Serial Inkjet Printer Kit

Want to learn about inkjet printer technology? Want to print text with a robot or by waving an inkjet nozzle over a piece of paper? Parallax, Hewlett-Packard, and Matt Guillian have combined to produce this unique kit. The hardware and documentation are designed around HP’s Thermal Inkjet 1.0 technology. Using the Parallax Serial Inkjet Printer board, your microcontroller sends a string of serial data which is printed as 1/8" tall characters. Waving the inkjet cartridge over a piece of paper or mounting it on a Bob-Bot produces print-quality text in the font of your choice! Bob-Bot Robot Kit sold separately (Series #28132; USB #28832) for $179.00.

INKJET APPLICATION CONTEST:

Using a microcontroller to fire an HP inkjet, enter your project in our 2006 HP and Parallax Inkjet Application Contest. The three categories include Paper, Text, and Mechanical. Cash prizes overall are available within each category. Prize values total over $3,000! This contest ends on June 15, 2006. All details are posted at www.parallax.com.

Includes Bob-Bot mounting hardware!

$99.95
#27969

PRINT AND ROLL! PRINT AND ROLL! PRINT AND ROLL!

www.parallax.com

20 I/O Pin Data Acquisition Board

Easily Incorporate the Power of Your PC Into Any Project

RESISTORS Tutorial
Mini Sound Synthesizer
Commercial Manned Spaceflight
Announcing the BasicX - BX24-P
The fastest Basic programable microcontroller...
Just Got BETTER for the same price $49.95

Features: The BX24-P has a vast set of features, including a 16 byte floating point math library, COM ports, DACs, SPI bus, multi-tasking and networking, making it ideal for industrial control, robotics, automated testing equipment and home automation. BX24-P is able to monitor and control all your switches, timers, motors, sensors, relays, and more. Measuring just 2 5/8” x 7 3/4”, OCM can easily see the value of this tiny powerhouse.

Announcing SitePlayer Telnet™ Serial to Ethernet Data Converter

SPT1 - SitePlayer Telnet™ OEM module
ONLY $29.95

The SitePlayer Telnet module gives OEM’s and product designers the ability to quickly and cost-effectively bring their products to market.

Two SitePlayer Telnet systems can easily be configured to create a "Virtual Serial Cable".

Visit our website for a complete listing of our offers. We have over 5,000 electronic items on line at www.CircuitSpecialists.com. PC based data acquisition, industrial computers, leads of test equipment, timers, 12C’s, transmission, diodes, resistors, power supplies, motor control panels, connectors/miniature observation cameras, panel meters, chemicals for electronics, do-it-yourself printed circuit boards for PCB fabrication, educational DIY kits, cooling fans, heat shrink, cable ties & other wiring accessories.

온라인 고객 서비스를 제공합니다.
PLC on chip with BASIC

Advanced BASIC

Buffered RS232

Real ADC

PWM

More I/O

More Speed

Ladder Logic

PLC / Embedded controller

CUBLOC

is able to handle both BASIC and LADDER LOGIC through on-chip multi-tasking. CUBLOC supports Ladder Logic's weaknesses with BASIC language, something that can't be done with most PLCs.

- Use BASIC with Ladder Logic language
- Pin compatible with BGZ (CB220 only)
- 80KB Flash User Program memory
- 2-24KB Data memory
- BASIC Speed: 30,000 inst./Sec
- RS232, SPI, I2C, M00BUS
- Share Data memory: BASIC with Ladder Logic
- Free software / Technical support

CUTOUCH

ALL-IN-ONE Type Touch Panel Controller

CUBLOC module, Graphic LCD, and Touch Panel are fused into one product. With BASIC, you can create custom graphics and process touch input. With Ladder logic, real-time I/O and sequence processing can easily be implemented into your final product.

With 82 I/Os, 80KB program memory and 2 RS232 hardware independent ports, there is plenty of room for your development.

Log on to www.comfiletech.com for your FREE catalog!
COLUMNS DEPARTMENTS

08 TECKNOWLEDGEY 2006
Events, advances, and news from the electronics world.

12 STAMP APPLICATIONS
Wading the BS1 debug stream.

20 Q&A
Why loudspeakers are different, phone busy alert, T-Bird tail lights, and more.

26 THE DESIGN CYCLE
More fun with Freescale's microcontrollers.

84 LET'S GET TECHNICAL
Some fun with speech synthesis.

90 NEAR SPACE
A martian near space launch.

06 READER FEEDBACK

32 SHOWCASE

34 NEW PRODUCTS

62 NEWS BYTES

76 NV BOOKSTORE

96 CLASSIFIEDS

100 TECH FORUM

104 ELECTRO-NET

105 ADVERTISERS INDEX

Nuts & Volts (ISSN 1528-9885/CDN Pub Agree#40702530) is published monthly for $24.95 per year by T & L Publications, Inc., 430 Princeland Court, Corona, CA 92879. PERIODICALS POSTAGE PAID AT CORONA, CA AND AT ADDITIONAL MAILING OFFICES. POSTMASTER: Send address changes to Nuts & Volts, P.O. Box 15277, North Hollywood, CA 91615 or Station A, P.O. Box 54, Windsor ON N9A 6J5; cpcreturns@nutsvolts.com
Logic Analyzers

New LA-5000 Series

• 40 to 160 channels
• up to 500 MSa/s
• Variable Threshold
• 8 External Clocks
• 16 Level Triggering
• up to 512K samples/ch
• USB 2.0 and Parallel Interface
• Pattern Generator option

LA5240 (200MHz, 40CH) $1700 USB 2.0/Parallel
LA5280 (200MHz, 80CH) $2350 USB 2.0/Parallel
LA5540 (500MHz, 40CH) $2500 USB 2.0/Parallel
LA5580 (500MHz, 80CH) $3500 USB 2.0/Parallel
LA55160 (500MHz, 160CH) $7500 USB 2.0/Parallel

Small and portable LA-2124 $800

• Small, Lightweight and Portable
• Only 4 oz and 4.75” x 2.75” x 1”
• Parallel Port Interface to PC
• Trigger Out

Digital Oscilloscopes

• 2 Channel Digital Oscilloscope
• 100 MSa/s max single shot rate
• 32K samples per channel
• Advanced Triggering
• Only 9 oz and 6.3” x 3.75” x 1.25”

• Small, Lightweight, and Portable
• USB or Parallel Port interface
• Advanced Math
• FFT Spectrum Analyzer (option)

DSO-2102S $525
DSO-2102M $650
DSO-2102S(USB) $600
DSO-2102M(USB) $725

Link Instruments (973) 808-8990
17A Daniel Road East · Fairfield, NJ 07004 · Fax (973) 808-8786
www.Link-instruments.com
RAINDROPS KEEP FALLING...

