
10940 N. Stallard Pl.
Tucson, AZ 85737
520-544-4567 Fax: 520-544-0800
Email: support@netmedia.com
Web: www.siteplayer.com
Circle #81 on the Reader Service Card.
Miss your Serial Port?
Let R.E. Smith add a Rainbow of Choices to your Network!

Remote Data and Power delivery via CAT-5

Long range Distribution Hubs (4000 ft)
Converters • Repeaters • Extenders

Custom solutions – Let us know what you need.
Over 75 products to choose from, and growing!

RESmith
WWW.RS485.COM
4311 R.E. Smith Drive
Hamilton, OH 45011
513.874.4796
What the L is it?
Check Inductors Quickly With a PIC-Based Meter That Also Measures Frequency

After doing the same thing many times, I'll sometimes stop and ask myself why I'm doing it that way. A while back, I designed some DC-DC converters so I wound and measured a lot of inductors. Each time, I soldered a 5,000 pF 1% mica capacitor across the inductor. Then I hooked up a signal generator and checked the combination's resonant frequency on an oscilloscope. Five seconds on my HP-11C calculator gave me the inductance.

Was there a simpler solution? My existing procedure couldn't be easily automated, but there was an alternative. I could plug an unknown inductor into an LC oscillator and measure the resulting frequency. I'd have to design an oscillator that would work with a wide range of inductors and devise something to measure the frequency and display the corresponding inductance.

The latter was no problem. Small PIC microcontrollers can be programmed to measure and display frequencies to tens of MHz. Knowing the tuning capacitance, a PIC could easily calculate and display the inductance. Put a wide-range oscillator in front and I'd have a handy device that would measure both inductance and frequency.

Which Oscillator?

As this circuit must work with almost any inductor, I chose a Colpitts oscillator. This resonates an untapped inductor with two capacitors in series and uses an emitter-follower as its amplifying device. The slight voltage step-up provided by the capacitors balances the below-unity gain of the emitter-follower.

In Figure 1, C1 and C2 are the tuning capacitors and Q1 is the emitter-follower. (All NPN transistors are type 2N3904, PNP transistors are 2N3906s. Close equivalents will suffice in both cases.) The rest of the circuit provides a sine and a pulse output and

Figure 1. This oscillator, with its output buffer and gain control circuit, runs well with almost any inductor.
maintains a constant oscillation level.

This configuration has a number of nice features. Not only are both the inductor and the critical tuning capacitor grounded on one side, but the larger capacitor swamps the effect of the transistor’s highly variable base-emitter capacitance. The transistor’s collector-base capacitance can be ignored.

The oscillation frequency is inversely proportional to the square root of the inductor value. Thus, a 10,000:1 range of inductance can be measured with only a 1:100 range in frequency. This meter measures inductors from 3.3 uH to 100 mH.

The Critical Capacitor

The tuning capacitance has to be large enough to swamp the inductor’s self-capacitance and any strays introduced by the user’s hand holding it in place. The resulting, relatively low operating frequency reduces the effect of core losses and the skin effect. On the other hand, if the oscillation frequency is too low, the circuit Q could become too low for the oscillator to run at all. I chose 1,300 pF (C2 = 1,500 pF) as a good compromise. This gives oscillation frequencies between 12 kHz and 1.4 MHz.

The accuracy of the inductance measurement depends directly on the precision of capacitor C2. Since C1 is much larger than C2, its accuracy has less effect. I had several 1% capacitors in my junk box and assumed that such parts were readily available. While capacitor manufacturers offer them, my usual distributors don’t stock capacitors with better than 2% accuracy. You may have to settle for one of those. Only mica or plastic foil capacitors should be used for C1 and C2. Ceramic capacitors tend not to have close tolerances and often vary considerably with temperature.

Setting the Level

I wanted a constant output voltage for any inductor, so I added automatic gain control. This adjusts the DC current through Q1 over a 10-1,000 uA range to generate a two-volt peak-to-peak sinusoidal output at the test point TP. This sine output, buffered by Q2, makes this oscillator a useful signal source for other purposes. Q3 converts the sine wave into pulses to drive the frequency meter.

Over the entire inductance range, the working impedance of the oscillator ranges from about 80 ohms to 8,000 ohms. To achieve a two-volt peak-to-peak output with a low-Q, 10 uH inductor requires a drive around 1.2 mA. At the other end of the scale, a high-Q, 100 mH inductor should generate a two-volt signal with only 1.2 uA drive. (The 20 uA or so of Q2’s base current confuses things a little.)

The oscillator drive current comes from transistor Q6 whose base is driven by a voltage source. The collector current of Q6 is an exponential function of its base-emitter voltage which, in its turn, is proportional to the difference
between the desired output amplitude and a fixed reference. R2 prevents Q1 from drawing a huge current when no inductor is being tested. R1 not only defines the open-circuit base voltage of Q1, it sets a limit to the circuit Q when measuring large inductors. Q4 and Q5 compare the DC level of the output pulses with a reference voltage derived from R3 and R4.

The feedback loop has two rather desirable side-effects. One is that whatever the current in Q1, the output amplitude is a fixed function of the control voltage. This makes stabilizing the control loop much easier. In a linear circuit, the loop gain would change from one end of the range to the other.

The other side-effect is the loop’s independence of temperature. A transistor’s exponential characteristic is very sensitive to the operating temperature; normally, you need extra transistors to compensate for this. When everything’s inside an amplitude feedback loop, the loop compensates for temperature, as well. (The ambient temperature changes the threshold of Q3, producing a slight amplitude variation with temperature.) Within reasonable limits, the battery voltage has no effect.

The lowest oscillator frequency is about 12 kHz. With a high-Q inductor, the response to drive changes could be quite slow and, for a stable loop, the feedback has to be even slower. I was tempted to design a clever second-order loop but settled for a slow first-order one. That’s why C7 is comparatively large. As it takes a significant fraction of a second to measure an inductor, we don’t need a super-fast control loop.

Does it Work?

Actually, rather well. Having designed for a maximum frequency of about 1.4 MHz, I was a bit surprised to find the oscillator ran with much smaller inductors than the 10 uH I’d intended. The limit is about 0.47 uH, but by then the oscillator is running at 6 MHz and the TTL pulse converter is no longer doing its job. The PIC firmware allows inductance measurement down to 3.3 uH. At the LF end, the sine output at 12 kHz is a little warped but things work well enough. The display format cuts measurement off at 99.9 mH.

You Can Count on a PIC

I like to stick with old and trusted parts, so I used a 16C54 for this job. Any of the 18-pin 16C5x series chips will work (see the Picking a PIC sidebar). Given a large enough internal prescaler ratio, the PIC’s timer input can count frequencies approaching 50 MHz without missing a beat. The timer register and two overflow registers accumulate the input pulses for a firmware selected period. The number of pulses counted indicates the frequency. This frequency can be displayed as-is or converted into an inductance. The result is sent to a 16-character liquid crystal display (LCD).

For the PIC’s clock, I used the popular 6.144 MHz crystal frequency. This gives a nominal maximum timer input of 1.45 MHz, but using the PIC’s internal prescaler with its minimum division ratio (2) doubles this to 2.90 MHz. Without prescaling, the timer pin requires a roughly equal on/off pulse input. With the prescaler in-circuit, any pulse over 10 nS gets counted. As the oscillator generates short pulses, prescaling is a good idea.

A Free Frequency Meter

The inductance meter in Figure 2 measures the oscillator frequency and displays the corresponding inductance about three times a second. In frequency meter mode, selected by a slide switch, a TTL level input frequency is counted for two seconds and displayed with 1 Hz resolution from 0.000 to 999.999 kHz. In both modes, a carefully counted number of instructions is executed between the start and finish of input sampling.

Don’t take more than the first four frequency digits too seriously. The crystal frequency depends on the values of C10 and C11, among other things, and can be
in error by one part in 5,000 or so. If you don’t need an inductance meter, you can use the PIC plus an LCD as a compact 1 MHz frequency meter. Of course, if you only want an inductance meter, you can leave out the BNC connector and the L/F switch.

Self-ranging

When measuring inductance, the input frequency lies somewhere in a 100:1 range. Using a short counting period would result in loss of resolution at the low end of the range, while a longer period would lead to a total count greater than two bytes. I compromised by dividing the frequency range into high and low decades. The easiest way to achieve this was to use two counting periods, 40 mS and 400 mS. If the 40 mS count is greater than 2,765, it’s processed as-is. Otherwise, a 400 mS count is done and a factor of 100 is incorporated into the inductance display.

Counting Loops

The timing loop has to perform two tasks: to keep track of how many instructions have been executed and to look for overflows from the PIC’s timer register, RTCC. With a times-two prescaler, the RTCC register overflows every 512 input pulses. We must read it more often than that and increment a carry register any time RTCC shows a decrease from its last state, that is, if an overflow has taken place. The sampling and updating loop executes once per 256 instructions and repeats every 166.7 uS.

A further counting loop executes 60 of these 256 instruction sampling cycles and thus repeats every 10 mS. Its loop counter is preset to 4, 40, or 200 to give 40 mS, 400 mS, or 2 S periods.

When nesting loops this way, put several NOPs at the start of the inner loop. After N times around the inner loop, it’s time to decrement the outer loop, to reload N, and start the inner loop cycling again. This takes five or so extra instructions. You play catch-up by jumping into the inner loop below the NOPs, making the first cycle shorter than a regular one.

Computing the Answer

Commercial inductors generally have 10% tolerances. Except when comparing matched inductors, there’s little point in making very accurate measurements. A three-digit indication in mH or uH units is perfectly adequate. The nominal range is from 10.0 uH to 99.9 mH. The display indicates when the inductor is too high or too low to measure.
To convert a frequency to an inductance, a three-byte calibration constant is divided by the frequency and the result is squared. This is then converted to decimal form for the display. This process has to work on numbers from 3,000 to 30,000 without overflowing or losing resolution.

The constant is multiplied by 256 before being divided by the 16-bit count. The 16-bit result is squared, giving a 32-bit number whose lower two bytes are ignored. This corresponds to the inductance in units of 0.1 uH or 0.01 mH, depending on the range. This is converted into a four-digit BCD string whose first three non-zero digits drive the display. Luckily, 32 by 16 bit division, 16 by 16 multiplication, and BCD conversion are library functions I've used many times.

Powering It

This oscillator (and some LCDs) requires a negative power rail. A negative three-terminal regulator derives both positive and negative supplies from a nine-volt battery. The positive (+5 V) rail that drives the PIC is the battery's positive terminal. Its negative terminal supplies about -4 V to the oscillator. For convenience, I used a 79L05 regulator. This has the disadvantage of 3 mA stand-by current. You can save some battery power by substituting a low-power negative regulator for the 79L05. The battery consumption is about 7.5 mA, so you can expect a battery life in the 50 to 100 hour region.

One PIC port acts as a go/no-go battery voltage sensor. A "Battery Low" message is displayed when the battery voltage — about 7.5 V — is too low to maintain a regulated five-volt supply.

Packing it In

One has the usual options. Shoehorn everything into the minimum plastic case possible or use a bigger box that takes up more space on the bench-top. I went for the first option even though it required more design work. My meter is wedged into the 4.5" by 2.7" box shown in Figure 3.

The display cut-out allows the bezel to protrude, letting the display board lie against the inner surface of the box and be glued to it with some silicone rubber. This leaves more height for the other components.

I filed the inner edges of the pillars which hold the box together to mount the LCD a little closer to the edge of the box. One edge of the LCD board protrudes into the battery compartment but doesn't get in the way. This edge could be trimmed off if necessary. (You might be more comfortable using a larger box.)

The circuit board is mounted behind the display. My display had its connector pads in its top left corner. This dictated the layout of the front panel and the size of the circuit board. I had to bend some of my design rules to make things fit. Figure 4 shows the result.

The primary mechanical support for the board is the row of wire-wrap pins I soldered to it. They mate with a female connector soldered to the LCD. Soldering both ends of the pins is an alternative. Pins on the lower edge of the board add rigidity and, incidentally, couple the test pads and the battery to the board. Since only connector friction holds the board in place, I glued some foam draft-excluder tape to the bottom of the box to stop the board from working loose.

The contact pads for the inductor under test are a piece of very thin single-sided PC board glued to the front panel over the battery compartment. I cut away some of the insulating material with a dental drill to make invisible connections to the undersides of the pads. In the ideal world, the pads would be gold-plated and the battery would be shielded from the "live" pad to eliminate its stray capacitance.

Apart from the display, the only other front-panel features are the two slide switches. One turns the meter on and off, the other selects frequency or inductance mode. VR1, a
trimmer on the PC board, sets the contrast of the LCD.

Board Construction

I rarely use printed circuits for prototypes, preferring perforated prototyping board with continuous copper strips on one side. I cut a board 1.5” by 2.9” with the copper strips parallel to the short side of the board. The strips are cut as necessary. Bus-wires are added on the component side before the components are inserted. This makes for a neat layout and is far easier than etching a custom printed circuit. Figure 5, which can be viewed at the Nuts & Volts website (www.nutsvolts.com), shows the component side of the board. Pairs of short parallel lines indicate where a copper strip on the underside must be cut through. The thick horizontal lines represent bus wires. Diamonds show where these are soldered to the copper strips.

Unfortunately, I couldn’t quite squeeze in all the components. C5 is wired between other components, the leads of R5 must be bent inwards before soldering, and R7 has to bend around a jumper wire.

Finding a Display

Two good sources of cheap displays are All Electronics (www.allelectronics.com) and Marlin P. Jones & Association (www.mpja.com). You need a one-line by 16-character display. The description may not specifically say “reflective,” but that’s the kind you want. If “transmissive” or “backlight” are mentioned, you’re looking at the wrong type, it won’t run from a battery.

No particular display is guaranteed to remain in stock.
I used the LCD-75 from All Electronics but by the time you read this, they may have some other 16-character displays in stock. As these are around $5.00 each, you can probably afford to experiment.

Not all displays use the same pinout. The standard I've assumed is a 14-pin single row on a long edge of the board. One snag is that, in some displays, the connector pads run along the bottom edge of the board and in others, the top edge. Often you can't tell which is which without powering up the display. The one I bought had its connector above the display even though the lettering on the PC board implied that the display should be mounted the other way up.

Check which pad is number 1. It's the ground pad and is connected to the bezel of the display. If it's at the "wrong" end of the row, the meter board must be mounted upside-down to make the pins match. Reflective displays sometimes come with two extra pads (15 and 16) to drive the non-existent backlight. These can be ignored.

The other common connector standard is a double row of pads on the short edge. This makes for a convenient ribbon cable interface but such a display would be too long to fit the box.

In my experience, 16-character, single-line displays behave electrically as if they were eight-character, two-line displays. That is, they use two separate sections of display memory to store the first and second eight-character block. (This minimizes driver chips.) The PIC firmware takes this into account but offers the option of writing all 16 characters to a single block, letting you use one line of a two-line display as your output device. A jumper wire between the pins labelled DM and G in Figure 5 sets this mode of operation.

Calibration

The relationship between the oscillator frequency and the displayed inductance is controlled by a calibration constant stored as three RET N instructions at code addresses 1, 2, and 3. The default value is 277,578 which corresponds to a tuning capacitance of 1,315 pF (C1, C2 and 11 pF of stray capacitance). If the strays are significantly higher, or if you measure large air-cored inductors with a high self-capacitance, the oscillator frequency will be lower than it should be and the meter will read high. If, when measuring accurately-known inductors, you get readings more than a percent or two in error, you might consider changing the calibration constant. If your meter gives consistently low inductance readings, this can be corrected by adding a 30 pF trimmer across the 1,500 pF capacitor.

This meter measures inductance under small-signal conditions. It has no mechanism for measuring how core saturation affects the inductance at high operating currents. Saturation is an important factor in DC-DC converter design.

Pleased as L

After years of fumbling with capacitors and signal generators, it's extremely gratifying to be able to touch any old inductor to the contact pads and have the meter tell me its value. I hope you'll find it as useful as I do. **NV**

Parts List

<table>
<thead>
<tr>
<th>U1</th>
<th>79L05</th>
<th>Negative voltage regulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2</td>
<td>PIC16C54CJW</td>
<td>See sidebar</td>
</tr>
<tr>
<td>Q1, Q3, Q6, Q7</td>
<td>NPN transistor, 2N3904</td>
<td></td>
</tr>
<tr>
<td>Q2, Q4, Q5</td>
<td>PNP transistor, 2N3906</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>Small signal diode, IN4448 or similar</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>6.144 MHz crystal. (e.g., Digi-Key type X414)</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>220K</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>3.3K</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>33K</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>68K</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>3.3K</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>4.7K</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>1.5K</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>2.2K</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>22K</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>12K</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>1.0K</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>22K</td>
<td></td>
</tr>
<tr>
<td>VR1</td>
<td>10K trimmer</td>
<td></td>
</tr>
<tr>
<td>SIP</td>
<td>Six-pin 33K, common connection to pin 1</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.01 uF 5%, plastic foil</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>1500 pF 1%, mica or plastic foil</td>
<td></td>
</tr>
<tr>
<td>C3, C4, C5, C6</td>
<td>0, 1 uF 20%, ceramic</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>10 uF 16V, electrolytic</td>
<td></td>
</tr>
<tr>
<td>C8, C9</td>
<td>15 uF 20V, tantalum bead</td>
<td></td>
</tr>
<tr>
<td>C10, C11</td>
<td>33 pF, ceramic</td>
<td></td>
</tr>
<tr>
<td>SW1</td>
<td>On/Off slide switch</td>
<td></td>
</tr>
<tr>
<td>SW2</td>
<td>Two-pole, two-way slide switch</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>One line by 16 character reflective display</td>
<td></td>
</tr>
</tbody>
</table>

About the Author

Tom Napier formerly worked for space and high-energy physics research organizations in Europe. Since 1982, he has developed innovative electronic equipment for companies in the US. He is now an electronics consultant based in SE Pennsylvania.
Logon to our website for secure shopping cart, powerful search engine, and latest news! www.halted.com

Silicon Valley’s Electronics Marketplace

Got excess electronic inventory? Send us your list or give us a call, we’d be happy to make an offer!

Call 1-800-4-HALTED (1-800-443-5833) to order...

or use our web search!

HSC Electronic Supply

All Products
Audio & Video
Capacitors
Closeouts
Components
Connectors
Electromechanical
Equipment & Tools
Featured Items
Hobbyist Products
New Arrivals
PC Hardware
Power Products
R & D Supplies
Resistors
Sale Specials
Semiconductors
Wire Cable Tubing

Electro-Hobbyist Alert -- HSC is your source!

Even before there was a place called “Silicon Valley”, HSC was the favorite stop of hardware hackers, techno-linkers, entrepreneurs and engineers on a budget! We have been buying and selling the Valley’s excess inventory for 40 years now, and our collection is second-to-none! We are also factory-authorized distributors for many fine lines of parts, tools, equipment and accessories, so we feel we should be your first stop when shopping for electronic basics. Give our ever-expanding website a try and see what we mean!