I very much enjoyed the article on weather instruments by J. Ronald Eyton. In particular, the application of commonly-available construction items to make useful items. The remote temperature sensors are often put out without any thought to the environmental effects such as solar radiation. Your use of simple plastic shutters made a very nice temperature screen for these sensors. This is the best homemade screen I have seen and it even looks attractive in your garden.

I did have a few comments. The Stevenson screen (1869) is actually a double louvered screen. A single louvered screen like you have constructed is similar to the USWB cotton regions screen. Temperature varies with height and the normal height for temperature sensors should be mounted between 1.25 to 2 meters above the ground.

The “Rain Chime” along with your tipping bucket rain gauge would keep one well aware of the occurrence of any rainfall. This is a simple variation of the distrometer which is usually quite expensive. Another simple version is to use a block of epoxy about 3” in diameter with a piezoelectric element attached to the bottom. Each raindrop produces an output which is proportional to the size of the raindrop. From that information, the total rainfall can be crudely determined (±30%). While an interesting concept, your tipping bucket is more accurate (-5 to -10%). Keep up the good work.

Ken Devine
Aurora, Ontario, Canada

Continued on page 98

by J. Shuman

THE DEFINITIVE MOMENT TARZAN

SUBMITTED TO GPS TECHNOLOGY.
World’s Lowest Power MCU

It’s easy to rev up your application in minutes with the new eZ430-F2013, the world’s smallest complete development tool for only $20! The tool provides all hardware and software needed to evaluate the MSP430 or complete an entire F20xx project. The F20xx combines 16 MIPS performance, less than 1 microamp standby current, with your choice of analog converters - from a comparator, fast 10-bit ADC to 16-bit sigma-delta with integrated PGA - all in a package as tiny as 4x4 mm. Designing with the world’s lowest power MCU just got even easier.

New Low Pin-Count Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Program</th>
<th>RAM</th>
<th>SPI, PC</th>
<th>Analog</th>
<th>Price 1K USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP430F2001</td>
<td>1 KB</td>
<td>128 B</td>
<td></td>
<td>Comparator</td>
<td>$0.55</td>
</tr>
<tr>
<td>MSP430F2011</td>
<td>2 KB</td>
<td>128 B</td>
<td></td>
<td>Comparator</td>
<td>$0.70</td>
</tr>
<tr>
<td>MSP430F2002</td>
<td>1 KB</td>
<td>128 B</td>
<td>✓</td>
<td>10-bit ADC</td>
<td>$0.99</td>
</tr>
<tr>
<td>MSP430F2012</td>
<td>2 KB</td>
<td>128 B</td>
<td>✓</td>
<td>10-bit ADC</td>
<td>$1.15</td>
</tr>
<tr>
<td>MSP430F2003</td>
<td>1 KB</td>
<td>128 B</td>
<td>✓</td>
<td>16-bit ADC</td>
<td>$1.50</td>
</tr>
<tr>
<td>MSP430F2013</td>
<td>2 KB</td>
<td>128 B</td>
<td>✓</td>
<td>16-bit ADC</td>
<td>$1.65</td>
</tr>
</tbody>
</table>

Order Today! www.ti.com/ez430 800.477.8924, ext. 1313

Technology for Innovators™
NEW COHERENT LIGHT SOURCE DISCOVERED

For 50 years or so, the only way to generate coherent light has been through the use of a standard or free-electron laser, but researchers from Lawrence Livermore National Laboratory (www.llnl.gov) and the Massachusetts Institute of Technology (www.mit.edu) have discovered that common table salt is capable of emitting light in the range of 1 to 100 THz when subjected to a mechanical shock. Through a series of theoretical calculations and experimental simulations, scientists generated a mechanical shock wave inside a dielectric crystalline material, in this case NaCl. One would expect to see only incoherent photons and sparks emitted from the shocked crystal, but weak yet measurable coherent light emerged. The emission frequencies are determined by the shock speed and the lattice makeup of the crystal.

In the illustration, the left panel shows the emission of the light as a function of time while the shock is propagating. The right panel shows the generated radiation as a function of location within the shocked crystal, indicating that the 22 THz coherent signal is generated at the shock front (between the white dotted lines). According to Evan Reed, a postdoctoral fellow at LLNL, applications for this research are numerous, but the most immediate result may be a new diagnostic tool to determine the properties of shock waves.

GALEX MAPS OUT THE CARTWHEEL GALAXY

For nearly three years, the Galaxy Evolution Explorer (GALAX) space telescope has been in orbit, observing galaxies in ultraviolet light in an endeavor to gather 10 billion years of cosmic history. A recent subject of scrutiny is the Cartwheel galaxy, which is of particular interest because, about 100 million years ago, a smaller galaxy plunged through it, creating ripples of star formation.

This is shown in the false-color composite depiction, which is made up of images from the GALAX far-ultraviolet detector (blue), the Hubble Space Telescope’s wide field and planetary camera 2 in B-band visible light (green), the Spitzer Space Telescope’s infrared array camera at 8 microns (red), and the Chandra X-ray Observatory’s advanced CCD imaging spectrometer-S array instrument (purple).

Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be seen in this image to the bottom left of the ring — one as a neon blob and the other as a green spiral. For more information about the project and other images, visit www.galex.caltech.edu

WAVEGUIDE CONTROLS SPEED OF LIGHT

Late last year, IBM (www.ibm.com) announced the creation of a tiny device that was described as a major advancement toward the eventual use of light instead of electricity in
electronic components, potentially leading to vast improvements in the performance of computers and other electronic systems. Apparently, IBM scientists were able to slow light down to less than 1/300th of its usual speed by directing it down a carefully designed channel of perforated silicon called a "photonic crystal waveguide."

Furthermore, the design of the device allows the light's speed to be varied over a wide range simply by applying an electrical voltage to the waveguide. The device's small size, use of standard semiconductor materials, and ability to more closely control this "slow light" could make the technology useful for building ultra-compact optical communication circuits that are practical for integration into computer systems.

The waveguide is a thin slab of silicon punctuated by arrays of holes that scatter light. The pattern and size of the holes gives the material a very high refractive index, and the speed of light passing through it varies inversely with the refractive index. Heating the waveguide locally with a small electrical current alters the refractive index, allowing the speed of light to be tuned over a wide range with very low applied electric power.

According to IBM, the device could be applied to create a variety of nanophotonic components such as optical delay lines, optical buffers, and even optical memory, all of which would be useful in building computer systems that are joined by powerful optical communications networks.

COMPUTERS AND NETWORKING

INTEL-BASED MACS ARRIVE EARLY

Although not originally scheduled to appear for several more months, Apple Computer (www.apple.com) has unveiled two new machines that run the Mac OS® X operating system on Intel's Core™ Duo processor. The desktop machine looks like the original iMac, which puts the motherboard and other components behind the monitor, thus eliminating a separate box for the CPU.

According to the company, the new iMac delivers up to twice the performance as the previous version, which was based on the PowerPC chip. It includes a built-in iSight™ video camera for video conferencing and new versions of iPhoto®, iMovie®, iDVD®, and GarageBand™, plus a new website creation program called iWeb™.

Standard hardware features include a SuperDrive™ for burning DVDs, 512 MB of 667 MHz DDR2 SDRAM (expandable to 2 GB), a 500 GB hard drive, built-in Ethernet and wireless networking capability, and a range of other amenities. The new iMac starts at $1,299 for a 1.83 GHz model with a 17-inch LCD display. For $1,699, you can step up to a 2.0 GHz processor and a 20-inch display.

Also introduced was the MacBook Pro — an Intel-based laptop with a 15.4-inch display and a price tag starting at $1,999. It is said to be as much as five times as powerful as existing PowerBooks, which, due to the relatively high power consumption of the G5 chip, never got past the G4 level.

FLASH DRIVES FEATURE FILE DISPLAY

Featuring compact size and pretty decent storage capacity, USB 2.0 Flash/jump drives have grown increasingly popular for transporting office files, school notes, music, and other data from one computer to another. But, until recently, there was no way to tell what was stored in the drive unless it was connected to a computer.

A new series of devices from Royal Consumer Information Products (www.royal.com) solves that problem with a built-in, scrolling two-line display. Called the EZVue Vista series, the patent-pending drives allow you to see directories and subdirectories, and scrolling to the right allows you to see the complete file name, extensions, and creation dates. The drives are both PC and Mac compatible and come with capacities ranging from 128 MB to 1 GB and prices from $49.99 to $149.99.

NEW SEARCH ENGINE UP AND RUNNING

You’re probably thinking, sure, just what the world needs — another search engine. However, Tyloon (www.tyloon.com) has added an interesting twist in that it is multilingual, offering what is billed as the first and only “online yellow pages and local search engine” that allows visitors, using keywords in any of four languages (English, Spanish, simplified Chinese, and traditional Chinese), or mixed keywords.
in those languages, to search the same 15-million-name US business database.

According to the company, there are 1.6 billion people speaking Chinese and Spanish all around the world, including nearly 25 percent of the US population. Tyloon’s “patent-pending search system” allows visitors to not only browse and/or search listed business information in their own language, but also to freely change the current viewing page to a different language without going to the home page of a language. This is intended to make it much easier for non-English speaking people to obtain and understand information about American businesses.

CIRCUITS AND DEVICES

USB INTERNET SPEAKER PHONE UNVEILED

Introduced at the 2006 Consumer Electronics Show and set to be available by the time you read this is the Skype-certified USR9610 USB Internet Speakerphone from USRobotics (www.usr.com). Featuring echo cancellation technology, volume and mute buttons, and full-duplex operation, the unit works like a traditional speakerphone, but eliminates the costs of a long distance call. The speakerphone is lightweight, making it convenient for business travelers, and it works with free software available from Skype (www.skype.com). The USR9610 lists for $49.95.

RADIATION-HARDENED CONVERTER INTRODUCED

On the off chance that you plan to build equipment for use in satellite applications, including low Earth orbit (LEO), middle Earth orbit (MEO), geostationary Earth orbit (GEO), or long scientific missions, you might be particularly interested in the LS series of low-voltage single- and dual-output DC-DC converters from International Rectifier (www.irf.com).

The modules, which include an internal MIL-STD-461C CE03-compliant EMI filter, deliver isolated output voltages from 1.5V to 150V, with typical efficiency ratings up to 83 percent. The devices are characterized with a total ionizing dose (TID) of greater than 100K Rad(Si) and single event effect (SEE) linear energy transfer (LET) of heavy ions greater than 82 MeV·cm²/mg, in accordance with MIL-STD-883. The fixed-frequency, single-ended forward converters switch at 575 kHz. Other features include 18V to 40V input range, magnetically coupled feedback to ensure optimum cross-regulation when the loads are unbalanced, adjustable output voltage, and a device weight of less than 85 g. Of course, the average Nuts & Volts reader is pretty unlikely to ever have a need for such a device, but it is somewhat intriguing to know that they cost $6,500 each.