Stepper Motor, 12VDC 90 Ohm
HSC#20264 $2.95

Motion, 24VDC, 250 Oz.in. Torque!
HSC#20452 $29.50

DC Motors with rubber base (pair)
HSC#20130 $2.95

Solenoid 24VDC
HSC#18911 $4.50

Solenoid w/ Opto-Sensor
HSC#19362 $6.95

Solenoid, 5VDC, 150 mA
HSC#19606 $2.95

Weller WLC100 soldering 40 Watts, Reg. $49.00
HSC#WEL021 $39.00

LED Display
TIL-311 Hexadecimal LED Display
HSC#20219 $5.95

Parallax Basic Stamp II Reg. $49.00
HSC#PAR012 $39.00

Modular Power Supplies
12VDC Motor, worm gear reduction 2 speeds, 40 & 106 RPM -- Hi torque!
HSC#20554 $19.95

12VDC Motor, worm gear reduction 2 speeds, 40 & 106 RPM -- Hi torque!
HSC#20554 $19.95

Toggle Switch, 10A, Screw Terminals
HSC#ER1160 $2.29

Vextor Stepper Motor, PK243-02AA 2 phase, 1.8 degree/step
HSC#20000 $14.95

Petir Cooling Module
HSC#CAP052 $14.95

Relay, 5VDC, DPDT, 1A
HSC#19595 $1.95

Tacstar LED Battery, 12V, 7AH
HSC#BAT114 $19.45

Our Santa Clara store will again be featuring our famous parking-lot sale!

- Cuzcat, PS2 interface, new in bag
- No software, docs, get it off the net
- Cuzcat, USB interface, new in bag
- Includes docs & install CD

HSC#80682 $7.95
HSC#80683 $9.95

Sales Specials
Equipment Specials
New Arrivals
Closeouts
Visit Our Store

Since 1964...
Silicon Valley’s BEST place to shop for Electronics!

Three Retail Stores to serve you!
Main Office - Mail Orders...
3500 Ryer St., Santa Clara, CA 95051
Santa Clara 1-408-732-1573
Sacramento 1-916-338-2545
Rohnert Park 1-707-585-7344

Look for us on...

www.halted.com

Terms: Some quantities limited; all items are subject to prior sale. Minimum order: $10.00 plus shipping. Orders under $30.00 subject to $3.00 handling fee, in addition to shipping. All orders shipped by UPS Surface unless otherwise specified. $6.00 UPS change added for COD. Visit our website for detailed information on domestic and international shipping.
I have been a fan of MIDI (Musical Instrument Digital Interface) since the 1980s. The idea of controlling musical instruments from a computer has always seemed cool to me. Over the years, I have owned a number of MIDI cards and interfaces for my computers. I finally got around to buying a notebook computer. One of the characteristics of the new portable was the lack of a classic parallel port or card slot. The general trend on new computers is the replacement of the classic serial and parallel ports with Universal Serial Bus (USB) ports. With the elimination of the classical ports and card slots, I lost my MIDI interface capability. Thus was born the USB to MIDI interface project — the MIDI-nator. With this project, I will give the portable computer the ability to control musical instruments.

A Brief Introduction to USB

The USB 2.0 specification (Reference 1) supports three data transfer rates: high at 480 million bits per second (Mbps), full at 12 Mbps, and low at 1.5 Mbps. USB allows peripherals to be plugged and unplugged without down-powering the computer. This process, called "enumeration," involves communicating with the peripheral to discover the identity of the device driver that should be loaded. A unique address is assigned to each peripheral during enumeration to be used for run-time transfers. During run-time, the host PC initiates transactions to specific peripherals, and each peripheral accepts its transactions and responds accordingly.

From the peripheral point of view, all USB peripherals are slaves that obey a defined protocol. They must react to request transactions sent from the host PC. The peripheral responds to control transactions that, for example, request detailed information about the device and its configuration. The peripheral sends and receives data to/from the host using a standard USB data format.

USB 2.0 supports four types of data transfers: Control, Bulk, Interrupt, and Isochronous. Control transfers are bursty, non-periodic, host software-initiated request/response communications, typically used for command/status operations. Bulk transfers are non-periodic, large-packet bursty communications, typically used for data that can use any available bandwidth and can also be delayed until bandwidth is available. Bulk transfers perform error detection via CRC.

I will use control transfers during the enumeration process and bulk transfers for the MIDI data. It is important to note that bulk transfers include error checking and retry capability but no guaranteed delivery latency. Thus, it is possible for MIDI data to be slightly delayed if your other USB devices are extremely busy.

Microsoft has a tool available for examining the USB ports. USBView is a free utility from Microsoft (Source 1) that displays the USB connection tree and shows details of the USB devices that are connected to it, as shown in Figure 1. This is very useful for debugging USB enumeration errors. USBView runs under Windows 98/ME/2000/XP. USB ports transfer data through ENDPOINTS which are analogous to buffers.

The Microprocessor

The PIC18F2455 is one of the new USB enabled Flash memory microprocessors from Microchip. The 24K bytes of Flash program memory allow the user to store about 12 thousand 16-bit instructions which can be erased and reprogrammed electronically. The Flash program memory supports 100,000 write/erase cycles and has a greater than 40 year retention period. The microprocessor has 2048 bytes of RAM data memory. The microprocessor has many of the features users have come to expect from Microchip: Universal Asynchronous Receiver/Transmitter (UART) module, four timers, 10 10-bit A/D channels, and a master synchronous serial port (MSSP). The MSSP is useful for communicating with peripheral devices such as serial
EEPROMS and supports SPI and I2C protocols. The PIC18F2455 has 75 base instructions and offers seven different operating modes for managing power consumption.

The USB engine is V2.0 compliant and operates at low (1.5 Mb/sec) and full (12Mb/sec) speeds. The USB engine supports all types of data transfers and up to 32 endpoints. It has one kilobyte of RAM starting at 400h that is shared between the CPU and the USB engine. This shared memory can be configured for optimum use by the user. The first few locations are defined in umidi.h and are used for endpoint (buffer) descriptors: BDnSTAT, BDnCNT, and BDnADR. The locations are defined by how many of the endpoints use dual (ping-pong) buffering. BDnSTAT is the status register for the nth endpoint. Bit 7 determines who owns the buffer (CPU or USB engine) and who can write to it. BDnCNT is the number of bytes in the buffer. BDnADR is the integer where the buffer starts in the 400h-7FFh range. The PIC18F2455 supports a dual buffering scheme in which case each endpoint has two buffers defined. Up to a total of 64 buffers can be defined.

Building the Hardware

The circuit for the USB to MIDI interface is fairly simple and is shown in Figure 2. The connections are few enough that it can be built on a 2" by 4.5" prototype board having hole spacings at 0.1." Figure 3 shows the layout of the components on the board, and can be viewed at the Nuts & Volts website (www.nutsandvolts.com). Component side jumpers are shown in red. The heart of the system is the programmed PIC18F2455 that handles the USB proto-

References

Reference 1 — Universal Serial Bus Revision 2.0 Specification at www.usb.org/developers/docs/

Reference 2 — MIDI Manufacturer’s Association at www.midi.org

Reference 3 — USB Device Class Definition for MIDI Devices at www.usb.org/developers/devclass docs/midi10.pdf

Reference 4 — Programming the Microsoft Windows Driver Model by Walter Oney

Reference 6 — PIC18F2XX0/2XX5/4XX0/4XX5 Flash Microcontroller Programming Specification from www.microchip.com
col and MIDI serial input and output. Preprogrammed PIC18F2455 chips can be obtained from Source 2. The MIDI input is optically isolated from the microprocessor by a 6N139 high speed, high gain Darlington optoisolator.

There are five LEDs that are used to announce the state of the microprocessor and a power LED. A 20 MHz crystal oscillator provides the clock for the system and a manual pushbutton is used to reset the system. There is a programming connector used to bring programming signals from the programmer to allow in-circuit programming of the PIC18F2455. Two MIDI connectors and a USB connector complete the hardware. Power is provided through the USB connector. The completed circuit board is shown in Figure 4. For the initial debugging, I added an optional Maxim 233 RS-232 driver/receiver. This allowed me to send debugging data to be printed on the PC at 115,200 baud.

Table 1 gives the parts list for building the USB MIDI interface board.

If you do not want to tackle building the device from scratch on a prototype board, a printed circuit board is available at Source 2. The completed device on the printed circuit board is shown in Figure 5. The printed circuit board includes connections for the optional RS-232 debug feature.

MIDI Description

The MIDI enables people to use multimedia computers and electronic musical instruments to create, enjoy, and learn about music. There are actually three components to MIDI. The components are the communications Protocol (language), the Connector (hardware interface), and the distribution format called Standard MIDI Files.

I will discuss only the MIDI serial protocol in this article. The MIDI protocol is an entire music descrip-
tion language in binary form. Each word describing an action of musical performance is assigned a specific binary code. MIDI was designed for keyboards, so many of the actions are percussion-oriented. To sound a note in MIDI language, you send a "Note On" message, and then assign that note a "velocity," which determines how loud it plays. Other MIDI messages include selecting which instrument to play, mixing and panning sounds, and controlling various aspects of electronic musical instruments. Table 2 gives a list of some of the MIDI status and data bytes. Notice that the status bytes and data bytes are differentiated by whether the high order bit is set or not. A complete list and description of the MIDI messages are given in Reference 2.

The characteristics of the MIDI serial protocol are that data is transmitted at a rate of 31,250 bits per second, there is one start bit and one stop bit, and the voltage levels are 0 and +5 volts. The PIC18F2455's built-in UART can be used to send and receive MIDI data as long as these characteristics are met.

USB Device Class Definition for MIDI Devices

The USB organization has defined the way MIDI data is transmitted over the USB connection in the USB Device Class for MIDI Devices (Reference 3). In the USB MIDI class, the MIDI data is sent in four-byte event packets as shown in Table 3. The USB-MIDI event packet provides a wrapper around a standard serial MIDI command. New information is also added. The cable number is a value ranging from 0 to Fh.

The Code Index Number indicates the type of MIDI command that has been wrapped. In many cases, it is the same as the MIDI command. Perhaps an example would be useful. The standard MIDI command for a NOTEON of middle C on channel 0 with a velocity of 100 is 90 40 64 in hex. The corresponding USB-MIDI event packet for MIDI cable 1 is 19 90 40 64. It is the task of the USB-MIDI output device to receive the event packet from the personal computer (PC) via USB, decode it, and send the MIDI command.

Figure 6. Simple USB-MIDI Interface.

Figure 7. MIDI-nator Hookup Diagram.

Table 2. MIDI Commands.

<table>
<thead>
<tr>
<th>Status D7-----D0</th>
<th>Data Byte(s) D7-----D0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000nnn</td>
<td>0kkkkkkk 0vvvvvv</td>
<td>Note Off event. This message is sent when a note is released (ended). (kkkkkkk) is the key (note) number. (vvvvvv) is the velocity. (nnnn) = 0-15 (MIDI Channel Number 1-16).</td>
</tr>
<tr>
<td>1001nnn</td>
<td>0kkkkkkk 0vvvvvv</td>
<td>Note On event. This message is sent when a note is depressed (start). n, k, and v defined as above.</td>
</tr>
<tr>
<td>1011nnn</td>
<td>0ccccccc 0vvvvvv</td>
<td>Control Change. This message is sent when a controller value changes. Controllers include devices such as pedals and levers. (ccccccc) is the controller number. (vvvvvv) is the new value (0-119).</td>
</tr>
<tr>
<td>1100nnn</td>
<td>0ppppppp</td>
<td>Program Change. This message is sent when the patch number (instrument) changes. (pppppppp) is the new program number.</td>
</tr>
<tr>
<td>1110nnn</td>
<td>01111111 0mmmmmm</td>
<td>Pitch Wheel Change. This message is sent to indicate a change in the pitch wheel. The pitch wheel is measured by a 14 bit value. Center (no pitch change) is 2,000H. Sensitivity is a function of the transmitter. (11111111) are the least significant seven bits. (mmmmmm) are the most significant seven bits.</td>
</tr>
</tbody>
</table>

There are many other MIDI commands. For a complete list, see Reference 2.

Table 3. 32-bit USB-MIDI Event Packet.

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable #</td>
<td>Code Index #</td>
<td>MIDI status byte</td>
<td>MIDI data byte #1</td>
</tr>
</tbody>
</table>
consist of two MIDI endpoints — an IN and an OUT. The OUT endpoint is connected to the embedded MIDI IN jack which is defined as Jack #1 in the USB descriptors in umidi.c. Jack #1 is connected to Jack #4 which is the external MIDI OUT jack. Jack #4 and its connection to Jack #1 is also defined in the USB descriptors. Likewise, the input MIDI flow is defined in a similar manner. The USB device class definition for MIDI devices allows for much more complicated MIDI devices with more jacks and elements like internal synthesizers. Figure 7 shows how the MIDI-nator can be hooked up to a music synthesizer MIDI keyboard and a notebook computer.

MIDI Driver

In order to develop a piece of hardware for the Microsoft® Windows® XP operating system, it is necessary to take a step into the deep water with the Windows driver model. The Windows driver model allows developers to write device drivers that are source-code compatible across all Microsoft Windows operating systems (Reference 4).

By taking care to follow the standard USB device class definition for MIDI devices when writing the firmware for the device, I can use the standard Microsoft USB audio device drivers and avoid having to write my own custom USB MIDI driver. The following standard device drivers will be loaded: USBAUDIO.SYS, KS.SYS, PORTCLS.SYS, KSPROXY.SYS, KSUSER.SYS, WDMAUDI.SYS, and DRMK.SYS. Using these standard drivers will save me weeks of work, hundreds of pages of reading, and many headaches. Alas, the USB MIDI drivers are only available on Microsoft Windows XP and later operating systems.

Writing the USB/MIDI Software

The complexity of the USB and MIDI data processing indicated that the device firmware would be fairly long. I decided to write the program in C rather than assembly language and chose the BOOSTC compiler from SOURCEBOOST because of its low price and helpful support (Source 3). BOOSTC has an easy-to-use Windows user interface and the ability to single step through the program. The complete BOOSTC source code for this project is available at Source 4.

For the USB to MIDI interface to work with Windows, there must be a Windows driver that conforms to the specifications of the USB Device Class Definition for MIDI Devices. As I mentioned, Microsoft has written such a driver and it is included as part of the Windows XP operating system. The device’s firmware must accept the driver’s commands and supply the data in the format the driver needs.

Since the Windows XP USB MIDI driver conforms to the USB Device Class Definition for MIDI Devices, that document can be used for guidance in writing the
firmware for the PIC18F2455. Where to start when writing the firmware? The first thing that happens when a USB device is plugged in is enumeration. In enumeration, the host first puts the device into RESET mode and LED 0 will light. Then the host asks the device for a number of descriptors that help define the device to the host. Reference 3 defines the format and the content of the descriptors. The C program defines the descriptors in the DeviceDescriptor[] and Config-Descriptor[] arrays. Comments in the program provide an explanation of the contents of the descriptors. If the descriptors are processed successfully, then the device will be in configured mode and LED 2 will light. The MIDInator will show up in the system device manager as “USB AUDIO DEVICE.”

There is a jumper on the board that is sensed by the software. The software is designed to output additional debug information if the jumper is removed. This will be discussed more in the testing part of this article.

When MIDI data is received from the host via the EPIOUT USB endpoint, it is decoded into serial MIDI data and loaded into a 128 byte circular output buffer for serial transmission. It is transmitted as quickly as possible using interrupts. When MIDI data is available from an external MIDI device via the RX pin on the PIC18F2455, an interrupt occurs and the MIDI data is loaded into a 128 byte circular input buffer. The MIDI data is processed and assembled into four byte USB MIDI packets. The packets are then read by the host via the EPIIN USB endpoint.

BOOSTC or another C compiler is used to compile and link the C source into the umidi.hex file. The next step in the process is to download the hex file to the PIC18F2455 chip. For this, you will need PIC programmer hardware and PIC programmer software for the PC or you can order the preprogrammed chip from Source 2. There are plans for lots of PIC programmers on the Internet (Source 7) and free PIC programmer software (Source 8). Personally, I use the TAIT programmer hardware that uses the PC’s parallel port and the PIPVb programming software shown in Figure 8. Just make sure the programming software is tested on the operating system you are using and works for the PIC18F2455 since the programming algorithm was changed by Microchip for this PIC (Reference 6).

Testing the Hardware With the MIDI Software

Before you plug the device into your computer’s USB port, you should check its operation by applying +5 volts and ground to J5. The first thing that should happen is that the LEDs will flash sequentially. This means that the...
device is powered and programmed. The device should draw less than 55 mA with the optional RS-232 feature. If it does not, stop and check the circuit. Do not plug the device into your USB port until you are sure your wiring is correct or you may damage your USB port. Some — but not all — USB ports have overload protection.

The next thing to do is to plug the device into your USB port and check that the device is properly enumerated. This can be done using the USBVIEW program. Figure 1 shows the output of the USBView program with the hardware and software of this article connected. USBVIEW shows that the device has one configuration and has a maximum control packet size of 64 bytes. It operates at full speed and has two open pipes. The first pipe uses bulk data transfers and is for host-to-device data transfers (01) and has a maximum packet size of 64 bytes. The second pipe uses bulk data transfers and is for device-to-host data transfers (01) and has a maximum packet size of 64 bytes.

When I first plugged the device in with the program, it did not work. This meant I needed some way to debug the program. There is a jumper on the board that will switch the board from sending and receiving data at the MIDI baud rate (31,250) to a standard PC serial port baud rate (115,200). With the jumper in this position, additional debug information can be viewed by connecting the device to a PC with a serial port and using the HYPERTERM terminal program. Table 4 shows the commented output of a good enumeration and MIDI data transfer. Please note that in this mode the MIDI connections do not work, but can be simulated by sending MIDI commands from the HYPERTERM terminal program.

The USB Implementer’s Forum provides a free program called USB Command Verifier (USBCV) at Source 9. USBCV evaluates high, full, and low-speed USB devices for conformance to the USB Device Framework. It runs a number of tests — such as causing the device to enumerate 150 times — which must be passed. I am happy to report that this device and software passed all the USB Command Verifier tests.