INDUSTRY AND THE PROFESSION

HYDROGEN REFUELING STATION PLANNED

If you drive a hydrogen-powered vehicle and live near Minot, ND (about 110 miles from Bismarck), you’re in luck. Hydrogenics Corp. (www.hydrogenics.com) recently announced that the company was awarded a contract by Basin Electric Power Cooperative, or Bismarck, to supply an electrolyzer-based hydrogen refueling station for installation in Minot.

In addition to the core electrolyzer module, Hydrogenics is supplying compression, storage, and dispenser equipment as part of the contract. The station, scheduled for installation later this year, will be one of the first United States-based hydrogen fueling stations to use electricity from a wind power resource to produce hydrogen from water, in this case using electricity generated by wind resources either owned or contracted by Basin Electric.

The hydrogen produced will be used to refuel hydrogen-powered vehicles, demonstrating a linkage between wind power and vehicle refueling. It is intended to demonstrate the ability and practicality of making and using hydrogen energy with zero carbon emissions, using excess wind power that might otherwise be underutilized.

IPOD LOADING SERVICE LAUNCHED

If you have a serious desire to watch full-length movies on your iPod, and if you live in one of the cities where LoadPod (www.loadpod.com) has an office (New York City, Chicago, Fort Lauderdale, Miami, Orlando, Philadelphia, San Francisco, and Seattle), you’re in luck. The company will show up at your home and office, load it full of movies that have been encoded into the 320 by 240 display format, and return the iPod to you. The only catch appears to be the price: $34.95 each if you buy 5 to 10, $31.95 each for 11 to 20, and $27.95 each for 21 to 40.
Small in size but packed with powerful features, Rabbit Semiconductor's low-cost RabbitCore modules give designers a complete package for custom embedded control and communication applications.

RCM3750 RabbitCore
- Powerful networking core module
- 10/100 Base-T Ethernet
- 1MB Serial Flash
- 33 Digital I/O

RCM3365 RabbitCore
- Removable memory core module
- ‘Hot-swappable’ card socket
- 16 MB NAND Flash
- 52 Digital I/O

RCM3600 RabbitCore
- Low-cost & compact core module
- 22.1 MHz clock
- 2.10” x 1.20” x 0.62”
- 33 Digital I/O

Rabbit development kits
provide a complete embedded design system in a low-cost package. Each kit contains a RabbitCore, a full-version of Dynamic C®, a development board, documentation and programming tools.

Free Design Book With Kit
It’s easy to get started with a complete development kit that includes a RabbitCore and development tools. For a limited time get a FREE Rabbit design book with your kit. www.GetItDoneWithRabbit.com

RabbitCores From $22
qty. 1000

Kits From $129

Visit Us at ESC San Jose Booth 1942

2900 Spafford Street, Davis, CA 95616 Tel 530.757.8400

Solutions That Work
For those of you that have been around for a long time, or have taken the time to go back through past issues of this column, you may remember that Scott Edwards tackled this subject back in October of 1996. Scott was able to (correctly) deduce most of the aspects of the BS1 DEBUG stream through empirical observation. I have the advantage of working “on the inside” and, after spending an hour chatting with our compiler engineer, it’s my intent to show you how to use the BS1’s DEBUG output in your PC projects.

THE DIRT ON BS1 DEBUG

As Scott pointed out, any time you have a DEBUG instruction in a BS1 program, everything (all variables) gets sent to the PC. This may seem odd at first, and yet there is a perfectly logical explanation: the BS1 only has 256 bytes of program memory. As we all know, that’s not a lot of space and anything that can be done to conserve it is important. Chip — the BASIC Stamp’s inventor — came up with an interesting solution that can be demonstrated with a simple program. Enter this program in your BASIC Stamp IDE and check the Memory Map:

```
' {$STAMP BS1}
' {$PBASIC 1.0}
SYMBOL count = B2
Main:
FOR count = 1 TO 10
  DEBUG #count, CR
  PAUSE 300
NEXT
GOTO Main
```

If you typed it in just like the listing, you should see that the last location used is $EF, so the program consumes 17 bytes of EEPROM. Okay, now modify the DEBUG line like this and open the Memory Map again:

```
' {$STAMP BS1}
' {$PBASIC 1.0}
SYMBOL count = B2
Main:
FOR count = 1 TO 10
  DEBUG "The value of 'count' is: ", #count, CR
  PAUSE 300
NEXT
GOTO Main
```

Again, the last location used is $EF, so the program consumes 17 bytes of EEPROM. Okay, now modify the DEBUG line like this and open the Memory Map again:

```
' {$STAMP BS1}
' {$PBASIC 1.0}
SYMBOL count = B2
Main:
FOR count = 1 TO 10
  DEBUG "The value of 'count' is: ", #count, CR
  PAUSE 300
NEXT
GOTO Main
```

This is the secret: That big string of characters we added to the program does not get stored inside the BS1, it’s actually stored in a table inside the BASIC Stamp IDE. The reason for this is that we normally use DEBUG when we’re connected to the IDE, so it made more sense to store the strings there rather than in the BS1 where they would very quickly eat up our precious program memory.

When we compile and download a program to our BS1, the editor creates a special table for all the occurrences of DEBUG. The table is indexed by the program counter (location) where the DEBUG instruction is placed. Part of
the **DEBUG** packet is the program counter. When the editor receives a **DEBUG** packet, it grabs the program counter first and then checks the table to see that specific **DEBUG** instruction is to be formatted for display.

Okay, let’s talk about the **DEBUG** packet. Most of the time, it will be 97 bytes long. The first part of the packet is [usually] 64 bytes — this is for synchronization with the PC, and all the sync bytes are $F0. Remember that the BS1 was designed long before Windows and the original programming was via bit-banged serial on the PC’s printer port (the printer port was used because of its TTL-level I/O, which meant the connection could be simple and direct — no level shifting required). After the sync bytes, we’ll find either a $5A (this is a **DEBUG** packet) or $A5 (this is a Connect packet). What follows is a 32-byte data dump of the PIC16C56’s (host micro) RAM space.