The final step in the testing of the device is to test the transfer of MIDI data into and out of the PC using the USB port. For this, a music sequencer program is needed. There are many sequencer programs on the market, such as CAKEWALK (Source 10) and

<table>
<thead>
<tr>
<th>USB MIDI Debug Message</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB MIDI Interface V2.3</td>
<td>Announcement that program has started.</td>
</tr>
<tr>
<td>Full speed USB</td>
<td>Running at full USB speed.</td>
</tr>
<tr>
<td>USB Init</td>
<td>USB is initialized.</td>
</tr>
<tr>
<td>D>H</td>
<td>Device to host transfer.</td>
</tr>
<tr>
<td>GD</td>
<td>Get descriptor.</td>
</tr>
<tr>
<td>device</td>
<td>Descriptor type = device.</td>
</tr>
<tr>
<td>12 01 12</td>
<td>First byte, last byte, and number of bytes transferred in hex.</td>
</tr>
<tr>
<td>H>D</td>
<td>Host to device.</td>
</tr>
<tr>
<td>SA</td>
<td>Set device address.</td>
</tr>
<tr>
<td>01</td>
<td>Device address is 1.</td>
</tr>
<tr>
<td>D>H . . .</td>
<td>Repeats device request.</td>
</tr>
<tr>
<td>D>H</td>
<td>Device to host.</td>
</tr>
<tr>
<td>GD</td>
<td>Get descriptor.</td>
</tr>
<tr>
<td>config</td>
<td>Descriptor type = config.</td>
</tr>
<tr>
<td>09 32 09</td>
<td>Sends first nine bytes of config descriptor.</td>
</tr>
<tr>
<td>D>H</td>
<td>Device to host.</td>
</tr>
<tr>
<td>GD</td>
<td>Get descriptor.</td>
</tr>
<tr>
<td>config</td>
<td>Descriptor type = config.</td>
</tr>
<tr>
<td>09 00 40</td>
<td>Send 64 bytes of config.</td>
</tr>
<tr>
<td>05 03 13</td>
<td>Sends last 19 bytes of config.</td>
</tr>
<tr>
<td>D>H</td>
<td>Device to host.</td>
</tr>
<tr>
<td>GD</td>
<td>Get descriptor.</td>
</tr>
<tr>
<td>string</td>
<td>Descriptor type = string.</td>
</tr>
<tr>
<td>04 04 04</td>
<td>Specifies string language.</td>
</tr>
<tr>
<td>D>H</td>
<td>Device to host.</td>
</tr>
<tr>
<td>GD</td>
<td>Get descriptor.</td>
</tr>
<tr>
<td>string</td>
<td>Descriptor type = string.</td>
</tr>
<tr>
<td>2a 00 2a</td>
<td>Sends product string.</td>
</tr>
<tr>
<td>D>H . . .</td>
<td>Repeats previous two strings.</td>
</tr>
<tr>
<td>D>H . . .</td>
<td>Repeats device and config descriptors.</td>
</tr>
<tr>
<td>H>D</td>
<td>Host to device.</td>
</tr>
<tr>
<td>SC</td>
<td>Set configuration.</td>
</tr>
<tr>
<td>01 C</td>
<td>Configuration is set to 1.</td>
</tr>
<tr>
<td>D>H . . .</td>
<td>Repeats two string requests.</td>
</tr>
<tr>
<td>EPl out</td>
<td>Some MIDI initialization.</td>
</tr>
<tr>
<td>0b b0 7a 00</td>
<td>Messages are received.</td>
</tr>
<tr>
<td>09 90 3c 64</td>
<td>MIDI note on for middle C.</td>
</tr>
<tr>
<td>EPl out</td>
<td>MIDI note off for middle C. A note off is a note on with velocity of 0.</td>
</tr>
</tbody>
</table>

Table 4. Debug Output from Good Run.
The MIDI-nator

many others available for free on the Internet, such as JAZZ (Source 11). The MIDI sequencer program can be used to play, record, and edit MIDI music files. To record a MIDI file, you need a music synthesizer MIDI keyboard for input.

Figure 9 shows the free JAZZ program playing a MIDI file. To record music in JAZZ, you just highlight the measures you want to record and hit the record button, then just play what you want to record on the music synthesizer MIDI keyboard. Don’t worry if you make mistakes because you can always go back and edit the recorded MIDI file to correct any errors. One note of caution, however: Do not select the USB AUDIO DEVICE as both the input and the output in JAZZ when recording unless the output is muted. Doing so can set up an internal MIDI feedback loop which can cause havoc.

Conclusion

An interesting project which allows new portable computers using the XP operating system to drive MIDI musical instruments has been constructed for about $21.00. This project provides an introduction to the USB and MIDI protocols, to one of the new USB flash microprocessors from Microchip, and to the new low priced BOOSTC compiler from SOURCEBOOST. With this device, USB Notebook computers are now MIDI enabled. NV

Sources

Source 1 — USBVIEW available at www.ftdichip.com/Resources/Utilities.htm
Source 2 — RLANG homepage at www2.netdoor.com/~rlang
Source 3 — BOOSTC Compiler at www.picant.com/c2c/c.html
Source 5 — Jameco at www.jameco.com
Source 6 — Microchip at www.microchip.com
Source 7 — PIC Programmer Schematic at www2.netdoor.com/~rlang/vacutron/pic_prog_schematic.jpg
Source 8 — PIC Programmer Software at www.ic-prog.com/index.htm
Source 9 — USBCV Computer Program at www.usb.org/developers/tools/
Source 10 — Cakewalk website at www.cakewalk.com
Source 11 — Jazz free download site at www.jazzware.com/cgi-bin/Zope.cgi/jazzware/
Do you have a PC hardware project you have been putting off because of the complexities of the USB interface? Do you have a favorite joystick you are ready to discard because it was crippled by the slow and imprecise old game port interface? Would you like a game pad with a throttle control that doesn’t jump back to neutral every time you release it? You can have all these for under $20.00.

This project adds two DB-15 connectors in the handles of a game pad. The connectors provide access to all the game pad I/O except for two tri-state hat signals. Your custom hardware can access the PC though the connectors, or override any of all of the four axes of the built-in analog controls with external potentiometers. The pinout of each connector is close enough to the standard game port that with only a minor modification, your old joysticks can be brought back to life with the speed and precision of USB (see “An Introduction to USB” Nuts & Volts, May 2004).

The completed project is shown in Figure 1. The number of signals provided by this modification is shown in the table below. The game pad remains fully functional except for the vibration feedback. The signals that drove the two motors become the two output signals.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 digital</td>
<td>1 analog or digital (depends on revision)</td>
</tr>
<tr>
<td>4 analog</td>
<td>1 digital</td>
</tr>
</tbody>
</table>

Figure 1. Completed Interface.

[Image of a joystick with DB-15 connectors]

General Considerations

Most of the information in this article pertains to the Gamers Factory model Model G60310A. The main obstacle with modifying other game pads may be the lack of space; many are physically smaller. The method used to estimate impedances was by measuring the time interval for a capacitor to charge or discharge by two-thirds \((r^*c = t)\) This method can be used with other game pads.

Even within the one model covered, I discovered some minor variations. There are at least two versions of the main board (see Figure 10): version 2268-01-11 (illustrated) and version 2268-01-12 with a slightly different track layout. Since the modification to the main board involves finding I/O points, this issue is easy to resolve. You can trace I/O points visually, with an ohmmeter, or by shunting points through a 1K resistor to ground while running the software test described later. Revision 2268-01-12 also adds analog control to the left motor signal and changes B9 and B10 buttons to active high.

If you plan to interface to external electronics that have their own separate power supply, the safety features described later are highly recommended. If you wish to physically incorporate the Interface within an electronics project, you only need the main board with the I/O connection points added. However, you should always perform the work bench test before connecting any of these alternatives to your PC.

Circuit Design

Connecting two buttons in parallel creates an OR connection.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JL</td>
<td>Jack Left, (DB-15 Female Connector)</td>
</tr>
<tr>
<td>JR</td>
<td>Jack Right, (DB-15 Female Connector)</td>
</tr>
<tr>
<td>XL</td>
<td>X-axis Analog Input, Left</td>
</tr>
<tr>
<td>YL</td>
<td>Y-axis Analog Input, Left</td>
</tr>
<tr>
<td>XRa</td>
<td>X-axis Analog Input, Right</td>
</tr>
<tr>
<td>YRa</td>
<td>Y-axis Analog Input, Right</td>
</tr>
<tr>
<td>XRB</td>
<td>Duplicated XR on JL (allows 4 axis control on JL)</td>
</tr>
<tr>
<td>YRB</td>
<td>Duplicated YR on JL (allows 4 axis control on JL)</td>
</tr>
<tr>
<td>Bx</td>
<td>Button x</td>
</tr>
<tr>
<td>OL</td>
<td>Output Left</td>
</tr>
<tr>
<td>OR</td>
<td>Output Right</td>
</tr>
<tr>
<td>TS-L</td>
<td>Thumb Stick Button Left</td>
</tr>
<tr>
<td>TS-R</td>
<td>Thumb Stick Button Right</td>
</tr>
<tr>
<td>CLx</td>
<td>Cable Left x</td>
</tr>
<tr>
<td>CRx</td>
<td>Cable Right x</td>
</tr>
</tbody>
</table>

Figure 1. Completed Interface.

[Image of a joystick with DB-15 connectors]
function, which is exactly what we want to allow functioning of both the internal buttons and external connected signals. The analog inputs require more analysis but the solution turns out to be quite simple.

Adding isolation resistors between the internal potentiometers and buffers eliminates the need for any switches or jumpers to select the analog source. The internal game pad 10K potentiometers drive high impedance buffers. The 100K series resistors have the following effect: when no external controls are connected, the internal pots function normally; when an external pot is connected directly to a game pad buffer, it reduces the gain of the internal pot and takes control. A complete analysis is provided in the link "ControlInteraction.xls" on the Nuts & Volts website (www.nutsvolts.com). If an analog signal is the source, it is essentially unaffected by the internal pot.

The final version added a few optional parts for safety; fuses and protection diodes across the four analog inputs. Figure 2 shows the components added to the control board in bold. Figure 3 shows the I/O connections from both boards.

Construction

Test the game pad before starting any modification. Once the device is opened, the warranty is void. The device can be tested using a Windows built-in test as described later.

The tools I found particularly useful are shown in Figure 4. The Dremel cutting wheel provides a convenient way to cut the plastic slots for the two connectors and for cutting track. Cutouts can be trimmed using the grinding wheels. The bit size for wiring should be about 0.035 inches as discussed in "PCB Layout Tips," Nuts & Volts November 2004.

Disassembly

Disassemble the gamepad by removing the five
screws located on the backside. The electronics are contained in two boards wired together by a ribbon cable; the main IC board and control board. It is worthwhile to mark the location of the many mechanical obstructions to both circuit boards. After removing the cover, smear some lipstick on all the posts. Then place the cover back to leave an impression on the board.

The two motors are removed, then the two boards which are held in place by two screws each. After removing both boards from the case, you can either temporarily tie the USB cable to the main board or unsolder it to prevent damage. You can also add and leave two wires connected for workbench powering of the board until the modification is finished. You can connect these wires to the USB cable power points on the main board or to the fuse holders, if used.

Main Board Modifications

Buttons B1-B4, B9, and B10 have test pads which can be drilled to provide I/O connection points (see Figure 5). For buttons B5-B7, holes are drilled in convenient track areas. Capacitors C3 and C7 are removed and replaced by 1K resistors to provide a faster response time for the motor output signals. Fine emery cloth is used to remove the blue protective coating.

Control Board Modifications

Five track cuts are made to the control board as shown in the shaded areas of Figure 6. The free pad created in the middle of the board is later used as a tie point for the YL signal. A combination of six holes and slots is created in the edges of the board to fasten the tie points of the analog input resistor pairs R1-R3, R5-R7, and R9-R10. Figure 7 shows the board with added components in place. Jumpers on the track side of the board connect YRB, XRB, and YRA to their input resistors as shown in Figure 10. If you include the safety diodes, it is worthwhile to run a workbench test periodically to make sure a diode isn’t in backwards.

Case Modifications

The partitions that keep the motors in place are removed from both case covers. They are thin and can be cut and snapped out. Trim with grinding wheels. Figure 8 shows the location of the DB-15 connector in the top half of the case. The post on the left handle is at the correct location for the upper hole, but on the right handle the position must be measured from the lower post. The connectors were fastened with 4-40 hardware. One 6-32 nut in each mount location was used as a spacer to slightly recess the connectors.

Figure 9 shows the approximate location of the fuse holders. Try to position the fuse in the center of the concave shelf. To avoid cracking the
case, start with a 1/8-inch bit and gradually increase the hole size. The final 1/2-inch bit should be turned by hand. After fastening the fuse holders, bend the top terminal down to increase clearance when case is assembled. If necessary, clearance can be increased further by adding a washer under the top of the fuse holder.

The cylinder on the right hand of the back cover is notched as required to avoid crimping wires when the unit is assembled.

Cabling

Four cables were used to make interconnections with the DB-15 connectors, as shown in Figure 10. The coding used is shown in Table 1. Before assembling the case, CL1 and CR1 should be moved over the top of the main board and around the inside of the side posts. The cables can be held in place with silicon compound.

Assembly

Keeping all the cables and levers in place while the case is assembled can be tricky. By using wires to secure levers R1, R2, L1, L2 and the USB cable as shown in Figure 11, the...
task is made much easier. You then only have to make sure that the cable to the fuses is not caught under a post.

Workbench Testing

This test makes sure you haven’t made any mistakes that could damage your computer. It also aids in troubleshooting. Connect the interface to a 5V power supply through a 0.75 amp fast-acting fuse. With power applied and thumb sticks at neutral, check that the pot outputs and buffer inputs are about one-half the supply voltage. Next, check that the voltage at these points varies as you move the thumb sticks. Then use the mode button to place the game pad in analog mode. The LED should light. If all this works, then you can proceed to PC Testing.

PC Testing

Windows 2000 and Windows XP include a built-in test program for USB controllers. These will work fine even without the Gamers Factory software installed. To test the thumb sticks, place the Game Pad in analog mode by pressing “Mode.”

For Windows XP:
Click on Start, Control Panel, Printers and Other Hardware, Game Controllers, Properties.

For Windows 2000:
Click on Start, Settings, Control Panel, Gaming Options, Properties.
Using the Interface With Joysticks

The old style joysticks require a simple modification to be used with the Interface. The potentiometers need to have a ground connection, as well as five volts, as shown in Figure 12. Note that the five-volt connection to the X-axis pot is reversed. Some joysticks have additional analog controls called X2 and Y2. If you modify these potentiometers in the same way, they will be functional. You can connect one joystick with X2 and/or Y2 controls to the left connector, or two joysticks without extra controls.

Using the Interface With Custom Controls

The game pad analog controls can be individually overridden by external potentiometers in the 10K to 100K range. One purpose would be to create a more useful throttle control that doesn’t automatically return to neutral when released. Or you could substitute your own foot pedals or a steering wheel for an internal analog control. Similarly, you can add any of the 12 digital controls to a custom controller by wiring your own buttons to the appropriate pins. In addition, a repeater function can easily be added with a 555 timer.

Using the Interface With Custom Electronics

The analog inputs have an impedance of approximately 100K that is easily driven by any IC device. The button inputs have pull-up resistors of about 7K which can be driven by almost any logic gate family. Some applications for custom electronics might be data logging of temperature, power consumption, or speed over long periods of time, or remote control of a PC. Including a final driver stage that uses the gamepad 5V in your project will reduce the chance of accidental damage to a PC.

Future Work

An article is planned to show you how to talk to the Interface through your own Windows program using Microsoft’s Direct Input API. In that article, a program will be developed that can be used to test the maximum throughput of the digital inputs and maximum slew rate of the analog signals. In the meantime, I hope you come up with some other neat applications for this low-cost interface. And please share them with other Nuts & Volts readers.

Look! Finally, Hands-on Training for PIC Microcontrollers and PICBASIC PRO!

Introducing a Three-Day class of programming and hardware experiments designed to quickly bring you up to speed using PICs and PICBASIC PRO.

Come knowing nothing. Leave knowing everything you need to program PICs.

Classes are taught at major cities throughout the US or can be brought to your facility. Check our web page for more details.

Each Student Receives:
melabs PICBASIC PRO Compiler
melabs Lab X1 Experiment Board
melabs Serial Programmer
RCG1 Experiment Board
DC, Servo, and Stepper Motors
LM34 and DS 1620 Temp Sensors
MAX7219 LED Driver
LED and LCD Displays
Relays and Solenoids
AD8402 Digital Pot
(2) 16F877 PIC Micro
PIC Workshop Course Manual

Phone (800) 442-8272
www.RCGResearch.com

RCG Research
Innovative Ideas in Electronics Design

About the Author

Larry Brooks has a Masters in EE from Loyola College. He has many years of professional experience working as both a hardware design engineer and programmer.
POWERFUL 12 VDC WINDBL rushes WIPER MOTOR
Valeo 15094704. 65 RPM @ 12 Vdc, 2.5 Amps (no-load rating).
Diecast metal housing with plastic circuit housing is 7.75" long x 5" x 3.5." A metal arm with a ball-joint is affixed to the 5/16" drive shaft with a nut. A 10-pin connector and plastic housing containing circuitry are attached to one side of the motor. An interesting and possibly useful feature of this motor is that it always stops in the same position when the power is switched off. If a momentary connection is made, the motor will rotate exactly one revolution. See our web site for diagram of connector and instructions.
CAT# DCM-249 $16.75 each

24 VDC 1.67 AMP POWER SUPPLY
Gilat® E040105E. Input: 100-240 Vac. Output: 24 VDC 1.67 amp. 6" two conductor 18 AWG cord with right angle 2.1mm co-ax power plug, center positive. UL listed. CAT# PS-2416
$10.95 each

WHITE LED, 5MM
Special purchase, limited supply.
High-brightness white 5mm diameter LED. Water clear in off-state. CAT# LED-115
$1.10 each

ULTRABRIGHT BLUE LED, 5MM
Blue in off-state. Actuallly brighter and wider viewing angle than our regular ultrabright blue LED. Opague blue-tinted package with no flange at base. CAT# LED-117
$1.00 each

5 VDC 1 AMP SWITCHING POWER SUPPLY
Ericsson® BMLU101001-4. Compact regulated switching power supply. Input: 100-240 Vac. Output: 5 Vdc, 1 Amp. 6 foot cord terminated with 8-pin modular phone plug. There are four color coded 22 gauge stranded conductors inside the cord. The red and black leads are +5 Vdc; the yellow and white are ground.
CAT# PS-513
100 for $3.00 each

NIMH RECHARGEABLE AA CELL, 2200 MAH
1.2 Volt, 2200 mah AA cell. Nickel metal hydride cells provide double the capacity of standard nickel cadmium cells and can be charged faster. Also, they don't have the "memory" effect associated with nickel cadmium. 0.56" dia. x 1.99" long.
CAT# NNM-2200
50 for $2.25 each

DIGITAL MULTIMETER
Right Tech 9202
Features found on more expensive meters including LCD readout with 0.8" high digits, a transistor and diode tester and audible continuity checker. Overload protection and low battery indicator. Protective rubber jacket prevents accidental damage. Includes test leads and battery.
Ranges to: 1000 Volts DC 750 Volts AC 10 Amps DC Resistance to 2000K Ohms
CAT# DMM-9202
$9.95 each

AIR COMPRESSOR
Specifications:
Operates on 120 Vac 80 Hz 1/8 HP Flow: 0.71 cfm Max. Pressure: 80 lb/sq.in. (5.5 Bar)
Working Pressure: 32 lb/sq.in (2.2 Bar) 10" x 6.5" x 4.5" Weight: 8 lbs
CAT# CMR-1
$69.95 each

1 WATT, ULTRA-ULTRA BRIGHT LED
Cree XLamp(TM) 7090
Extremely high-brightness LED, capable of operating at 1 Watt and above. Long-life, solid-state, low-voltage and current light, ideal for architectural, landscaping, advertising and entertainment applications. The surface mount LED is mounted on a 0.60" diameter pc board to simplify connection. Solder directly to pc board. Note: These are new parts. Because of their sensitivity to misuse, we cannot guarantee them after voltage has been applied. Data sheet available on our web site.
100 degree viewing angle Maximum forward voltage: 4 Vdc Maximum forward current: 350/700 mA
Red CAT# LED-109 $8.00 each
White CAT# LED-110 $11.50 each
Green CAT# LED-111 $11.50 each
Blue CAT# LED-112 $11.50 each
Amber CAT# LED-113 $8.00 each

Shop ON-LINE www.allelectronics.com

MAIL ORDERS TO:
ALL ELECTRONICS CORP. P.O. BOX 567 • VAN NUYS, CA 91408-0567

FAX (818) 781-2653 • INFO (818) 904-0524
E-MAIL allcorp@allcorp.com

NO MINIMUM ORDER • All Orders Can Be Charged to Visa, Mastercard, American Express or Discover • Checks and Money Orders Accepted by Mail • Orders Delivered in the State of California must include California State Sales Tax • NO C.O.D. • Shipping and Handling $6.00 for the 48 Continental United States • ALL OTHERS including Alaska, Hawaii, P.R. and Canada Must Pay Full Shipping • Quantities Limited • Prices Subject to change without notice.

MANUFACTURERS - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or FaxYOUR LIST.

AUGUST 2005
Circle #40 on the Reader Service Card.
The Ultimate Utility Meter

Part 2 — Operation

Last month, we assembled and tested our Ultimate Utility Meter (UUM). This month, I will show you how to operate the UUM.

UUM Operation

First, let's go over the keys on the keypad. Some keys have a specific purpose depending on which command is active.

Cursor Keys
The logic analyzer has two cursors. You move Cursor 1 using the keys 1 and 3. Think of Cursor 2 as a reference cursor. It is set by hitting the 2 key. The difference between the cursors is always displayed on the display shown in Figure 3.

Capture Data Key
This key will start a data capture. If triggers are used, it will wait until the trigger condition has been set. You can hit the key if you wish to exit the capture mode.

Command Keys
The command keys allow you to change other parameters or issue certain commands. The active command/parameter name is displayed as shown in Figure 6.
Once a command is selected, the 7, 8, and 9 keys are used to change the values or execute the command. Let's take a look at each command or parameter in detail.

Delay
This command (Figure 6) will allow you to insert a

Page Keys
The logic analyzer always captures four pages of data. To move between the pages, use the INC Page and DEC Page keys shown in Figure 2. Notice that Cursor 2 always stays where you set it. Cursor 1 moves with the page. This way, you can take measurements between pages.
A small black bar will move indicating the current page you are on, as shown in Figure 4.

Scale Key
The scale key allows you to change the resolution of the next capture. The scale shown in Figure 5 displays the number of microseconds for each pixel.
Note that this is the smallest point of resolution of the current capture. The following scales are supported:

1.7 uS
3.0 uS
4.3 uS
5.7 uS
7.8 uS
13.4 uS
24.5 uS
48.2 uS
86.0 uS
200 uS

AUGUST 2005
delay before the logic analyzer starts the actual capture. Use the 7 and 9 keys to change the value. The 8 key sets the value to 0.

Pullups

This command (Figure 7) allows you to turn weak pull-up resistors on or off on all the analyzer ports. Use the 8 key to toggle on and off.

Backlight

The backlight command (Figure 8) allows you to set the intensity of the back light. Use the 7 and 9 keys to change the value. Use the 8 key to set it to 200.

Channels

There are three display modes for the logic analyzer. You can display all eight channels as shown in Figure 10 or select channels 0-3 or 4-7 as shown in Figure 9. When you only need a couple of channels, the 0-3 or 4-7 channel options are much easier to see.

You can change the channels at any time. The current capture data will be redrawn.

Reset

This command will reset both the graphic serial LCD and the controller. The 8 key will do the reset.

Save

This command allows you to save all the current parameters so that they will be loaded the next time you start the UIM.

Use the 8 key to save. Cursor location and scale settings are saved, as well.

Edge Trigger

Here you can set one of the channels as an edge trigger. This normally is used to monitor a single repeating signal. It will wait one complete cycle, then trigger on the low-to-high or high-to-low, depending on which is selected.

Using the edge trigger will turn off the word trigger if it has been activated.

Use the 7 and 9 keys to select the channel and the 8 key to toggle the low-to-high or high-to-low transition. If no trigger has been set up, the word none will be displayed as shown in Figure 13.

Word Trigger

This command (Figure 14) will allow you to set a condition on any of the eight channels. You can set each channel to Low, High, or None. If set to None, that
The Ultimate Utility Meter — Part 2

channel will be ignored for the trigger condition.

When you start a capture with the * key, the analyzer will wait until all the channels are in the trigger condition. Once the conditions have been met, the delay — if set — will be activated; then the capture will start.

Change the channels with the 7 and 9 keys, then use the 8 key to toggle between the Low, High, and None conditions. If you don’t wish to use any trigger condition, set all channels to None.

Signal

This command (Figure 15) will allow you to change the value of the built-in pulse generator. Use the 8 key to jump between the three parameters, and the 7 and 9 keys to change the values.

Valid Ranges

Range 0: .1 uS to 25.5 uS in .1 uS increments
Range 1: .4 uS to 102 uS in .4 uS increments
Range 2: 1.6 uS to 408 uS in 1.6 uS increments

The output is placed on Port 13. It is marked Signal on the schematic.

Monitor

The monitor (Figure 16) is used as a logic probe to monitor eight ports at one time. Use the 8 key to activate the monitor.

Once activated, the monitor screen will be displayed, as shown in Figure 17.

A dark square indicates a logical 1, and an empty square indicates a logic 0. A small arrow will point to the ports that have changed recently.

To exit the monitor, just hit the * key.

Analyzer Examples

1Wire

Here, I set port 1 on the analyzer to monitor the data channel on a 1Wire device. This captured sequence shows the 1Wire reset and a byte of 170 (SCC) being sent.

Figure 18 shows two of the captured pages. Notice that the Word Trigger for Port 1 has been set to low. This means that once started, the analyzer will wait until it sees the port go low.

Serial

In this example (Figure 19), I set Port 1 to monitor the output of a microcontroller I/O port as it sends the value...
of 170 at 9600 baud 8n1. Again, the word trigger for Port 1 is set to low.

I2c

This is an I2c control byte (Figure 20). The SDA line is on Port 0, the SCL line is on Port 1. You can see the start sequence followed by the control byte of 160.

SPI

This is the three control lines connected to a 74HC595 serial shift register (Figure 21). Port 0 is connected to the Serial In line, Port 1 is connected to the Clock line. Port 2 is connected to the Latch line.

One thing I noticed is that the SPI interface is the fastest interface shown. In most cases, it is very difficult to capture the clock pulses as they can be quite fast.

Pulse

For a repetitive pulse train, use the edge trigger so that the pulse train will start at the same point at each capture.

In this example (Figure 22), I took the signal line (Port 13) and connected it to Port 1. I set the Edge Trigger on Port 1 to L-H. The signal generator is set up to send a 100 uS pulse at a 50% duty cycle.

Notice that as you move the cursors it will display the calculated frequency based on the period measured.

Extra

I have written a little program I call Frequency Counter as an example of the kinds of programs you can write.

The program is located in the projects/UUM directory and is called FreqCounter.txt. Program this into the controller (prog/debug 2). Make sure you still have the Serial LCD on the first controller.

This is a frequency counter with three automatic gate ranges. It also gives you access to the signal generator. The input to the frequency counter is on Port 15. The output of the signal generator is on Port 13.

Final Thoughts

Pods

I create small pods that connect to the exposed headers. These are nothing more than small female headers with leads or components connected to the pins. These pods are removable so that I can add other pods for other experiments. For instance, I have a small pod with a DS1820. This gives me a very accurate temperature gauge that I can use to calibrate other projects.

Software Upgrades

Since the UUM is programmable, you have total control of the UUM. This project promises to be very popular and a frequently updated one, so visit the Kronos Robotics website often for updates and additional information.

Hardware Upgrades

These are unlimited. I added a larger base so I could attach a breadboard. I also added a reset button. Another easy upgrade would be to use a DiosPro in place of the standard Dios Chips. **NV**

Links

Kronos Robotics

www.kronosrobotics.com

UUM forums

Elenco Digital Multimeters

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1750</td>
<td>51 Functions; 595 µA DC Current; AC Voltage; AC Current; Ohm; Diode; Test;</td>
<td>$24.95</td>
</tr>
<tr>
<td>LCM-1950</td>
<td>Large LCD display; 10,000 ohm; Resistance; Diode; Frequency; Leads to RJ-45;</td>
<td>$59.95</td>
</tr>
<tr>
<td>M-2795</td>
<td>AC/DC Voltage; AC/DC Current; Frequency; Meter; Test Leads; Selectable Test</td>
<td>$44.95</td>
</tr>
</tbody>
</table>

Elenco Snap Circuits™

Elenco’s new Snap Circuits™ make learning electronics fun and easy. Just follow the colorful pictures in our manual and build exciting projects, such as: FM radios, digital voice recorders, AM radios, burglar alarms, doobells, and much more! You can even play electronic games with your friends. All parts are mounted on plastic modules and snap together with ease. Enjoy hours of educational fun while learning about electronics. No tools required. Uses “AA” batteries.

6 versions available. Build up to 750 projects!
As low as $29.95

Deluxe Soldering Irons

Elenco 4-Functions-in-1 Instrument Model MX-9300B

- 495

Ideal for labs, production lines, R&D, and hobbyists!

Sweep Function Generator
- 0.2Hz to 2MHz
- Sine, square, triangle, pulsed, TTL level square
- VCF voltage to 15VDC

Digital Triple Power Supply
- Output 1: 0-30VDC, up to 2A
- Output 2: 0-5VDC, up to 5A
- Output 3: 15VDC, up to 5A

Digital Multimeter
- 400V - 40V AC/DC
- 20mA max. AC/DC current
- Resistance to 40kΩ

Frequency Counter
- 1Hz to 2.7GHz
- 7-digit display

- Selectable time base

Weller® Low Cost Soldering Iron Model WLC100

- 34.95

- Variable power control produces 5-40 watts.
- Ideal for hobbyists, diffusers and students.
- Complete with 40W iron.

Guaranteed Lowest Prices

C&S SALES, INC.

150 W. CARPENTER AVENUE
WHEELING, IL 60090
FAX: (847) 541-0854, (877) 541-0720
http://www.cs-sales.com

CALL TOLL-FREE
(800) 445-3201

CALL OR WRITE
FOR OUR FREE
64 PAGE CATALOG!

61

AUGUST 2005

Circle #38 on the Reader Service Card.
Selected Titles for the Electronics Hobbyist and Technician—
The Nuts & Volts Hobbyist Bookstore

Microcontrollers
Programming & Customizing PIC Microcontrollers
by Myke Predko
This book is a fully updated and revised compendium of PIC programming information. Comprehensive coverage of the PIC's hardware architecture and software schemes will complement the host of experiments and projects making this a true “learn as you go” tutorial. New sections on basic electronics and basic programming have been added for less sophisticated users, along with 10 new projects and 20 new experiments. The CD-ROM contains all source code presented in the book, software tools designed by Microchip and third party vendors for applications, and the complete data sheets for the PIC family in PDF format. $49.95

OOP Demystified
by James Keogh / Mario Giannini
Learn object-oriented programming in no time with help from this easy-to-understand guide, ideal for novice and expert programmers alike. Learn about attributes and methods, inheritance, polymorphism, real-world and case modeling, object-oriented programming languages, and much more. Each chapter ends with a quiz, culminating in a final exam at the end of the book so you can test your knowledge. $19.95

Robotics
Robotics Demystified
by Edwin Wise
McGraw-Hill’s Demystified titles are the most efficient, interestingly written brush-ups you can find. Organized as self-teaching guides, they come complete with key points, background information, questions at the end of each chapter, and even final exams. This complete self-teaching guide takes an introductory approach to robotics, guiding readers through the essential electronics, mechanics, and programming skills necessary to build their own robot. $19.95

CNC Robotics
by Geoff Williams
Written by an accomplished workshop bot designer/builder, CNC Robotics gives you step-by-step, illustrated directions for designing, constructing, and testing a fully functional CNC robot that saves you 80% of the price of an off-the-shelf bot — and can be customized to suit your purposes exactly because you designed it. $34.95

Electronics
Practical Optics
by Naftaly Menn
Practical Optics bridges the gap between what students learn in optical engineering curriculum and the problems they realistically will face as optical engineering practitioners, in a variety of high-tech industries. A broad range of topics from modern optical engineering are addressed, ranging from geometrical optics and basic layout of electro-optical instruments, to the theory of imaging, radiation sources and radiation sensors, spectroscopy, and color vision and description of optical methods for measurements of numerous physical parameters (temperature, flow velocity, distances, roughness of surfaces, etc.). $69.95

Starting Electronics: Third Edition
by Keith Brindley
Starting Electronics is unrivalled as a highly practical introduction for hobbyists, students, and technicians. Keith Brindley introduces readers to the functions of the main component types, their uses, and the basic principles of building and designing electronic circuits. Breadboard layouts make this very much a ready-to-run book for the experimental; and the use of multimeter, but not oscilloscopes, puts this practical exploration of electronics within reach of every home enthusiast’s pocket. New material includes sections on transducers and more practical examples of digital ICs. $19.95

Sensor Technology Handbook
by Jon Wilson
Without sensors, most electronic applications would not exist. The importance of sensors, however, contrasts with the limited information available on them. This volume is an up-to-date and comprehensive sensor reference guide to be used by engineers and scientists in industry, research, and academia to help with their sensor selection and system design. It is filled with hard-to-find information, contributed by noted engineers and companies working in the field today. The Sensor Technology Handbook will offer guidance on selecting, specifying, and using the optimum sensor for any given application. The editor-in-chief, Jon Wilson, has years of experience in the sensor industry and leads workshops and seminars on sensor-related topics. $99.95

Practical Electronics for Inventors
by Paul Scherz
The first edition of Practical Electronics for Inventors was phenomenally successful and popular among electronics hobbyists and “tinkerers.” This is a fairly “tight” group, and when they noticed some errors in the book, they were fairly vocal in wanting to see errata. The result? A new and improved book that has been completely updated, with several readers’ suggestions for improvement incorporated inside. These new additions will make this title even MORE appealing to the loyal market. $39.95

Basic Electrical Installation Work
Fourth Edition
by Trevor Linsley
Basic Electrical Installation Work has helped thousands of students to gain their first qualification in electrical installation. Now, in its fourth edition, this book has been completely restructured to provide a specific match to the requirements of the Installation route of the 2330 Level 2 NVQ in Electrotechnical Technology from City & Guilds, and will also prove an essential purchase for students of Level 2 NVQ in Installing and Maintaining Electrical Equipment and Systems (2336). $26.00

WE ACCEPT VISA, MC, AMEX, AND DISCOVER
Prices do not include shipping and may be subject to change.
Ask about our 10% subscriber discount on selected titles.

AUGUST 2005
Basic Electronics
by Gene McWhorter / Alvis J. Evans
Wouldn’t you like to know about the electrical or electronic effects which, many times, we can neither see nor feel? Find out how electronic circuits are used to amplify, transmit, receive, and detect signals, or make decisions, or are combined to make computers, controllers, and memories. Basic Electronics explains electronic fundamentals using easy-to-read, easy-to-understand explanations coupled with detailed illustrations. It brings seeing and doing together for a very meaningful learning experience, and delivers practical applications at the same time. This book contains worked-out examples within the text to solidify understanding of specific ideas, and quizzes and problem sets at the end of each chapter to complete and reinforce the learning cycle. Basic concepts, device and circuit fundamentals, and circuit applications provide full-scope coverage of electronics in 11 chapters. $19.95

Home Computing
Personal Computing Demystified
by Larry Long
Quickly learn how to get the most out of your personal computing experience, whether you want to network multiple PCs, buy a PC, store photos, or download music. This easy-to-understand, step-by-step guide walks you through each task you need to complete without using unnecessary technical language. A user-friendly resource, you don’t need to have previous experience to get fast results. $19.95

USB Complete, Second Edition
by Jan Axelson
Every recent PC has Universal Serial Bus (USB) ports. In USB Complete, Jan Axelson shows how to design and program devices that use USB to communicate with PCs. Learn how to select a USB controller chip that fits your project and budget, how to write program code to manage USB communications in your device, and how to write Visual Basic and Visual C++ applications that exchange data with your device. Explore how the interface works from the ground up and learn how to create devices that communicate reliably with all PCs. $49.95

High Voltage
Homemade Lightning: Creative Experiments in Electricity
by R. A. Ford
Enter the wide-open frontier of high-voltage electrostatics with this fascinating, experiment-filled guide. You’ll discover how to make your own equipment, how electricity is used in healing, and how experiments in high potential physics work! $24.95

Embedded Ethernet and Internet Complete
by Jan Axelson
Learn how to design and program devices that host Web pages, send and receive email, and exchange files using FTP. Put your devices on the Internet and monitor and control your devices from anywhere in the world. Or create private, local networks that enable your devices to share information, send commands, and receive alarms and status reports. Plus: learn about Ethernet controllers, hardware options for networks, networking protocols, and how to keep your device firmware and data secure. $49.95

The PC Doctor’s Fix It Yourself Guide
by Adrian Kingsley-Hughes
In The PC Doctor’s Fix It Yourself Guide, you get advice and solutions for solving a myriad of PC problems, including expert tips on researching solutions on your own. Learn how to maintain your computer, keeping it in good working condition, and how to upgrade and install new software safely. Troubleshoot Linux, Windows, and personal devices, use the Internet effectively as a problem-solving tool, get up to speed on computer security, and set up small home and wireless networks. The companion website provides additional support. $29.99

Engineer’s Mini Notebook Collection
by Forrest M. Mims III
Volume 1 — Features more than two dozen SSS timer circuits that you can build. $12.95

Volume 2 — Study rain, lightning, clouds, sunlight, water, temperature, and much more! $12.95

Volume 3 — Learn about important sensors and use them to build circuits and projects. $12.95

Volume 4 — Includes frequently used electronic formulas, tables, circuit symbols, and more! $12.95

USB Complete, Second Edition
by Jan Axelson
Every recent PC has Universal Serial Bus (USB) ports. In USB Complete, Jan Axelson shows how to design and program devices that use USB to communicate with PCs. Learn how to select a USB controller chip that fits your project and budget, how to write program code to manage USB communications in your device, and how to write Visual Basic and Visual C++ applications that exchange data with your device. Explore how the interface works from the ground up and learn how to create devices that communicate reliably with all PCs. $49.95

Build Your Own Electronics Workshop
by Thomas Petruzzeless
The Electronics Workshop was created to assist the newcomer in the field of practical electronics through the creation of a personal electronics workshop. It is a place specially designed so that readers can go there to work on an electronic project, such as testing components, troubleshooting a device, or building a new project. The book includes invaluable information, such as whether to buy or build test equipment, how to solder, how to make circuit boards, how to begin to troubleshoot, how to test components and systems, and how to build your own test equipment, complete with appendix & resources, etc. This is THE book for anyone entering the field or hobby of electronics. $29.95

Call 1-800-783-4624 today! Or order online at www.nutsvolts.com
Imagine a world without the Internet: no email, no chat sessions, no Usenet newsgroups, no Web. This is the world of 1951. A citizen of this world who wanted to discuss common interests, politics, or world events with others on a national or international scale had few channels to communicate through.

by David Medcalf

One promising channel was ham radio. Unfortunately, this method required an FCC license, an antenna, and the technical know-how to operate and maintain the transmitting equipment. Long distance phone calls didn’t require specialized knowledge, of course, but in 1951 a call from Chicago to St. Louis cost 30 cents per minute. This was expensive, being equivalent to $2.19 per minute in today’s dollars.