You may be wondering about the Connect packet. If you look at the programming circuit, there are only two lines (serial in and serial out) for programming. Unlike its big brother — the BS2 — the BS1 cannot be reset by the BASIC Stamp IDE. So, what the BS1 does is interleave Connect packets with the **DEBUG** output, when the IDE sees a Connect packet, it can download a new program. This explains why, when programming the BS1, we’re occasionally forced to wait a bit — the editor is holding for a Connect packet.

In Scott’s article, he said that he had occasional connection errors, and I think the reason why is that the sync section can actually be up to 128 bytes long — though I’ve not seen this in any of my own experiments. That said, we still have to deal with that if it occurs. Our basic strategy for using the BS1 **DEBUG** output in a PC program is simple: We’ll program the BS1 with a **DEBUG** instruction, and then open the serial port used to program the BS1 and collect incoming bytes. Once we have enough bytes to constitute a **DEBUG** packet, we’ll look for a bunch of sync bytes followed by $5A. If we find that, we’ll grab the next 32 bytes and parse the variable values out of it. Ready? Let’s give it a shot.

BS1 **DEBUG** TO PC

I’m most comfortable using Visual Basic for my PC programming chores, but if you’re using another product (especially REALbasic), you should be able to port this code pretty easy. As with most of my projects, I definitely employ the KISS principle here. The first thing to do, of course, is select an open serial port. One thing to remember is that we can’t open a port in use, so after we’ve downloaded a program to the BS1, we need to close the IDE’s Debug Terminal window to free the port. Here’s the bit of code that sets us up and opens the serial port with VB:

```vbnet
With MSComm1
    .CommPort = bs1PortNum
    .DTREnable = True
    .RTSEnable = False
    .Settings = "4800,n,8,1"
    .RThreshold = 1
    .PortOpen = True
End With
```

For those of you using a different language, here’s what all that means: We set the port to 4800 baud, N81-style serial, we turn on the DTR line, make sure the RTS line is off, and set the serial object to fire an event any time a character shows up. When you open the full listing, you’ll see that the variable called `bs1PortNum` comes from a simple port selection dialog.

With the port open and a BS1 attached, bytes should start streaming in. The serial port **OnComm()** event is really simple.

```vbnet
Private Sub MSComm1_OnComm()
    If (MSComm1.InBufferCount >= 97) Then
        bs1Buffer = bs1Buffer & MSComm1.Input
    End If
End Sub
```

As you can see, anytime a character shows up, we check to see if we have enough bytes in the buffer to constitute a valid **DEBUG** packet. If we do, we append the contents of the serial buffer to an internal variable — `bs1Buffer` (a string) — for our processing. Note that this action empties the contents of the PC serial buffer.

Since Visual Basic is event-based, we need some event to fire in order to check the size of `bs1Buffer` to see if it needs processing. Again, let’s keep things very simple: We’ll use a Timer set to trip every 50 milliseconds when the serial port is open.

```vbnet
Private Sub Timer1_Timer()
    If Len(bs1Buffer) >= 97 Then
        Parse_Debug_Packet
        Update_Display
    End If
End Sub
```

We could, of course, use any event — a button press,
for example — but if the BS1 is constantly streaming data, the serial buffer could be overrun. Since a BS1 DEBUG takes about 200 milliseconds (97 bytes at 4800 baud), checking our buffer anytime under this window will make sure the program responds quickly to the output from the BS1. Okay, if we have enough bytes to consider, it’s time to get down to the nitty-gritty and fish the BS1 variables out of the DEBUG stream (Oi vai, that was corny).

Private Sub Parse_Debug_Packet()
 Dim syncStr As String
 Dim foundSync As Long
 Dim checkLen As Long
 Dim idx As Byte

 syncStr = String$(17, &HF0) & String(1, &H5A)
 foundSync = InStr(1, bs1Buffer, syncStr, vbTextCompare)

 If (foundSync > 0) Then
 checkLen = Len(bs1Buffer) - (foundSync + 18)
 ' do we have the whole packet?
 If (checkLen >= 32) Then
 bs1Buffer = Mid$(bs1Buffer, (foundSync + 18))
 For idx = 0 To 6
 bs1IORegs(idx) = Asc(Mid$(bs1Buffer, 7, 1))
 Next
 For idx = 0 To 13
 bs1IORegs(idx) = Asc(Mid$(bs1Buffer, 17, 1))
 Next
 For idx = 0 To 18
 bs1IORegs(idx) = Asc(Mid$(bs1Buffer, 18, 1))
 Next
 bs1Buffer = Mid$(bs1Buffer, (foundSync + 18))
 End If
 End If
End Sub

This may look a little tricky at first, but really — it’s not that bad. One of the nice things about using the serial port object in VB is that the buffer is treated like a string; this fact lets us use some of the neat string functions of Visual Basic. We see that first with the creation of syncStr. On the advice of Parallax’s compiler engineer, Jeff, we want to look for at least 17 sync bytes (SF0) followed by the $5A packet descriptor. This is pretty simple using VB’s String$() function. With that string created, we can use the Instr() function to determine if the DEBUG sync header exists in the buffer. If not (could have been a Connect packet), we simply exit the subroutine. If the sync header is present, then we can parse out the variables.

Before we attempt to do the parsing, however, we need to ensure that we’ve got the entire packet. It is possible that the serial port got closed in the middle of the BS1 DEBUG output and we don’t have the whole thing. It’s a simple matter to check — we look at the starting position of the sync string in the buffer, move forward 18 bytes (to account for the sync string), and then check to see if there are at least 32 bytes left in the buffer. If the answer is yes, we move on with the parsing.