Letter writing was not yet a dying art in 1951, but, just as with email today, letters lacked the expression of voice (the smiley face, ubiquitous in today’s email, had yet to be invented). Voice recordings were a more powerful alternative, and inexpensive compared to long distance calls.

By 1940, consumers could create their own sound recordings using record cutting machines. Portable units were available, combining the record cutter with a regular phonograph and radio. Record blanks were made of acetate or lacquer-coated metal disks and, by 1950, could hold up to 40 minutes of speech and music. Messages could be sent to anyone who had a record player, from family and friends, to servicemen overseas. Unfortunately, record cutters were write-once devices — once the disk was cut, no changes could be made to the message.

The magnetic wire recorder, ancestor to the tape recorder, had undergone great development during World War II. By the late 1940s, wire recorders...
were available in consumer equipment. Sears, Roebuck and Company sold at least two “Silvertone” combination models that included a wire recorder, phonograph, and radio. Wire recorders solved the editing problem inherent with cutting records, as parts of messages could be deleted or recorded over. Playback quality could be checked while a recording was being made, and separate wire recordings could be spliced together, as well. A spool of stainless steel recording wire was more expensive than a record blank, but could hold over an hour of audio.

Recording a message on a wire spool and mailing it off to family and friends became a growing fad called “wirespionage.” Webster-Chicago, a company that produced audio equipment including wire recorders, created the Wirespionage Club in 1950. This effort was spearheaded by John Schirmer, an employee of Webster, who saw the power of corresponding by audio recordings. In 1948, the Soviet Union blockaded West Berlin where Schirmer’s mother lived. During the massive US and British airlift supply campaign, one of the pilots ordered a wire recorder from Webster. Schirmer, being in the export

RESOURCES

During the 1940s and 50s, the wire recorder gained popularity as a tool for news reporters and as an entertainment device for consumers. These machines can now be found occasionally at ham-fests and on online auction sites. Advice for repairing recorders and splicing wire recordings can be found at the Video Interchange website:

www.videointerchange.com/wire_recorder1.htm

Webster-Chicago was a major manufacturer of wire recorders from the mid-40s to the early 50s. Schematics and period prices of their major models can be found at:

www.webster-chicago.com

Recording wires were commonly made of stainless steel, and so many recordings have survived to the present. Examples that have been converted to MP3 format are available at:

www.coolcatdaddy.com/rand/wires.html
department, recorded a 15 minute message for his mother and shipped the spool along with the recorder. Thanks to the pilots, a flow of recordings to and from blockaded Berlin began.

In the first three months of the formation of the Wirespondence Club, membership had reached 830, with members representing 20 countries besides the United States. By late 1952, the Club had grown to over 1,900 members from 35 countries and all 48 states (Alaska and Hawaii had not yet achieved statehood). Members came from all walks of life, including scientists, ministers, farmers, artists, and bankers. Topics of interest were wide-ranging, involving politics, language, music, and descriptions of the scenery in the sender’s local area.

At least two marriages are reported as having originated from wirespondence (just as has resulted from Internet chat sessions today). Municipal and religious leaders of Springfield, MA, sent a spool of friendly greetings to the townspeople of Shiremoor, Northumberland, England, as an expression of fellowship to members of our World War II ally. A wirespondent told a United Nations World Magazine reporter, “You learn to understand and like people of different background. Your horizons extend and you lose the idea that your country and your way of living is the only one.”

The constant desire to communicate continues to drive our technology forward. NV
Taking the Teeth Out of Bluetooth Phracking

Paris Hilton’s hijacked phone notes, hot pics and movies, and celebrity contact info got her unwanted and undeserved notoriety. The incident also brought broad visibility to a blossoming dilemma: like computer data, our increasingly computer-like mobile phones’ contents can be hacked. by David Geer

To be correct, your data can be phracked. Phracked, phracking, or phracker are the correct terms for a phone cracker or phone cracking. Cracking is the correct term for malicious hacking.

Following the classic security mantra of using layered protection, we present several counter-hacks that untethered communicators can use to foil the would-be phracker.

BLUETOOTH SECURITY — BLUETOOTH BACKGROUND

Bluetooth is a fairly recent technology that has faced its share of invasions. Notable attacks have included Blue Stumbling, Blue Snarfing, and Blue Jacking.

Blue Stumbling is the Bluetooth equivalent to War Driving*. By using Blue Stumbling, phrackers (phone...
crackers) can pinpoint Bluetooth gadgets (PDAs, Mobile Phones) within a small radius.

(*With War Driving, a cracker drives around with a laptop and a special antenna engineered from a potato chip cylinder discovering unprotected Wi-Fi networks. Wi-Fi crackers do this so they can use your connection for free, crack another system through your connection while masquerading as you to steal data or deface websites, or simply mess with your head. Blue Stumbling is also referred to as War Walking.)

Blue Snarfing is a technique that permits a phracker to rob data from your Bluetooth device without pairing (making a direct connection) with it. Phrackers cannot only surreptitiously retrieve information from your Bluetooth device, but also send information to it without exposing themselves or having to be acknowledged by the recipient.

With Blue Jacking, phrackers can send information to the Bluetooth device without pairing with it so that you wouldn’t know who it was from. It’s a kind of Bluetooth-based version of spamming.

BOUNCING BLUETOOTH BREAK-INS

For most all the above, protection is as easy as downloading and installing the latest firmware update for your phone. Other fundamental precautions include turning off the Bluetooth service when you’re not using it. If it's not running, it can't be hacked.

Insure that your phone has encryption abilities and use them. Some brands offer seamless encryption that’s always on to protect your Bluetooth connections so you never have to set it (check the manual for your hardware). Nokia is such a vendor.

With Nokia Bluetooth enabled phones, the encryption is transparent to the user, always on, automatically protecting authenticated Bluetooth connections, including voice communications between a headset and phone.

Use the phone in non-discoverable mode (see your manual). When any Bluetooth device is in non-discoverable mode, it can’t enter into a state where it can respond to inquiries. You can loosely think of it like not having

...ing your wireless 802.11 router set in broadcast mode. Create new link keys for pairing with other devices. With Nokia phones, you can create a new link key for pairing devices by deleting the existing pairing from the paired devices menu. This keeps the passkey new and unique, harder to crack.

You can also audit your phone – test its security – using Bluetooth network discovery tools like BlueSniff and RedFang. With these software downloads
and most any Bluetooth adapter, you can use a simple interface to check for the availability of Bluetooth networks and devices (including your own).

OTHER SECURITY MEASURES – AV AND FIREWALLING

Bluetooth is by far the only phone protocol or the only phone vulnerability. For advanced devices, firewalls and antivirus protection are recommended. Using Nokia as an example, you can use products such as Symantec’s integrated firewall and AV product for Nokia’s 9500 Communicator and the 9300.

Both F-Secure and Symantec offer AV for the Symbian OS-based Nokia smart phones, i.e., Symantec Mobile Security 4.0 for Symbian protects Symbian operating system based smart phones (series 60 and 80) like the 9300 and 9500 from not only viruses, but also Trojans and worms. Comparable information should be available from your vendor.

MORE FROM NOKIA

Don’t accept unidentified Bluetooth applications or MMS attachments. These may include phone-based malware that is harmful to your phone. Don’t download content to your mobile phone from an unknown, obscure, or unreliable source. Download from your operator’s (carrier’s) portals or other well-known brands, where you should assume good protection against potentially harmful malware (viruses and the like).

Nokia has a VPN solution for many of its smart phones at www.nokia.com/nokia/0.43117.00.html A wallet feature available in many Nokia models secures sensitive e-commerce and other data. Data inside the wallet is encrypted and protected with a special access code that the phone user can define. See more at: www.nokia.com/nokia/0.8764.43153.00.html

>>> RESOURCES

<table>
<thead>
<tr>
<th>RAZORPOINT SECURITY TECHNOLOGIES</th>
<th>BLUESNIFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.razorpointsecurity.com</td>
<td>http://bluesniff.shmoo.com</td>
</tr>
<tr>
<td>Thanks to Gary Morse, president of Razorpoint, for his input on Bluetooth.</td>
<td>A Bluetooth network discovery tool</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOKIA</th>
<th>REDFANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thanks to Nokia for its input on Nokia mobile phone security.</td>
<td>Another discovery tool</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GIZMODO, THE GADGETS WEBLOG</th>
<th>MISC. BLUETOOTH SECURITY RESOURCES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BLUETOOTH WEBLOG</th>
<th>BLUEZ.ORG</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://bluetooth.weblogsinc.com</td>
<td>www.bluez.org</td>
</tr>
<tr>
<td>The Linux Bluetooth Protocol Stack</td>
<td></td>
</tr>
</tbody>
</table>

THE CRYPTO PHONE G10, THE WORLD'S SMALLEST, LIGHTWEIGHT TRI-BAND SECURE GSM PHONE.
OR, JUST GET A PHONE BUILT AROUND SECURITY

The new CryptoPhones from Germany in four models are all about cryptography and security. The devices use AES256 (Advanced Encryption Standard) and Twofish algorithms for security and the 4096-bit Diffie-Helman key exchange technology.

The US Government has approved AES encryption for up to and including classified top-secret information. The 256 stands for 256 bits, the largest number of bits available to encrypt data. Twofish encryption was a top finalist for selection as the AES standard, beat out by Rijndael encryption.

The Diffie-Helman is based on RSA (the RSA algorithm invented by Ron Rivest, Adi Shamir, and Leonard Adleman, the acronym being formed by the first letters of their last names) math and enables secure key exchanges where the encryption and decryption key is the same exact key.

The CryptoPhone destroys its encryption key automatically the second the call ends. Standby time is a competitive 180 hours. Talk time using security is up to 3.25 hours on a single charge. The CryptoPhone supports GSM networks.

The CryptoPhone offers a hard line defense in the face of IMSI-catchers (IMSI stands for International Mobile Subscriber Identity) and network-based interception threats. An IMSI Catcher is a device for finding mobile phones (short range) and recording telephone calls. The device appears to the mobile phone to be just another base station.

The phone provides CELP (the Code Excited Linear Prediction algorithm) voice quality and you can use a free GSMK CryptoPhone for Windows client to set up secure telephony between a landline user or users and the mobile GSM CryptoPhone 200 using a computer and modem. The format and form factor resemble PDA-phones with a large display and easily maneuvered interface.

Because the phone software is based on open source code, there is no proprietary control that might create its own security issues, i.e., there is nothing concealed from the user - there are no backdoors, no operator (carrier) key generation, or registration.

The CryptoPhone is the only mobile phone on the market with the full source code published. This enables engineers and programmers to assess its security independently. If you’re a developer, you can develop your own CryptoPhone compatible products using the published source code and the public, standards-based communication protocols.

DON'T ACCEPT UNIDENTIFIED BLUETOOTH APPLICATIONS OR MMS ATTACHMENTS. THESE MAY INCLUDE PHONE-BASED MALWARE THAT IS HARMFUL TO YOUR PHONE.

Subscribers are advised to only accept Bluetooth applications or MMS attachments from trusted sources. These may include phone-based malware that is harmful to your phone.

AUGUST 2005
Dear Nuts & Volts:

As a long time reader, and a subscriber for a few years, NV is my favorite magazine.

As a teacher, I find the articles useful in keeping up with advances in the field and the circuits are especially helpful in teaching our circuits, programming, and fabrication classes.

I am always looking for articles that help me teach topics that are "cutting edge" and not usually found in other typical electronics literature. Thank you for a truly useful magazine!

Joe Sloop
Surry Community College
Dobson, NC

Davis Hong
EU Proposes System for On-line Music

The European Commission has proposed a single Europe-wide copyright and licensing system for on-line music to boost the European Union's music business.

EU Internal Market Commissioner Charlie McCreevy said European on-line music services had to be improved to make copyrights cheaper for artists to obtain.

"We have to improve the licensing of music copyright on the Internet," McCreevy said, adding such a system would ensure "Europe's creative community will get the lion's share in revenues achieved on-line."

Currently artists have to secure copyrights in each of the EU’s 25 member nations, with each country requiring separate copyrights for the right to transmit songs over the Internet, a complex and expensive process, the EU head office said.

As a result of these costs, on-line music sales in Europe have lagged those in the United States. Last year, the US had an estimated $248 million in on-line music sales compared with Europe's $32.5 million.

Musicians make money from their music after registering copyrights with collective rights managers. Those managers then license songs to on-line services, radio stations, dance clubs, and other outlets. All these registrations are complex and cost artists a lot of money.

The EU head office said a single system governing music rights would save money.

"The most effective model for achieving this is to enable right-holders to authorize a collecting society of their choice to manage their works across the entire EU," said the Commission in a statement, adding such a system would "considerably enhance" earnings for artists.

Sasser Creator Avoids Jail Term

A German youth has been given a 21-month suspended sentence after being convicted of creating the Sasser worm which crippled computers worldwide.

Sven Jaschan was found guilty of computer sabotage and illegally altering data, said a court official.

He evaded a jail term as he was tried as a minor since he was 17 years old when he wrote the worm.

Sasser wrought havoc when the Windows worm struck in May 2004, swamping net links and making computers unusable. Jaschan had admitted to creating the worm at the beginning of his trial, reiterating a confession to authorities at the time of his arrest in May 2004.

Keystroke Logging a No-No in Alberta

A Privacy Commissioner's ruling against an Alberta library that electronically monitored an employee's computer use means employers have lost one objective way of measuring workers' performance, says the library's director.

Patricia Silver, director of the Parkland Regional Library in Canada, ordered the installation of keystroke logging software on the computer of an employee whose productivity was questioned. When the employee discovered that he had been monitored, he lodged a complaint with Alberta's information and privacy commissioner.

In a decision released last week, Commissioner Frank Work ruled that the library collected personal information about the employee in contravention of the Freedom of Information and Protection Privacy Act.

The employee, who was not named, worked as a computer technician for six months in 2004. Ms. Silver said it was a job where productivity was hard to measure.

"We thought that using an objective check through the computer would be the most fair and objective way to do that," she said.

Ms. Silver disputed Mr. Work's finding that the library collected personal information on the employee, saying managers never looked at any of the computer files that were logged. She said she believed the keystroke logging would be allowed under a clause in the act that permits collection of information that is necessary for an operating program or activity of a public body.
Integrating large FLASH and SRAM into microcontroller designs has become a must-know technique with the advent of microcontroller-based LAN devices. Sometimes an EEPROM just isn’t enough to hold all of those web pages you want to serve from your little PIC-based or AVR-based web server. If you’re collecting data, a large FLASH part is nice in that you can store away those accumulated readings and retrieve them intact, even if the batteries go bye-bye on your microcontroller-based data collection device.

A large SRAM device comes in handy when you need to temporarily store and process large arrays of data. For instance, you can build a number of maximum size Ethernet frames in a large SRAM buffer and call upon them to be sent at will.

This spin of “Design Cycle” will focus on the Atmel AT49LV1025 FLASH IC and how to use it with a PIC. When you’re finished reading this column, you’ll know how to tie an Atmel AT49LV1025 FLASH IC to a PIC and code an AT49LV1025 driver. The AT49LV1025 interface knowledge you will gain here can also be easily applied to AVR microcontrollers.

I coded the AT49LV1025 driver for this column using C and the HI-TECH PICC-18 C compiler. However, that’s not a show stopper. The C code I’ll provide can easily be ported to any PIC or AVR BASIC language, as well. That’s the beauty of C. Let’s begin by taking a walk around the AT49LV1025.

The AT49LV1025

The AT49LV1025 is a 3V read/write FLASH IC that does not require any additional high voltages for programming the FLASH memory cells it houses. The AT49LV1025 is designed to be programmed, erased, and read while in-system.

Logically, the AT49LV1025 is an EPROM that doesn’t have to be removed from the system circuitry to erase and reprogram. The read access time of the AT49LV1025 ranges from 55ns to 90ns, depending on the grade of part you design into your project. I have selected the 90ns AT49LV1025 for this application.

The AT49LV1025 is the 44-pin PLCC-packaged first cousin of the AT49LV1024, which is housed in a 40-pin SMT VSOP package. The only difference in the AT49LV1025 and the AT49LV1024 is their packaging.

Erasing and programming the AT49LV1025 is accomplished using commands issued by the microcontroller that is in charge. An AT49LV1025 word write cycle is nominally 20uS long. The end of a program cycle can be sensed using one of two end-of-cycle features of the AT49LV1025, Not-Data Polling or Toggle Bit sensing. If writing delay loops is your thing, you can also just kill 20uS between write operations. To use Not-Data Polling, the programmer...
issues a write command and immediately reads the address that was just written to. If the program cycle is in process, a complement of the seventh data bit of the data written to the location being read will appear on the AT49LV1025's I/O7 pin.

The complement of the seventh bit of data is where the "Not" in Not-Data comes from. Once the program cycle completes, 16 bits of true data can be read from the just-programmed location and the "Not" bit on I/O7 reads as the true value of bit 7.

The Toggle Bit sensing technique alternates pin I/O6 between a logical high and a logical low (1 or 0) while the program cycle is in process. When the program cycle completes, the I/O6 pin ceases to toggle and valid data will appear on the AT49LV1025's data I/O pins. The AT49LV1025 firmware written for this "Design Cycle" run will use the Not-Data Polling technique to determine the end of a program cycle.

The AT49LV1025 is a one-megabit FLASH device arranged as 64K x 16. The 64K (0xFFFF) of memory space can be optionally allocated as 8K (0x0000-0x1FFF) of Boot Block memory with the remainder of the 64K space (0x2000-0xFFFF), called Main Memory, left to be used at the programmer's discretion for machine instructions or data storage. If you choose not to employ an 8K Boot Block, the entire 64K of AT49LV1025 memory space can be considered logically as Main Memory.

The 8K Boot Block area can be write protected, which allows the remaining 56K of Main Memory area to be updated without fear of overwriting the 8K Boot Block area. However, you can run with an unprotected Boot Block and still maintain a logical distinction between the Boot Block and the Main Memory.

Two FLASH erase commands make this possible. The Chip Erase command initiates an erase of the entire 64K memory area, while the Main Memory Erase command only erases the Main Memory area beginning at address 0x2000. AT49LV1025 memory areas are programmed one word at a time and have a minimum endurance of 10,000 program cycles.

There's one caveat to using a protected Boot Block. When you invoke what is termed Boot Block Programming Lockout via the Boot Block Lockout command, the Boot Block area can never be erased or reprogrammed again. This is done purposely to provide a high level of security for the code contained within the 8K of Boot Block memory.

Logically, accessing the AT49LV1025 is much like accessing an EPROM in that there are no special control lines to deal with. There are 16 AT49LV1025 address lines (A0-A15), which provide access to the AT49LV1025's 64K of memory space.

Since the AT49LV1025 is a 16-bit device, the AT49LV1025 is fitted with 16 tri-state-capable, bi-directional data lines (I/O0-I/015). An active-low Chip Enable (*CE) pin coupled with an active-low Output Enable (*OE) pin and an active-low Write Enable (*WE) pin are all the control lines needed to gain read/write access to the AT49LV1025's vast FLASH memory resources.