We’ll start by using the Mid$(()) function to trim away the leading sync and packet descriptor bytes. After that, it’s a simple matter of pulling the variables from their respective positions in the stream. In this program, we have three arrays: bs1IORegs() which holds the DIRS and PINS (one for Outs, one for Ins) values, bs1ByteRegs() which holds the values of BS1 variables B0-B13, and bs1WordRegs() which is actually assembled from the values of bs1ByteRegs().

Of particular note is the bs1WordRegs() which is an array of Longs. In VB, an integer is a 16-bit signed value, so assembling the unsigned word variables from the byte variables requires more bits. Longs use four bytes so that gives us the space to handle any value in a BS1 word variable. As you can see, we have to use the CLng() (convert to Long) function to ensure the value is correctly calculated.

Note that when accessing strings in VB, the first byte is in position 1. Knowing this, we can see that the PINS inputs are in position 7, the PINS outputs are in position 17, the DIRS register is in position 18, and, finally, B0-B13 are located in positions 19-32. These positions correspond with their locations in the PIC RAM space.

Okay, once the current values are parsed out, we trim the packet from the front end of the buffer and move on to other things. See, it’s not that bad.

So, what do we do now? Well, while developing the program, I thought it might be useful to create a little utility that displays the BS1 DEBUG data. A screen shot of that program is shown in Figure 1. For those of you who have used VB, you know that VB doesn’t know how to display binary variables — the solution is a simple custom function that takes a value and converts it to a binary string:

Private Function BinStr(value As Long, width As Byte) As String
 Dim tmpBin As String
 Dim testBit As Long
 Dim idx As Byte
 Dim value As Long

 tmpBin = “”
 value = value Mod 2 ^ width
 testBit = 2 ^ width
 For idx = 1 To width
 If (value >= testBit) Then
 tmpBin = tmpBin & “1”
 value = value - testBit
 testBit = testBit \
 Mod (2 ^ (width - idx))
 Else
 tmpBin = tmpBin & “0”
 End If
 Next
 BinStr = tmpBin
End Function

This works similar to the BIN modifiers in the BS2. If, for example, we wanted to display the lowest four bits of a value, we would use the function like this:

lblLedStatus.Caption = BinStr(ledStatus, 4)

The routine is pretty simple — it calculates the next-highest bit value and truncates any unneeded bits from the input with Mod (modulus). Then, it’s a simple matter of looping through each bit position to see if it’s set. This is done mathematically instead of logically, it’s just simpler that way in VB. The result is a binary string representation of our
value. In the full program listing, you’ll find a similar function for converting values to fixed-width hexadecimal strings.

You can use the BS1 DEBUG Viewer application with any BS1 program that has at least one DEBUG instruction. One of the interesting things you’ll see is the manipulation of W6 by a program that uses GOSUB — W6 is used as the RETURN stack. You’ll also see that the PINS outputs will affect the corresponding PINS inputs.

SHOW ME THE TEMPERATURE

As most of you know, I am freakishly sensitive to the temperature of my environment, hence, I’m constantly looking at thermometers and adjusting the thermostat. Perhaps I need professional help ... well, until that day, I decided to make it easier to check the temperature where I spend most of my day — in front of my computer.

What I did is take an eight-pin socket and extend the legs with wire and a 1K resistor to match our standard DS1620 circuit, as shown in Figure 2. I popped a DS1620 into the socket and plugged my temperature “spider” into the USB-BS1. Figure 3 shows the contraption plugged into my PC’s USB port.

From there, it was a very simple matter to gut and convert the BS1 DEBUG Viewer application to display temperature. Since we’ve used the DS1620 so many times in the past, I’m not going to go through all the details — I just want to cover shifting data out and in with the BS1.

The BS1 does not have the BS2’s SHIFTOUT and SHIFTIN instructions, so we’re forced to synthesize these in code. It’s really pretty simple. One of the things you’ll notice about my BS1 programs is that I always start assigning variables at B2 (or W1). The reason for this is that I want to leave B0 and B1 (W0) free in case I need bit-level access later (W0 is the only variable that allows bit-level access). That is the case with shifting subroutines; let’s have a look.

Here’s a subroutine that will shift an eight-bit value to the DS1620, LSB first:

```markdown
Temp_In:
DIRS = %00000110\n tempC = 0
Clock = IsHigh
FOR shift = 1 TO 9
  tempC = tempC / 2
  Clock = IsLow
  BIT8 = DQ
  Clock = IsHigh
NEXT
tempHi = -sign
RETURN
```

The key section here is the middle of the FOR-NEXT loop. Notice that DQ (the output pin to the DS1620) is set to the value of BIT0. This is the LSB of B0 which, in this program, is aliased as dByte. After placing the bit on the DQ line, the clock line is blipped with PULSOUT, and then the value of dByte is divided by two. Dividing by two is the same as shifting right by one bit, so this process puts the next highest bit into the BIT0 position.

Coding to shift bits in is similar. In the DS1620, the temperature returned as a nine-bit, two’s-complement (if negative) value, with the MSB is used as the sign (0 for positive, 1 for negative).
do is shift the result variable (tempC) to the right, the clock gets blipped, and then we collect a bit from DQ and put it into the MSB position (BIT8). This seems odd at first, but after you work your way through it makes good sense.

Since we only get nine bits back from the DS1620, but need all 16 bits of a word to be properly configured to designate a negative value, the final line of [working] code handles this neatly for us. And (big bonus here) Visual Basic understands PBASIC negative values. This makes the temperature display program a breeze to code. Here’s the working part:

```vbnet
Private Sub Timer1_Timer()
    If Len(bs1Buffer) >= 97 Then
        Parse_Debug_Packet
        tempC = CSng(bs1WordRegs(0)) / 2
        tempF = tempC * 9 / 5 + 32
        Update_Display
    End If
End Sub
```

How simple is that? After we get and parse a DEBUG packet, the value of W0 (this is what we use to return the raw value from the DS1620) is converted to floating point with the CSng() function and the rest is automatic. Remember that the DS1620 returns the temperature in units of 0.5 degrees Celsius, so we have to divide by two to get the correct value. Converting to Fahrenheit requires just a bit of high school math. I kept the program very simple — you can see the output in Figure 4.