So far, the AT49LV1025 seems to be an easy way to add 64K x 16 of FLASH memory to a microcontroller-based system. Basically, if you've ever used an EPROM or an SRAM in a project, you can apply that knowledge to the use of an AT49LV1025.

Let's take a look at what it takes to weave the AT49LV1025 into a typical microcontroller design.

Some FLASH-Based Microcontroller Hardware

An AT49LV1025-based project can be assembled from scratch using through-hole, point-to-point, or SMT wiring techniques. I always test production designs with prototype
printed circuit boards (PCBs) before committing to a final production printed circuit board run. So, I always have a few fully-loaded prototype PCBs lying around that I can use for projects like this.

The prototype board I’ve chosen to use for the AT49LV1025 FLASH application is based on a 3.3-volt PIC18LF8621 running at 20 MHz. The wiring scheme of the prototype board I will use is shown graphically in Figure 1. There’s nothing hardware here that you haven’t seen before. The 74LVTH16373 is a three-volt, 16-bit transparent latch, which could easily be a pair of socketed 74LVTH573 octal transparent latches in your design.

The PIC18LF8621 is capable of switching the PortD, PortE, and PortJ I/O pins between EMI (External Memory Interface) and standard I/O modes. When the PIC18LF8621 is operating in Extended Microcontroller Mode, Table Read (TBLRD) and Table Write (TBLWR) instructions can be used to access bytes within the EMI address space (0x10000 to 0x1FFFFE for the PIC18LF8621).

The physics of the AT49LV1025 do not allow the use of the PIC18LF8621’s Table Read/Write instruction set, as a byte within a word cannot be gleaned directly from the AT49LV1025’s 16-bit data bus. However, I decided to wire in the AT49LV1025 as if it could use the PIC18LF8621’s Table Read/Write instruction set anyway.

Even when running in Extended Microcontroller Mode, I can switch off EMI and use standard I/O coding to access the AT49LV1025. Your application may require a mix of SRAM and FLASH. If it does, this is the way you want to wire in the AT49LV1025 as you can then choose your memory access method (EMI or standard I/O), depending on the memory device you are accessing at the time.

The PIC18LF8621-based three-volt prototype PCB I selected natively supports a 64K x 16 SRAM in a 44-pin SOJ package and its companion 16-bit 74LVTH16373 transparent latch. As you can see in Figure 2, I had just enough breadboard area to slip in a 44-pin PLCC socket to house the AT49LV1025. I wired the AT49LV1025’s 44 PLCC pins to the corresponding 44-pin SOJ pads using wirewrap wire. That’s about as exciting as the hardware gets. So, let’s check out AT49LV1025 driver firmware.

Accessing the AT49LV1025

The easiest way to understand the AT49LV1025 firmware is to take it function by function. So, let’s begin with the least complex function: reading the AT49LV1025. The read_flash function writes the desired address to the 74LVTH16373 16-bit address latch and reads in the resulting data, which it returns to the read function’s caller. The read_flash function begins by configuring PortD and PortE for output with the TO_FLASH macro.

Once the I/O ports are configured, the 16-bit address specified in the function call is converted into a pair of bytes that are sent to the PortD/PortE port pair, which, when logically combined, make up a 16-bit I/O port. Raising the active-high ALE line from logical 0 to logical 1 opens the transparent latch and places the 16-bit address on the AT49LV1025’s address pins.

After a small delay, the ALE pin is returned to a logical low state and the address data that was passed through the 16-bit latch is latched on the output pins of the 74LVTH16373, which, in turn, effectively latches the address onto the AT49LV1025’s address pins.

At this point, the AT49LV1025 is addressed and ready for a read or write operation. The FROM_FLASH macro configures the PortD/PortE I/O port pair for input operation. To read a memory location, the AT49LV1025 *CE and *OE pins must be brought logically low while the AT49LV1025 *WE pin remains logically high. This is accomplished with the clr_CE and clr_OE macros.

Running at 20 MHz, the NOP() instruction expends 200nS of time. We only need 90nS of read access time, as we are using a 90nS AT49LV1025. So, a single NOP() instruction suffices for our read access time. Immediately following the 200nS of read access delay, the read_flash function inputs 16-bits of data in two eight-bit chunks and returns the *CE and *OE pins to their inactive logically high states. The two eight-bit chunks of data are then combined into a 16-bit data word by the make16 macro and the incoming data word that was just read is returned to the caller.

Writing to a memory location within the AT49LV1025 is very similar to reading a word from the AT49LV1025. The write_flash function begins in the same manner as the read_flash function by parsing the 16-bit address into a pair of bytes and latching the address out onto the 74LVTH16373 latch outputs.

At this point, instead of preparing the PortD/PortE I/O port pair for input duty, the data word to be written is split into two bytes and placed on the PortD/PortE I/O port pair.
The PortD/PortE I/O port pair is in output mode thanks to the initial TO_FLASH macro call. Again, the active-low AT49LV1025 *CE pin must be taken to a logically low level.

However, instead of using the AT49LV1025 *OE pin, the write_flash function employs the PIC's active-low *WRH pin, which is physically connected to the AT49LV1025's *WE pin. WRH is the EMI term for WE. The write pulse is required to be a minimum of 70nS wide. The shortest time we can expend is 200nS with a NOP() instruction.

So, once again a single NOP() works for our write pulse width time, which ends when the AT49LV1025's *CE and *WE pins are returned to their inactive logically high state. For consistency, the PortD/PortE I/O port pair is always configured as input upon entry to any of the AT49LV1025 read/write functions.

A write operation changes 1s to 0s in the AT49LV1025 FLASH cells. Since a 0 can't be reprogrammed to a 1, the entire block of FLASH memory must be erased before any reprogramming can occur.

If you are not implementing a protected Boot Block, the erase function with a chiperase argument can be used to erase the entire 64K FLASH memory area within the AT49LV1025. Six FLASH write cycles make up the Chip Erase command which, when issued, results in the erasure of the entire 64K of AT49LV1025 FLASH memory.

Each write cycle of the Chip Erase command must contain the particular address and data values as shown in the erase function listing. Note that we call upon the write_flash function to perform the six Chip Erase command write cycles. The AT49LV1025 datasheet states that once the Chip Erase command is issued, the erase cycle will complete within 1.5 to 5 seconds.

To meet the erase cycle time criteria, a one-second interval timer is incorporated into the erase function. Take a look at the one-second Interval Timer Definitions area of Listing 1 (go to the Nuts & Volts website for Listing 1; www.nutsvolts.com) and let's see what makes the one-second interval timer tick.

The CLOCK_FREQ value is a given in that we know our PIC18LF8621 clock is based on a 20 MHz crystal. By selecting 100 ticks per second, we have specified a 10mS (.01 second) tick time without introducing fractions into the mix. Let's assume that we haven't decided on a prescaler or a prescaler value yet. Assigning a 1 to the TICK_PRESCALE_VALUE negates any multiplication factor that would be offered by the TICK_PRESCALE_VALUE variable.

Timer0 is configured as a 16-bit counter in that the T0CON register's sixth bit (T08BIT) is clear. T0CON is

PicoScope 3000 Series

PC Oscilloscopes

The PicoScope 3000 series oscilloscopes are the latest offerings from the market leader in PC oscilloscopes combining high bandwidths with large buffer memories.

Using the latest advances in electronics, the oscilloscopes connect to the USB port of any modern PC, making full use of the PCs' processing capabilities, large screens and familiar graphical user interfaces.

- High performance: 10GS/s sampling rate & 200MHz bandwidth
- 1MB buffer memory
- High speed USB 2.0 interface
- Advanced display & trigger modes
- Compact & portable
- Supplied with PicoScope & PicoLog software

Tel: 585 385 1750
www.picotech.com/scope282
The Design Cycle

<table>
<thead>
<tr>
<th>Erasing Boot Block and Main Memory.</th>
<th>Display Boot Block Memory</th>
<th>Writing</th>
<th>Data 0x0000</th>
<th>0xFFFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 0x0001</td>
<td>0xFFFF</td>
<td>Writing</td>
<td>0x1234</td>
<td>to FLASH address 0x0000</td>
</tr>
<tr>
<td>Data 0x0001</td>
<td>0xFFFF</td>
<td>Writing</td>
<td>0x1235</td>
<td>to FLASH address 0x0001</td>
</tr>
<tr>
<td>Data 0x0002</td>
<td>0xFFFF</td>
<td>Writing</td>
<td>0x1236</td>
<td>to FLASH address 0x0002</td>
</tr>
<tr>
<td>Data 0x0000</td>
<td>0x1234</td>
<td>Display Main Memory</td>
<td>Data 0x0001</td>
<td>0x1235</td>
</tr>
<tr>
<td>Data 0x0002</td>
<td>0x1236</td>
<td>Display Main Memory</td>
<td>Data 0x0001</td>
<td>0x1235</td>
</tr>
<tr>
<td>Data 0x0002</td>
<td>0x1236</td>
<td>Display Main Memory</td>
<td>Data 0x0000</td>
<td>0x1234</td>
</tr>
<tr>
<td>Data 0x0200</td>
<td>0x1236</td>
<td>Display Main Memory</td>
<td>Data 0x0001</td>
<td>0x1235</td>
</tr>
<tr>
<td>Data 0x0201</td>
<td>0x1236</td>
<td>Display Main Memory</td>
<td>Data 0x0002</td>
<td>0x1236</td>
</tr>
<tr>
<td>Data 0x0200</td>
<td>0x1236</td>
<td>Display Main Memory</td>
<td>Data 0x0002</td>
<td>0x1236</td>
</tr>
<tr>
<td>Data 0x0201</td>
<td>0x1236</td>
<td>Display Main Memory</td>
<td>Data 0x0000</td>
<td>0x1234</td>
</tr>
</tbody>
</table>

| Listing to Main PIC
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing</td>
</tr>
<tr>
<td>Writing</td>
</tr>
<tr>
<td>Writing</td>
</tr>
<tr>
<td>Display Boot Block Memory</td>
</tr>
<tr>
<td>Display Main Memory</td>
</tr>
</tbody>
</table>

Figure 2. Now you know enough about the AT49LV1025 to put the AT49LV1025 driver firmware to work in your project. This little demo shows how the data in the unprotected Boot Block is untouched by the Main Memory Erase command.

set to a value of 0x8F in the main module of Listing 1. Bit 3 of TOCON (PSA) is set, which means that the PIC18LF8621’s prescaler is not in the Timer0 clock input loop.

Being a 16-bit counter, Timer0 will count from 0x0000 to 0xFFFF and roll over to 0x0000 continually. Every time Timer0 rolls over, we can choose to generate a timer overflow interrupt.

A tick in the one-second interval timer code occurs every time we sense the interrupt caused by the Timer0 overflow. The idea here is to set Timer0 to roll over every 10mS or 100 times per second. We will poll the TMR0IF flag bit to determine when a Timer0 rollover, and thus a tick, has occurred.

A PIC instruction cycle consists of four oscillator clock periods. With a 20 MHz clock, each oscillator clock period is equal to the reciprocal of 20 MHz or 50nS. Thus, one instruction cycle time at 20 MHz is equal to 200ns. Timer0 increments on every instruction cycle time, or every 200ns.

To get the frequency associated with the 200ns clock period, we simply invert 200ns. That comes out to be 5 MHz, which is also the Timer0 clock frequency. In our AT49LV1025 code, CLOCK_FREQ / 4 is just another way of representing the Timer0 clock frequency of 5 MHz. Okay, we know that Timer0 is incrementing at five million counts per second. We want to know how many counts at 5 MHz it takes to consume 10mS. In other words, we want 1/100 of 5 MHz. We can multiply 5 MHz by .01 or simply divide 5 MHz by 100.

Since it’s easier not to introduce fractions into our formula, we’ll divide 5 MHz by our TICKS_PER_SECOND value of 100. That comes to a round 50,000 counts for every 10mS. We only want Timer0 to count 50,000 times before rolling over and causing a tick. So, we need to load Timer0 with our calculated TICK_TIMER_VALUE of 0x3CAF or 15,535 decimal (65,535 - 50,000) and let it start incrementing from there.

At every Timer0 rollover, we must reload the Timer0 registers with 0x3CAF to maintain our 10mS tick time. The 50,000-count value works because 50,000 is less than 65,535. If our calculated TICK_TIMER_VALUE was equal to or greater than 65,535, we would have to employ the services of the prescaler. Let’s assign a TICK_PRESCALE_VALUE of 256 and see what happens.

To use the Timer0 prescaler and assign a prescale value of 256, we must clear the PSA bit by setting TOCON’s value to 0x87. The three least significant bits of TOCON specify the prescale value. With all of the prescaler bits set (0x77), the prescale value is 1:256. We already know that the 10mS tick point is 50,000 counts.

Now, with the prescaler set for 1:256, each Timer0 count occurs at every 256th clock. To get our new prescaled TICK_TIMER_VALUE, we must divide our original 50,000 count by 256. The result — ignoring the fractional value — is 195. So, we load Timer0 with 65,535 - 195 decimal, or 65,340 decimal (0xFF3C).

The Timer0 prescaled 10mS value is radically different from the nonprescaled value, but it’s still 10mS per tick in the end. I’ve inserted a global variable called global_variable into the AT49LV1025 driver code to catch and hold the calculated TICK_TIMER_VALUE so you can see the calculated TICK_TIMER_VALUE result in an MPLAB debugging session.

Now that you know how the Timer0 tick time value is calculated, let’s continue our look at the one-second interval code within the AT49LV1025 driver erase function. Following the six write cycles that form the Chip Erase command, Timer0 is loaded with the calculated TICK_TIMER_VALUE and the TMR0IF interrupt flag is reset. If a Timer0 rollover is detected, the TMR0IF flag bit is set and the Timer0 registers are reset to time the next 10mS interval.

Note that we aren’t vectoring to a Timer0 interrupt service routine at every tick. We’re simply using the Timer0 interrupt flag (TMROIF) as a 10mS marker. When 100 ticks are accumulated, one second has passed. The elapsed seconds are collected by the SecCount variable, which is constantly checked against the value of the erase_seconds variable entered at the calling of the erase function.

Sources

- Atmel Corporation
 AT49LV1025
 www.atmel.com
- Microchip
 PIC18LF8621
 www.microchip.com
- Texas Instruments
 74LVT16373
 www.ti.com
- HI-TECH
 HI-TECH PICC-18 C compiler
 www.htsoft.com
When SecCount is equal to erase_seconds, the erase function terminates. At this point, the AT49LV1025 memory areas should all be erased and read as 0xFFFF.

The Main Memory Erase command is also issued by code within the erase function. The only difference between the Chip Erase and Main Memory Erase command functions is the data value in the sixth write cycle.

The data value is 0x0010 for the Chip_Erase command and 0x0030 for the Main Memory Erase command. The Boot Lockout command requires 0x0040 in the data field of the sixth write cycle. I’ve used a C switch statement augmented by some erase function command definitions to determine which AT49LV1025 erase command to invoke.

We now know how to read and erase FLASH cells within the AT49LV1025. There’s only one essential command left: Word Program.

Four write cycles are necessary to issue a Word Program command with the final write cycle specifying the actual address of the FLASH cell and the data to put into it. Immediately following the invocation of the Word Program command, a checkbyte is created. The checkbyte consists of the single true value of the seventh bit of the data specified in the word_program function call followed by zeroes (binary X00000000).

The low byte of the data word is continually checked until the bit within the checkbyte matches the bit in the byte that is read from the AT49LV1025. That’s all there is to it!

Proof of the Pudding

Okay, we have everything we need as far as firmware is concerned to read, write, and erase the AT49LV1025. I put together some simple display memory and write memory functions using the AT49LV1025 read/write/erase firmware modules we discussed earlier.

Basically, the display memory function reads a number of words from the AT49LV1025 and sends the data read out to the prototype printed circuit board’s serial port. Conversely, the write memory function writes a number of words to the AT49LV1025. The read memory function automatically increments the address after each read cycle and the write memory function increments the value of the data word it is writing after each write cycle.

The idea of this little demo program is to show you how the erase functions work for the Boot Block and Main Memory while certifying that our basic AT49LV1025 FLASH read and write functions perform as advertised. Hopefully, you should be familiar enough with the AT49LV1025 firmware to associate what you see in Figure 3 with the AT49LV1025 code in Listing 1. NV
Building a Crustcrawler robot is like owning a luxury automobile. Everything about a luxury automobile is about being “a cut above the rest.” That is what a Crustcrawler is all about. It is a robot building experience. Every step of the way was sublime, every nuance of the build was exquisite. If everything I did went as flawlessly, I would be the king of the world.

Some time ago, I was fortunate enough to build one of their “2 x 6” Hexcrawlers. I found that experience to be wonderful, but my time spent on the Hexcrawler HDATS was blissful. The thing practically built itself.

I was amazed when I opened up the box to find how much stuff was in there. Dozens of stamped, bent, brushed, and anodized parts, hundreds of screws, washers and nuts, all divided into neat little logical bags, all labeled and ready to consume, all waiting for their Hitec HS-645MG servos to bring them to life. There was even ample supply of extra parts, in their own little bags, labeled to indicate they were spare.

The details really become apparent when you notice that the aluminum pieces are brushed along their long axis. One piece by itself is nice, but the whole beast built up takes on a magnificent sheen. Screws are a mixture of black oxide and shiny zinc plated, all matched up nicely for aesthetics. Another nice detail is all the pre-made mounting slots for mounting your own hardware. This makes accessorizing your Hexcrawler a breeze.

Another neat thing about it is the four different mounting points for the pivot of the knee. While it adds a bit of complexity for my inverse kinematics code, it allows you to trade between torque and travel. More powerful servos can use less torque advantage, and really move, or they can be set to more torque for better cargo capacity.

One thing that surprised me is how large this thing is. I mean it is like bigger than a badger. At something like 20” x 20” x 6”, this thing is really massive. With the heavy duty, 107 oz-in servos, and the fulcrums for the legs set at maximum torque advantage, I may not have enough stuff to put on it. I do know that my little IsoPods and ServoPods will be lost on this thing. I guess I will be accessorizing it with a lot of gear.

Here is a rundown of what I am considering:

- Poloyquest LiPoly batteries from www.LightflightRC.com with battery monitor
- CMUcam2 from www.Seattlerobotics.com
- Lassen GPS module from www.Sparkfun.com
- 2.4 GHz wireless link from www.Sparkfun.com
Personal Robotics

- Sharp distance ranging sensors
- CULstack force sensors for the feet, see www.CULstack.com
- TAOS color sensors from www.Parallax.com
- ServoPod for the brains from www.newmicros.com
- Gambboy Advance as a graphical display
- S3 Pan/Tilt system from www.Crustcrawler.com

With all that empty space between components, maybe this is the time to play with distributed processing and some sort of bus architecture, one computer for each leg, and one for the head. Maybe I need to find a rider to control it, maybe wire up a lab specimen that won’t offend PETA like a giant Madagascar hissing cockroach like what Garnet Hertz did (www.conceptlab.com/control/) or maybe my pet snail. Whatever I can dream up, I know the thing will handle the mass.

The build was really straightforward, though I highly recommend looking over the manual first, then proceeding to build. I managed to build mine up in about six hours, with only a Phillips screwdriver, 3/32 Allen wrench, needle-nose pliers, flush cut diagonal cutters, 1/8" drill, and some tweezers.