One last note on using the BS1 — there is no way to get information from our PC application to the BS1 through the programming port. If that limitation is not a barrier, you now have the expertise and the means to use the BS1 for getting information into your PC application.

And, finally, my friends at Nuts & Volts have asked me to put additional focus on completed projects. That’s okay by me, and I’d really like to do projects that many people will find interesting and useful. I’m currently working on a six-digit, 13-segment display using an exciting new product that Parallax will be announcing shortly. What kind of projects would you like to see? Please email your ideas, and I’ll see what I can do about turning them into full-blown projects.

Until next time, Happy St. Patrick’s Day and Happy Stamping! NV

Seetron Serial LCDs

Interface a sharp LCD display to your BASIC Stamp® or other micro-controller project with ease. No-solder wiring harnesses and easy mounting kits available too. See www.seetron.com today.

- **3.2 x 1.4 in. supertwist LCD**
 - 2400/9600 baud serial
 - Low (<2mA) current draw
 - Great with BASIC Stamps®

- **3.2 x 2 in. backlit LCD**
 - 1200-9600 baud serial
 - Advanced protocol, 4 switch inputs
 - EEPROM for configuration settings
 - Favorite for OEM applications

- **3.2 x 1.4 in. graphics LCD**
 - 2400/9600 baud serial
 - Font and 15 screens in EEPROM
 - Easily draw points, lines, screens

- **3 x 2 in. supertwist LCD**
 - 1200-9600 baud serial
 - ESD-protected, 4x4 keypad input
 - Store up to 95 screens in EEPROM

JON WILLIAMS

jwilliams@parallax.com

PARALLAX, INC.

www.parallax.com

Interface a sharp LCD display to your BASIC Stamp® or other micro-controller project with ease. No-solder wiring harnesses and easy mounting kits available too. See www.seetron.com today.

- **3.2 x 1.4 in. supertwist LCD**
 - 2400/9600 baud serial
 - Low (<2mA) current draw
 - Great with BASIC Stamps®

- **3.2 x 2 in. backlit LCD**
 - 1200-9600 baud serial
 - Advanced protocol, 4 switch inputs
 - EEPROM for configuration settings
 - Favorite for OEM applications

- **3.2 x 1.4 in. graphics LCD**
 - 2400/9600 baud serial
 - Font and 15 screens in EEPROM
 - Easily draw points, lines, screens

- **3 x 2 in. supertwist LCD**
 - 1200-9600 baud serial
 - ESD-protected, 4x4 keypad input
 - Store up to 95 screens in EEPROM

Scott Edwards Electronics, Inc.

1939 S. Frontage Rd. #F, Sierra Vista, AZ 85635
phone 520-459-4802 • fax 520-459-0623
www.seetron.com • sales@seetron.com

More displays available, including bright VFDs. See www.seetron.com
We Bring It All Together
 Pricing/Selection

ILC-535
$129.95
- 480 TVL of High Resolution
- 35 IR LEDs - Effective IR Distance>90 Feet!
- Back-Light Compensation (BLC)
- Submersible - IP68 Rated
- 6.0mm Lens

DVRM-01
$449.95
(No HDD)
- Built-In Audio
- Easy Installation
- Real-Time Digital Recording - 4 Camera Input
- LAN Connection to View from Any Location
- Easily Connects to most TV's & Monitors

ILC-535H
$199.95
- 540 TVL of High Resolution
- 35 IR LEDs (90ft)
- Back-Light Compensation
- Submersible - IP 68 Rated
- 4.3mm Lens

ILC-514
$99.95
1/4" Sony Weather Resistant
Lipstick Camera, 420TVL, 4.3mm

DX-4000AI
$119.95
- 1/3" Sony HAD Ultra High Sensitivity CCD sensor chip
- 420 TV Lines of High Resolution
- Super Tough Aluminum Body
- 0.05 Lux Low for a Variety of Applications
- Compact/Sleek Design

VPD-30
$99.95
- 1/3" B/W Vandal-Proof Camera
- 420 TVL of High Resolution
- 4.3mm Super-Cone Pin-Hole Lens
- 0.05 Low Lux

WP-350C
$99.95
- 1/3" High-Res Color Lipstick Camera
- Day/Night & Weather-Resistant
- 420 TVL Resolution
- 3.6mm Lens, 0.1 Low Lux

Affordable 4-Channel Digital Video Recorder

EDVR-4000
$159.95
(No HDD)
- 4-Channel Recording
- 30fps Recording Frame Rate in a Compact Size
- Two internal hard drives bays allow for up to 1000GB (1 TB) capacity!

EDVR-4120 (1200GB HDD) $269.90
EDVR-4160 (1600GB HDD) $289.90
EDVR-4250 (2500GB HDD) $339.90
EDVR-4500 (5000GB HDD) $589.90

23 years of 1983-2006

Toll Free
800-308-6456

Local
678-405-0089

Prices Subject to Change Without Notice

Video Security From The Professionals at PolarisUSA
PolarisUSA Video, Inc. · 3158 Process Drive · Norcross, GA · 30071
Actual Product May Vary From Images
Mini-Kits... The Building Blocks!