There were no errors in the manual, though a couple of times I had to redo things, mostly due to my haste in building it. At times I wish the manual were a bit clearer, but when I approach something like this, I attack it in the most hurried of ways.

Overall, I couldn’t be more pleased with the Hexcrawler HDATS. All the extra hardware was an unnecessary blessing. All the pieces fit together perfectly. With a minimal effort, everything came together flawlessly. This product gets a solid A+ rating from me. NV

AUGUST 2005

With all that empty space between components, maybe this is the time to play with distributed processing and some sort of bus architecture, one computer for each leg, and one for the head. Maybe I need to find a rider to control it, maybe wire up a lab specimen that won’t offend PETA like a giant Madagascar hissing cockroach like what Garnet Hertz did (www.conceptlab.com/control/) or maybe my pet snail. Whatever I can dream up, I know the thing will handle the mass.

The build was really straightforward, though I highly recommend looking over the manual first, then proceeding to build. I managed to build mine up in about six hours, with only a Phillips screwdriver, 3/32 Allen wrench, needle-nose pliers, flush cut diagonal cutters, 1/8" drill, and some tweezers.

There were no errors in the manual, though a couple of times I had to redo things, mostly due to my haste in building it. At times I wish the manual were a bit clearer, but when I approach something like this, I attack it in the most hurried of ways.

Overall, I couldn’t be more pleased with the Hexcrawler HDATS. All the extra hardware was an unnecessary blessing. All the pieces fit together perfectly. With a minimal effort, everything came together flawlessly. This product gets a solid A+ rating from me. NV

AUGUST 2005
The International Business Development, Educational and Consumer Event for Personal, Service and Mobile Robotics

- 50 Robotics Visionaries and Thought Leaders
- 50,000 Square Foot Exposition
- 5 Comprehensive Professional Development Conferences:
 - Business Development and Opportunities Conference
 - Emerging Robotics Technologies and Applications Conference
 - Robotics Design, Development and Standards Conference
 - Robotics Education and Instruction Conference
 - Consumer Robotics and Entertainment Event

New for RoboNexus 2005!

- Business-to-Business and Consumer Entertainment Expo Areas
- Service Robotics Summit
- Service Robotics Pavilion
- “Robotics at Home” Demo Stage
- Robotics Innovators Awards—the ‘Robi’

www.robonexus.com
The Business of Electronics Through Practical Design and Lessons Learned

In The Trenches
Recognizing and Encouraging Good Ideas

Engineers and engineering managers are always at the leading edge of technology. New ideas are potentially very valuable.

But, how do you know if a new idea is a good idea? What do you do when someone comes to you with a new idea? And, of course, how do you cultivate good ideas?

Why it's Hard

Recognizing a good idea is not as common as it should be. In fact, it's often a very difficult thing to do. There are several reasons. The first is that new ideas are — by necessity — unconventional. If the idea followed convention, it wouldn't be new. People like the status quo. So, anything that changes that, makes them uneasy. Engineers are people, too. (Although there are some who will disagree.) So, it's first nature to push the new idea aside. Clearly, that's just as wrong as vigorously pursuing every new idea that comes your way. Thus, the first thing to do when someone comes to you with a new idea is to listen and evaluate objectively.

Of course, this is work and it takes time. If Bob comes into your office five minutes before you have to go to a meeting and says "I've got this great idea." Don't say, "You've got five minutes." Instead schedule 30 to 60 minutes (perhaps lunch) so you can actually listen to what he has to say.

If Bob says, "It'll only take five minutes," it's probably not a good idea, or a well thought-out one. Good ideas take effort to make.
them good. While the kernel of an idea may take only five minutes to explain, that in itself isn't necessarily good. The kernel's application and potential benefits and risks will take more than five minutes to discuss. If Bob can't address these points, he hasn't done his homework.

New ideas involve new risks. Again, it's human nature to accept familiar risks and avoid unfamiliar ones. Another word for this is experience. We all know how valuable experience is. If you're a hardware engineer, you'll probably design an analog audio filter because of your experience. If you're a software engineer, your first choice will be a digital filter. It's rare that it will be reversed unless there is significant pressure applied (for whatever reason). It's human nature to overestimate new risks while underestimating old risks.

Finally, new ideas require new words and thoughts. It's often very difficult to verbalize these things simply. Worse, Bob may not have good verbal communication skills.

So, getting his idea across may take considerable effort from both parties. Sometimes, it is simply impossible to bridge that verbal chasm.

What Makes an Idea Good

Fundamentally, a good idea solves a problem. Sometimes the problem is obvious. Sometimes people don't even know that there is a problem.

For example, what problem did wireless transmission (or "radio") solve? At the time, many people felt that the telegraph was just fine. Ideas that solve problems that are not obvious are the hardest to evaluate.

Of course, there are many types of "solutions." They can range from physical to financial to social. Good ideas have benefits that outweigh the costs. "Well, duh! That's pretty obvious," you say. The not-so-obvious problem is that quantifying the benefits and costs is not an easy thing to do.

This is especially true for novel ideas. The costs of developing "radio" were significant. The benefits, at the time, were not very clear. Radio range was much less than the telegraph and radio was much more complicated. Additionally, everyone could receive radio with the proper equipment. So, any message sent by radio was not very private. Not like the telegraph at all.

In the long run, new ideas will generally be cost-effective. That is why there is so much academic and industrial funding for theoretical...
research.

However, when someone comes to you about their idea, you don't have the luxury of waiting years or decades to recover the developmental costs. You will have to examine the idea from the short term point-of-view.

Be Formal

I have found that a formal evaluation procedure of a new idea is very useful. Formal doesn't have to be intimidating. In fact, a properly designed formal evaluation can be much less stressful than an informal one. But this means up-front work for both parties.

First, you should publish a checklist of those topics that the new idea should address. For example: "What are the benefits of the idea? Be as specific as you can." What are the risks? How is the idea to be implemented? Are there similar ideas in use now? How long/how much will it take to develop? You might also place limits. It can't cost more than a certain amount to develop. It must be profitable within a specified period of time.

These topics are important to Bob because he probably hasn't thought about them. He's been focused on his great new idea, not on business. By having him examine his idea from a business perspective, he can get a better understanding of what is important to the company.

Additionally, he will have the time to think about and develop discussion points that are company-oriented. He'll know what to expect in the meeting. That's helpful to him. It's always easier to go into a meeting knowing what questions will be asked.

Have Bob write a paper to present and discuss at the evaluation meeting. This does several things. It forces Bob to organize his thoughts. It's often the case that someone thinks they understand something until they start writing it down. Only then do the gaps in logic and improper reasoning become visible.

Additionally, new ideas are not born fully formed. They can be just a shadow or outline of a practical concept. They need to grow and evolve. Writing about an idea puts substance into the shadow. Bob has to think about his writing, as well as his idea. It also shows that you are taking Bob seriously.

Allow Bob to bring an associate or two. This provides two benefits. The first is that Bob will feel more comfortable with a friend. It will be easier and less stressful. The second point is that the friend may be able to help Bob on difficult points. Having a different person explain a concept can be very useful.

Atmel AVR based Micro64/128 Embedded Controller Module

- 8-Channel Analog to Digital Convertor
- Real Time Clock/Calendar
- 29 Digital I/O
- SPI & I2C Bus
- Two Serial Ports
- Serial Boot Loader
- RS-232,422 or 485
- Selectable Baud Rates up to 250 Kbps
- Only 1.5 Cubic Inches
- Supports Assembly, BASIC and C Prog. Languages
- Inexpensive CodeVision C Compiler

Start Developing

The Micro6/128 Development Board takes the Micro64/128 I/O pins and expands them out to solder pads and headers for ease of connection when developing. It also connects UART1 to RS-232 drivers or directly to screw terminals for RS-422 or RS-485 communication. UART0 is also connected to RS-232 drivers. The RS-232 drivers are connected to two DB9 connectors. This board includes a prototyping area so the user can add external circuitry. There is an onboard voltage regulator for powering the Micro64/128 and additional circuitry. The Micro64/64A/128/128A development system comes complete with a Micro64, Micro64A, Micro128 or Micro128A, a Micro64/128 Development Board, and a power supply.

VISIT WWW.MICROMINT.COM FOR MORE INFORMATION or Call 1-800-635-3355

AUGUST 2005
After all, the point of the meeting is to understand what Bob is proposing. A formal evaluation (in writing) should be the result of this meeting. Hopefully, the evaluation should be presented to Bob within a week or so. It doesn’t have to be long, perhaps a page or so. If the idea is accepted, you will want to lay out a preliminary budget and schedule in the evaluation. There may be special requirements or situations that need to be defined, as well as limitations and expectations. Clearly, there will be ongoing meetings and progress reports. But, this is great news for Bob.

If the evaluation is negative, it is critically important to be specific. Precisely, why isn’t the proposal a good idea? This should be spelled out. Perhaps it costs too much or will take too long to develop. Maybe, it’s unethical or violates copyright or patent laws. Possibly you disagree with Bob’s assessment of profitability. Whatever the reason, state it. It is certainly nice to couch it in pleasant terms, but tell the truth.

There are two fundamental reasons for this. The first is your own credibility. If you just blow-off the idea, you will not get many more. Subordinates will think that the evaluation is just some arbitrary bureaucratic procedure. The second point is that your objection(s) may be answerable. Bob might be able to overcome the weakness in his idea if he is given the direction and opportunity to do so.

Of course, this means that you must be truly willing to reconsider the idea if the stated objections have been overcome. If an idea is too far removed from the company’s core interests and will never be acceptable, this should be stated as well.

Note that I have not discussed any technical aspects of the idea. This is because it is assumed that Bob—an engineer—will have a good grasp of what is possible and practical. Most ideas, especially those created by engineers, are technically feasible. Although, sometimes a person’s imagination exceeds his capabilities.

Corporate Fears

It always seems to be the case that upper-management and executives fear all the time “wasted” on evaluating ideas. They’re afraid that Bob will re-submit his idea again and again. They’re afraid that “important” work will be delayed. These are silly fears.

First, an idea is a very personal thing. Few people enjoy having their visions rejected. It’s very unlikely that anyone will choose to endure that...
over and over again. This is especially true if the evaluation was honest to begin with.

Secondly, it’s important to cultivate good ideas. The company was founded on someone’s good idea to begin with. Simply, good ideas are profitable and bad ones aren’t. Every company must grow and that can only be done with profitable, good ideas.

Then there is the corporate mindset. This is the notion that the people who make the decisions must be smarter than those who just “work.” In my experience, this egocentric point-of-view is surprisingly common (unfortunately). What’s more, these people are not aware of how counterproductive this is and are usually unwilling to consider anything else. “The important people have all the good ideas.”

For some reason, these people cannot see that an employee, on his own time, has created an idea that he thinks will make the company (and himself, of course) lots of money. What’s more, he is willing to share this with the company. All Bob is asking for is a fair hearing about his idea. Not encouraging this behavior is simply a silly thing to do.

Rewards for Ideas

Suppose Bob’s new idea provides a $1,000,000.00 yearly increase in product sales with a net profit of $100,000.00 to the company. The company gives Bob a $10,000.00 bonus. Once.

Do you think Bob is happy knowing that the company owners get $90,000.00 this year and $100,000.00 every year thereafter while he gets a one-time bonus of $10,000.00? Would you be happy? Do you think Bob will ever provide another idea to the company? Or will Bob take a job at a different company where his ideas are worth more?

Management sometimes seems to think that people are stupid.

They think that they are giving away $10,000.00. They fail to realize that it is Bob who is really giving them $100,000.00 every year. So, instead of rewarding Bob with a meaningful reward, they make Bob feel that he is being taken advantage of. And, of course, he is correct.

A proper reward would be something like 50% of the savings for the first year and 10% thereafter (or for some specified number of years). This will encourage Bob and others like him to provide the company with profit-making ideas. It’s critically important to realize that Bob is the source of the $100,000.00 yearly profit. He is the one who decided to give the company his idea. It’s up
to management to ensure that he will repeat his behavior the next time.

It also makes sense to reward people for all new ideas. Even for those that are not accepted. This is because Bob put forth a significant effort in creating his idea and writing it down (for the evaluation). Additionally, he places himself at some risk of embarrassment and/or ridicule.

Obviously, the evaluation should always be handled professionally. But, Bob’s idea is a very personal thing and he is vulnerable. He knows that new ideas are often laughed at.

So, even if the idea can never be used by the company, give him $100.00 for his effort and courage. He will appreciate it and will be all the more willing to submit more ideas. And, let’s be practical. Where else can you get new ideas for $100.00 each? eBay doesn’t auction them.

Note. Again, some executives fear that Bob will take advantage of the situation by simply submitting idea after idea. This is not a reasonable fear. If your checklist is properly designed, he can’t repeat the idea. If the evaluation is accurate, he will be forced to do considerable work to make the idea suitable for re-submission.

Naturally, Bob should not use company time to work on his ideas. So, the $100.00 is a reward for work in excess of his regular job duties. Again, this is a great bargain for the company.

The Suggestion Box

The suggestion box is arguably the worst idea for collecting good ideas ever employed.

At its best, it’s just a morale boost for the employees. The box gets suggestions like: "How about putting a candy machine in the break room?" Or, "Let’s go to a four-day work week."

Basically, it’s just a feedback mechanism to management. If the feedback isn’t acted upon, then the box is perceived as another failed management tool that illustrates how out of touch management really is.

You will not find suggestions like: "Improving throughput by applying ergonomics to the production process." But these are exactly the ideas that the company needs. These are the ideas that can save the company huge amounts of money. How much profit will a candy machine make?

Recognizing Good Ideas (Peer-to-Peer)

When a co-worker comes to you about an idea, you can’t expect him to put it in writing. Rather, it should be a sit-down discussion. Be sure you have a block of time (usually an hour is adequate.) Sometimes lunch is a good idea. Always remember that ideas are fragile, personal things.

Even if it’s a perpetual motion machine, take it seriously. This person has come to you for your comments, so be gracious. Peer-to-peer discussions will usually concentrate on the technical aspects that both people are familiar and comfortable with.

A good idea is well thought-out with attention to detail. So, listen carefully. If something doesn’t make sense, ask for clarification. (Say, "I don’t understand that part." Not, "That part doesn’t make sense.") If the explanation does clarify the point, that’s good. If not, it’s bad because either the point is not well-understood or it’s poorly verbalized.

Are the implications (also called secondary effects) understood? Suppose the design calls for the use of mercury. That’s a heavy metal and may soon be banned in Europe and perhaps in the USA. Has he considered this? If not, is there a different approach that can work?

What specific problem does it solve? Some ideas are very intriguing, but have little application. Ideas
that have the potential for wide application are valuable. Is the idea for new technology, saving money, or social application? There are many different things to consider. Creating a pill that makes everyone the same size is a new technology. It saves money by allowing manufacturers to make only one size of clothing. And it clearly has a social application. But, what problem does it solve? It suggests that the problem is that people are of different sizes.

On the other hand, what about creating a cloth than can be stretched and then easily size-fixed to-fit at the store. This does solve the problems of inventory and manufacturing multiple sizes of clothing. Changing the clothing to fit the person seems like a much better solution than changing the person to fit the clothes.

Recognizing Good Ideas (Worker to Boss)

As was noted before, a manager looks at broader, more non-technical aspects of the idea. Generally, the outlook is pragmatic. It the idea helps the business, it's good. Otherwise it's bad.

It's important for the worker to understand this. If the company makes CRTs, a cure for AIDS (a vastly important idea) will generate little interest. Not because the people don't think it's a good idea. More simply, the company doesn't have the mechanisms in place to exploit it. A good idea from the manager's perspective is one that fits the company.

Naturally, the idea must be understood well enough by the manager to evaluate. And, let's assume that this is the case.

Oftentimes, the source of the idea can help determine if it's a good one. If Bob, a good worker with lots of experience, says that he can improve production by building special test fixtures, the idea will be readily accepted. However, if this is Bob's first job out of high school and he's only been working for two weeks, it will be much more difficult to accept. It doesn't mean that the idea is bad. It's just that the new hire has had no time to develop credibility.

Recognizing Good Ideas (Non-technical to Technical)

I often have non-technical clients who want me to develop their idea into a product. Here, the criteria for being good are more general. Is the idea feasible? Is the idea practical? Is the idea potentially profitable?

Obviously, it's unrealistic for a non-technical person to address the technical aspects of his idea. It becomes the evaluator's responsibility to consider these.

This can turn into a difficult situation if the technical person isn't being compensated for the evaluation. This is because the technical person can easily become a "co-inventor" of the idea. If Bob comes to you with a nub of an idea and you show him how to build it, you have helped to turn the idea into a product. What do you do if Bob then goes to someone else to build and market the idea and makes millions of dollars?

Conversely, suppose Bob takes your input and makes a faulty product. He gets sued. And so do you, because you were the brains behind the design.

Both of these scenarios are rare, but they are possible. The important thing to remember is that you are likely to become "partners" with Bob in some fashion. The question then becomes: Is it a good idea to work with Bob? Rather than: Does Bob have a good idea?

Conclusion

Ideas, like beauty, are in the eye of the beholder. Different people will evaluate the same idea in different ways and come to different conclusions.

Fostering good ideas requires a true effort by management. And, because businesses must grow and evolve to stay competitive in today's business environment, good ideas are the life-blood of the company. NV

Front Panels?

Download the free Front Panel Designer to design your front panels in minutes

Order your front panels online and receive them just in time

www.frontpanelexpress.com

AUGUST 2005
MC7 Motor Controller
from Diverse Electronic Services

12-36 volts, 35 amps
Great for robot projects.
Radio and joystick interfaces available.
See our website for other controllers and robot products.

www.DiverseElectronicServices.com

Battery rebuilding service

Dead Batteries? Don’t toss them. Send them to us – our rebuilds are better than original specifications.

Tools
- Cell Phone
- Inverter
- Milwaukee
- Panasonic
- B&D
div
- Makita

Visit www.primecell.com for important details.

24 Hour Secure recorder tel-fax (814) 623 7000
Quotes email: info@primecell.com
Cusnet Access: Inc. 3035 US Rt 220 Beltoria PA 16823

Printed circuit boards

Quality product fast delivery competitive pricing
- UL approved
- Single & Double sided
- Multi-layers to 8 layer
- SMT, LPI mask
- Reverse Engineering
- Through hole or SMT
- Nickel & Gold Plating
- Routing or scoring
- Electrical Testing
- Artwork or CAD data

We will beat any competitor’s prices!!!
yogii@flash.net - flash.net/~yogii

www.getActiveWire.com

ActiveWire® USB
Simple USB Interface!

$59 plus shipping

Get 5 PCBs for $10.00 each in 5 days!
Order online www.pcblabexpress.com

High Quality PCBs @ Low Impact Prices
www.pcblabexpress.com
49 MickMichael St, Kingston, ON, K7M 1M8
1-888-GO-4 KITS
www.XGAMESTATION.com
(925) 736-2098
support@njwire.net

Airplane controller with point-to-point
Design inspired by the
Aero 2000, Apple II & Commodores 64

Includes:
- Remote Control (IR & Serial)
- The Fun Way to Learn Electronics & Programming
- Fully Assembled "Build-Your-Own" Kit
- Complete Software Development Kit
- Zero, Zero & Unlimited
- Custom Kit & Power Supply
- Custom Printed Circuit Board
- Designed for the Macintosh 586 30 MHz or Above
- Software Compatibility

ORDER ONLINE
www.XGAMESTATION.com
(925) 736-2098
support@njwire.net

Everything you need to build your own...

MOBILE ROBOT
- Sonar Units
- Vision Systems
- Motor Drivers
- Optics
- Microprocessors
- Artificial Intelligence

www.ZagrosRobotics.com
PO Box 460342, St Louis, MO 63146
(314) 768-1328 info@zagrosrobotics.com

SMT PROTOTYPING ADAPTERS

Snap-Away® PCBs with 30mil pin strips.
Dozens of assorted adapters on each PCB.
A variety of PCBs with patterns front & back.

SMT Prototyping Adapters

www.beldynys.com

Introducing the world’s smallest hard disk tool.

Diskology.com

"...a dream come true for any PC hobbyist or technician who lives over a test bench..."
- CPU Mag
Don’t let the Exos get the Axo, sign up today!

TETSUJIN 2005

Tetsujin 2005 — originally scheduled for October 6-9 at RoboNexus — has been postponed. The registration deadline passed on June 13th, and there were not enough entries to hold the competition on the scheduled date.

We plan to reschedule the event sometime after the first of the year at a different venue. Individuals and teams interested in competing should drop us an email to let us know, so we can plan to go ahead and set a new date. The entry deadline will remain open for now. Don’t send money or the entry form yet, just email to let us know you are interested in competing and we’ll keep you posted on what to do next and when to do it.

Hey, look on the bright side, not only do you STILL have time to enter, you have even MORE time to design and build your exosuit! So, there’s no excuse now NOT to compete! This is a hard competition and certainly one worth participating in. If it were easy, everyone would be doing it. This is your chance to stand apart from the crowd and flex your engineering and bot-building muscles. So, hook up with your friends, fellow engineers, classmates, geeksquad, gearheads, whoever, and form a team. No need to go it alone!

If you haven’t already done so, check out the new rule set and event changes and start scribbling out your preliminary design. There’s no time to lose! Send an email to tetsujin@servomagazine.com with your name and email address and we’ll make sure you get all the latest info and news.

CHALLENGE 1:
Weightlifting. Ascend stairs in your suit to the lifting platform and lift a load of from 100 to 1,000 lbs\(^*\) from a squatting position to a height of at least 24 inches\(^*\), return the load to the ground in a controlled manner, and descend the stairs. Stair-climbing may be unpwerved. The winner is the competitor who lifts the most weight.

CHALLENGE 2:
Dexterity. Stack nine concrete cylinders weighing about 70 pounds each in a 4-3-2 vertical arrangement, but don’t knock them over as the pyramid grows! The winner is the competitor who arranges the cylinders in the shortest time.

CHALLENGE 3:
Walking Race. Walk the 100 foot\(^*\) long U-shaped challenge course, stepping over a small obstacle at the half-way point. The shortest time wins, with a time bonus being granted based on any auxiliary load carried. Walking must be powered.

The current rule set is available online at www.servomagazine.com
Questions can be directed to tetsujin@servomagazine.com

Don’t wait, sign up for one, two, or all three challenges today!

\(^*\)Specifics of the competition are in a tentative state and may be subject to change.
QUESTIONS

I do telephone interviews (and have permission of the other party to record them). I need a phone patch circuit for a cell phone to get audio out at standard audio mixer levels that I can record via a laptop/computer sound card or cassette. Since the audio transmit and receive are separate with cell phones, the signals do not need to be mixed. I can run them separately to the right and left channels and mix them later.

The phone patch must plug into a Motorola T-2260 cell phone headset jack (standard 2.5-mm, three-conductor phone jack). The three conductors are transmit, receive, and common ground. I believe that phantom power is supplied to the transmit (mic), as well.

I've already tried making a simple circuit that de-coupled the DC with 0.1mF and then 0.01mF caps in series with the signal lines, but I had the problem of the mic audio cutting out after a few seconds. I even tried an audio transformer isolation to stop ground loops. I'm thinking that there is RF coming in over the lines. Any ideas?

#08051 Clyde via Internet

How does the LNB on a satellite receiver dish work? I know that LNB stands for “Low Noise Block” converter.

#08052 Sam Graumann
Canon City, CO

I need to assemble a device which will record time-of-day in 24-hour format for events, as follows: a person sees an event, and pushes a button; he sees another event, and pushes another (or the same?) button. Later, he can retrieve the event times (capability for up to five events will be needed) and reset the device for use next time. It would be used in a 12-volt vehicle.

This could be as simple as tying together panel-mount clock modules that can be synced when setting the time. I know this can be done with a PIC and LCD display, but I know very little about them, and haven’t been able to get off the ground with that approach.

#08053 Doug Johnson
Kingsford, MI

ANSWERS

[#06052 - June 2005]

I’m using a PIC microcontroller to send data serially to my PC as sort of a data logger. I’ve been using hyperterminal to capture the info, but I need a time stamp on each incoming line to tell what time the data was taken. The time stamp should be system or actual time. I’ve tried using a serial port monitor program by Retisoft, but it uses its own stopwatch-style stamp, which doesn’t mean a whole lot to me.

The easiest way to do this is to get a terminal emulator that supports scripts, such as Procomm Plus or NetTerm. You can then write a script that will detect an incoming pattern such as carriage return, linefeed, or other unique character (-) and insert the host computer’s date and time into the data stream. You can even write automatic file swapping scripts that will create new capture files hourly, daily, or monthly.

The alternative would be to write
a simple datalogger program using C or even Basic to perform the data capture and date-time stamping.

I can help you with either option if you need assistance.

Daryl Rictor
circuithelp@yahoo.com

[#06055 - June 2005]
I have several refrigeration controllers for store produce coolers that I cannot find any programming documentation on and I'm hoping that someone can help.

I have a Cool/Delay Heat controller with dual temp probes. It's made by McLean Midwest. It has the part name Zero McLean on the wiring label. The part number is 10-1106-33 Rev: 0.

I would appreciate any information available – especially programming info.

A quick search with Google shows that Primeparts.net is now handling many McLean Midwest products and parts at www.primeparts.net/Products/mclean.shtml.

I don't see the part in question on their site, but maybe they have information on it. They can be contacted at the web address, or by email at websales@primeparts.net or by phone at (317) 257-6811.

Carl Smith
Dakota Dunes, SD

[#07052 - July 2005]
I want to build a receiver circuit for a TV remote control. With the number of cheap "Universal" remote controls that are available, I'm hoping to be able to use one of these to control some of my electronics projects, without the need to construct the remote control itself. I'd think other experimenters could utilize such a receiver to add remote control capability to their robotic and other electronic projects. I suppose I could try to salvage this circuit from an old TV or VCR, but since I'm not interested in having a tuner for TV signals, I was hoping for a simpler circuit. I'm also looking for a good book on how to troubleshoot these circuits in various TV and VCR applications.

#1 IR remote controls use a pulsed signal that modulates a 38 kHz carrier. The detection circuit for these signals is very easy. You can purchase photodetectors that contain a filter at 38 kHz, so you are basically making them immune to other IR signals that are present in the environment.

For example, the Panasonic PNA4602 is one of these units that I have experimented with. It can be easily purchased at solarbotics.com at a cost of $1.50 per unit when I just checked it. The documentation for this unit can be found at: http://

Yes! The internet’s first and best robotics source has been purchased by Jameco Electronics, and we’re committed to greatly expanding the product line quickly!

Each month we’ll add hundreds more new robotics products. Plus we’ll continue to supply favorites like Muscle Wire®, the OctoBot Survivor™ robot and more.

Be sure to visit us online at www.RobotStore.com or call 1.800.374.5764...

...and see what’s changed!
We have tuned Father to earlier years and the primary and secondary have similar DC resistance. How can you determine the primary from the secondary, specifically the plate (collector) from the grid (base) leads?

The old IF transformers were designed to provide selectivity, not gain, so it probably does not matter which way you hook them up. If you have a signal generator and scope, feed a signal into one side and look at the output. The side producing gain (if any) will be the grid side. The frequency will either be 455 kHz or 10.7 mHz, although 262 kHz was also used.

Russell Kincaid
Milford, NH

#7055 - July 2005

I'm using motor controllers with LMD18200 amplifiers in a robotics project, and the amplifiers literally blow up if the motor power is reversed! I'd like to find a simple way to protect from reverse polarity, but without an inline diode or rectifier because the voltage drop associated with diodes, especially at higher currents when the motor really needs all the voltage it can get.

It would be nice to avoid old-fashioned fuses, as well.

A series MOSFET will be a low loss switch that will turn off when the voltage is reversed. Use a logic level device like Mouser part number 512-FQP20N06L (99 cents). Connect the gate to the positive input, the drain to the negative terminal of the motor controller, and the source to the negative of the battery. You won't need a heatsink in this application. The gate is rated 20 volts max, so if you are operating at 24 volts, a resistor and zener at the gate would be good insurance.

Russell Kincaid
Milford, NH

AUGUST 2005
<table>
<thead>
<tr>
<th>AMATEUR RADIO & TV</th>
<th>MOTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Time</td>
<td>BalBots.com</td>
</tr>
<tr>
<td>PolarsUSA Video, Inc.</td>
<td>Budget Robotics</td>
</tr>
<tr>
<td>Ramsey Electronics, Inc.</td>
<td></td>
</tr>
<tr>
<td>Surplus Sales of Nebraska</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BATTERIES/CHARGERS</th>
<th>PROGRAMMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cunard Associates</td>
<td>Jameco</td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
<tr>
<td>PolarsUSA Video, Inc.</td>
<td></td>
</tr>
<tr>
<td>Ramsey Electronics, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUSINESS OPPORTUNITIES</th>
<th>PUBLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZ PCB</td>
<td>Mouser Electronics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUYING ELECTRONIC SURPLUS</th>
<th>ROBOTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Microcomputer Systems, Inc.</td>
<td>BalBots.com</td>
</tr>
<tr>
<td>Cunard Associates</td>
<td>Jameco</td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
<tr>
<td>GreenChip</td>
<td></td>
</tr>
<tr>
<td>Jaycar Electronics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCD CAMERAS/VIDEO</th>
<th>SATELLITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Specialists, Inc.</td>
<td>Lemos International Co, Inc.</td>
</tr>
<tr>
<td>Mato, Inc.</td>
<td></td>
</tr>
<tr>
<td>PCB Fab Express</td>
<td></td>
</tr>
<tr>
<td>PolarsUSA Video, Inc.</td>
<td></td>
</tr>
<tr>
<td>Ramsey Electronics, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CIRCUIT BOARDS</th>
<th>SECURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Microcomputer Systems, Inc.</td>
<td>BalBots.com</td>
</tr>
<tr>
<td>Cunard Associates</td>
<td>Jameco</td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
<tr>
<td>PCB Fab Express</td>
<td></td>
</tr>
<tr>
<td>PCM, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>TEST EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel Express LLC</td>
<td></td>
</tr>
<tr>
<td>Jameco</td>
<td></td>
</tr>
<tr>
<td>Lemos International Co., Inc.</td>
<td></td>
</tr>
<tr>
<td>Linx Technologies</td>
<td></td>
</tr>
<tr>
<td>Maxstream</td>
<td></td>
</tr>
<tr>
<td>Mouser Electronics, Inc.</td>
<td></td>
</tr>
<tr>
<td>Pico Technology Ltd, UK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER</th>
<th>TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>Lemos International Co, Inc.</td>
</tr>
<tr>
<td>ActiveWire, Inc.</td>
<td></td>
</tr>
<tr>
<td>Diskology</td>
<td></td>
</tr>
<tr>
<td>Earth Computer Technologies</td>
<td></td>
</tr>
<tr>
<td>Hobart Specialty Co.</td>
<td></td>
</tr>
<tr>
<td>PCB Fab Express</td>
<td></td>
</tr>
<tr>
<td>Surplus Sales of Nebraska</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LASERS</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouser Electronics, Inc.</td>
<td>Jameco</td>
</tr>
<tr>
<td>RABBIT Semiconductor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISC/ELECTRONICS FOR SALE</th>
<th>VIDEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouser Electronics, Inc.</td>
<td></td>
</tr>
<tr>
<td>Pico Technology Ltd, UK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISC/SURPLUS</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcatel, Inc.</td>
<td>Jameco</td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
<tr>
<td>Front Panel Express LLC</td>
<td></td>
</tr>
<tr>
<td>GreenChip</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EDUCATION</th>
<th>TEST EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BallBots.com</td>
<td></td>
</tr>
<tr>
<td>Command Productions</td>
<td></td>
</tr>
<tr>
<td>EMAC, Inc.</td>
<td></td>
</tr>
<tr>
<td>Graymark</td>
<td></td>
</tr>
<tr>
<td>Hobby Engineering</td>
<td></td>
</tr>
<tr>
<td>R4Systems, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENCLOSES</th>
<th>TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Ideas & Technologies, Inc.</td>
<td>Jameco</td>
</tr>
<tr>
<td>颖ılmns, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EVENTS</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotic Trends</td>
<td>Jameco</td>
</tr>
<tr>
<td>Tetra 2005</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KITS & PLANS</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcatel, Inc.</td>
<td>Jameco</td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
<tr>
<td>Front Panel Express LLC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LASERS</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouser Electronics, Inc.</td>
<td>Jameco</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISC/ELECTRONICS FOR SALE</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>Jameco</td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
<tr>
<td>Front Panel Express LLC</td>
<td></td>
</tr>
<tr>
<td>GreenChip</td>
<td></td>
</tr>
<tr>
<td>Hobart Specialty Co.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISC/SURPLUS</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcatel, Inc.</td>
<td></td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
<tr>
<td>Front Panel Express LLC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST EQUIPMENT</th>
<th>WIRE/CABLE & CONNECTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellin Dynamic Systems, Inc.</td>
<td>Jameco</td>
</tr>
<tr>
<td>C & S Sales, Inc.</td>
<td></td>
</tr>
<tr>
<td>Circuit Specialists, Inc.</td>
<td></td>
</tr>
<tr>
<td>ExpressPCB</td>
<td></td>
</tr>
</tbody>
</table>

Advertiser's Index

AUGUST 2005
2.9GHz RF Field Strength Analyzer

The 3290 is a high quality hand-held RF Field Strength Analyzer with wide band reception ranging from 100kHz to 2900MHz. The 3290 is a compact & lightweight portable analyzer & is a must for RF Technicians. Ideal for testing, installing & maintenance of Mobile Telephone Comm sys, Cellular Phones,Cordless phones, paging systems, cable &Satellite TV as well as antenna installations. May also be used to locate hidden cameras using RF transmisions.

LogiPort Logic Analyzer

The LogicPort provides 34 sampled channels including two state-mode clock inputs. It connects to your PC's USB port for ultimate convenience and performance.

Plug-In Switching Power Supplies

These 15W switching power supplies are an inexpensive way to power devices with robust regulated power and low ripple noise. The low-profile design allow you insert them into a power strip without losing any of the other plugs. Designed with an energy efficient switching technology, the Universal AC Input works from 90-264VAC with no minimum load required and a 100% burn-in test to ensure they will perform as stated right out of the box. They come with a 1.6 meter output cord and a 5.5 x 2.1mm female plug. UL and cUL approved.

SONY Super HAD CCD Color Weatherproof IR Camera

- Day & Night Auto Switch
- Signal System: NTSC
- Image Sensor: 1/3" SONY Super HAD CCD
- Horizontal Resolution: 480TV line
- Min. Illumination: 0.01 Lux

SONY Super HAD CCD B/W Weatherproof IR Camera

- Day & Night Auto Switch
- Signal System: EIA
- Image Sensor: 1/3" SONY Super HAD CCD
- Horizontal Resolution: 420TV lines
- Min. Illumination: 0Lux

Digital Storage Oscilloscope Module

Convert any PC with USB interface to a high performance Digital Storage Oscilloscope. This is a sophisticated basebandcope adapter providing performance competitive to mid/high level stand alone products costing much more! Comes with two probes.

SONY Super HAD CCD Color Weatherproof IR Camera

- Day & Night Auto Switch
- Signal System: NTSC
- Image Sensor: 1/4" SONY Super HAD CCD
- Horizontal Resolution: 420TV lines
- Min. Illumination: 0Lux

SONY Super HAD CCD B/W Weatherproof IR Camera

- Day & Night Auto Switch
- Signal System: EIA
- Image Sensor: 1/3" SONY Super HAD CCD
- Horizontal Resolution: 420TV lines
- Min. Illumination: 0Lux

B&W Pinhole Bullet Camera w/ 1/3" CCD

- Weather Resistant Housing
- Signal System: EIA
- Image Sensor: 1/3" CCD Bullet Hole
- Effective Pixels: 510 x 492
- Horizontal Resolution: 380TV lines
- Min. Illumination: 1Lux/F1.2

SONY Super HAD CCD™

equipped camera's feature dramatically improved light sensitivity

SONY Super HAD CCD Video System

- Weather Proof
- Signal System: NTSC
- Image Sensor: 1/4" SONY Super HAD CCD
- Horizontal Resolution: 420TV lines
- Min. Illumination: 0Lux

Visit our website for a complete listing of our offers. We have over 8,000 electronic items on line at www.CircuitSpecialists.com. PC based data acquisition, industrial computers, loads of test equipment, optics, IC's, transistors, diodes, resistors, potentiometers, motion control products, capacitors, miniature observation cameras, panel meters, chemicals for electronics, do it yourself printed circuit supplies for PCB fabrication, educational D.I.Y. kits, cooling fans, heat shrink, cable ties & other wire handling items, hand tools for electronics, breadboards, trainers, programmers & much much more! Some Deals you won't believe!
Parallax EFX™ can turn your digital control nightmares into sweet dreams come true

Want affordable and precise digital control?

Don’t be afraid. With the easy-to-use Prop-1 Controller and the entire line of Parallax EFX products at your side, digital control is within your reach. Non-programmers will appreciate our super-simple BASIC language.

Prop-1 Controller (#31101 - $34.95) - The Prop-1 Controller is a single board solution that is perfectly suited for many haunt and prop applications. Built from the BASIC Stamp® 1 microcontroller, the Prop-1 offers eight I/O pins and is powered by either 12 or 24 VDC. It can control TTL outputs (5VDC), hobby servos, 12-24VDC solenoids, low voltage lamps, and small DC motors. A three-position power switch allows the use of one power supply, or two isolated power supplies.

AP-8X Sound Board (#31308 - $49.95) - The AP-8X audio player allows you to easily record and playback up to eight sounds totaling 60 seconds. These sounds may be recorded in any order and played back in any order. Playback can be controlled with a controller, or simple switches. Includes an on-board bi-level selectable amplifier and volume control, which changes volume from a loud gasp to a blood-curdling scream!

RC-4X Relay Board (#31204 - $24.95) - Safely control 110-220 VAC loads with the popular Crydom D2W202 series of SSR. The RC-4X connects to the Prop-1 with three-pin cables to safely transmit low-voltage control signals to the SSRs. Small, bright LEDs indicate which loads are “hot.”

Available individually or as package deals in September 2005. Order online at www.parallaxEFX.com or call our Sales Department toll-free at 888-512-1024 (Monday-Friday, 7am-5pm, PT).

www.parallaxEFX.com
Circle #154 on the Reader Service Card.