<table>
<thead>
<tr>
<th>Kit Name</th>
<th>Category</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDF1 Dripping Faucet Kit</td>
<td>Dripping Faucet</td>
<td>$9.95</td>
</tr>
<tr>
<td>BL1 LED Blinky</td>
<td>LED Blinky</td>
<td>$7.95</td>
</tr>
<tr>
<td>BS2C Bullshooter-II Kit</td>
<td>Tone Grabber</td>
<td>$69.95</td>
</tr>
<tr>
<td>IG7 Ion Gen Kit</td>
<td>HV Ion Generator</td>
<td>$64.95</td>
</tr>
<tr>
<td>TS1 Touch Switch Kit</td>
<td>Touch Switch</td>
<td>$9.95</td>
</tr>
<tr>
<td>UT5 Universal Timer Kit</td>
<td>Universal Timer</td>
<td>$9.95</td>
</tr>
<tr>
<td>VS1 Voice Switch Kit</td>
<td>Voice Switch</td>
<td>$9.95</td>
</tr>
<tr>
<td>TN3 Tone Encoder/Decoder</td>
<td>Tone Encoder/Decoder</td>
<td>$9.95</td>
</tr>
<tr>
<td>SL1 Solar Light Show Kit</td>
<td>Solar Light Show</td>
<td>$49.95</td>
</tr>
<tr>
<td>CRB Custom Case Kit</td>
<td>Custom Case</td>
<td>$29.95</td>
</tr>
<tr>
<td>CL1 Club Lamp Kit</td>
<td>Club Lamp</td>
<td>$24.95</td>
</tr>
<tr>
<td>LL1 Laser Pointer Kit</td>
<td>Laser Pointer</td>
<td>$39.95</td>
</tr>
<tr>
<td>LD1 Laser Diode Kit</td>
<td>Laser Diode</td>
<td>$34.95</td>
</tr>
<tr>
<td>CRB Custom Case Kit</td>
<td>Custom Case</td>
<td>$29.95</td>
</tr>
<tr>
<td>TG2C Tone Grabber Kit</td>
<td>Tone Grabber</td>
<td>$69.95</td>
</tr>
<tr>
<td>GS1 Green Giant Kit</td>
<td>Green Giant</td>
<td>$29.95</td>
</tr>
<tr>
<td>TPB1 Palm Board Kit</td>
<td>Palm Board</td>
<td>$24.95</td>
</tr>
<tr>
<td>UT5 Universal Timer Kit</td>
<td>Universal Timer</td>
<td>$9.95</td>
</tr>
<tr>
<td>VS1 Voice Switch Kit</td>
<td>Voice Switch</td>
<td>$9.95</td>
</tr>
<tr>
<td>TN3 Tone Encoder/Decoder</td>
<td>Tone Encoder/Decoder</td>
<td>$9.95</td>
</tr>
<tr>
<td>SL1 Solar Light Show Kit</td>
<td>Solar Light Show</td>
<td>$49.95</td>
</tr>
<tr>
<td>CRB Custom Case Kit</td>
<td>Custom Case</td>
<td>$29.95</td>
</tr>
<tr>
<td>TG2C Tone Grabber Kit</td>
<td>Tone Grabber</td>
<td>$69.95</td>
</tr>
<tr>
<td>GS1 Green Giant Kit</td>
<td>Green Giant</td>
<td>$29.95</td>
</tr>
<tr>
<td>TPB1 Palm Board Kit</td>
<td>Palm Board</td>
<td>$24.95</td>
</tr>
</tbody>
</table>

Did You Know...

- **Did You Know...**
- **The Solution!**

Visit www.ramseykits.com for giveaways and all the information you ever needed!
What’s New For 2006!
The Newest And Neatest Goodies!

Digital FM Stereo Transmitters
✔ Monitors the entire aircraft band without tuning!
✔ Passive design, can be used on aircraft, no local oscillator generates or creates any interference!
✔ Great for air shows!
✔ Patented circuit and design!

For decades we have been known for our novel and creative product designs. Well, check this one out! An aircraft receiver that receives all nearby traffic without any tuning. It gets better... there is no local oscillator so it doesn’t produce, and can’t produce, any interference associated with all other receivers with an LO. That means you can use it onboard aircraft as a passive device! And what will you hear? The closest and strongest traffic, mainly, the one you’re sitting in! How unique is this? We have a patent on it, and that says it all!

This broadband radio monitors transmissions over the entire aircraft band of 118-136 MHz. The way it works is simple. Strongest man wins! The strongest signal within the pass band of the radio will be heard. And unlike the FM capture effect, multiple aircraft signals will be heard simultaneously with the strongest one the loudest! Air-To-Air traffic that targets, the aircraft closest to you, and the towers closest to you! All without any tuning or looking up frequencies! So, where would this come in handy?

1. At an air show! Just imagine listening to all the traffic as it happens.
2. Onboard aircraft to listen to that aircraft and associated control towers.
3. Private pilots to monitor ATIS and other field traffic during preflight activities (saves Hobbs time!)
4. Commercial pilots to monitor ATIS and other field traffic as needed at their convenience.
5. General aircraft monitoring enthusiasts.

Wait, you can’t use a radio receiver onboard aircraft because they contain a local oscillator that could generate interfering signals.

We have you covered on that one too! The ABM1 has no local oscillator, it doesn’t contain a local oscillator, you can’t generate any RF whatsoever! That’s why our patent abstract is titled “Aircraft band radio receiver which does not radiate interference”. Available as a through-hole hobby kit or a factory assembled & tested SMT version.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM1</td>
<td>Passive Air Band Monitor Kit</td>
<td>$89.95</td>
</tr>
<tr>
<td>ABM1WT</td>
<td>Passive Air Band Monitor, Factory Assembled & Tested</td>
<td>$159.95</td>
</tr>
</tbody>
</table>

Hand Held Wind Speed Anemometer
✔ Displays instantaneous wind speed!
✔ Stores & records maximum gusts and averages!
✔ Displays temperature and wind chill in °F or °C!
✔ Beaufort wind scale bargraph!

We have all seen them on TV... the professional weather talent (now known as meteorologists) standing in the middle of the hurricane report holding up their wind meter clocking the fastest wind gusts. Usually that’s just before they get blown to the ground along with their producer and camera crew! Well now you can have the same professional wind speed meter on a hobbyist budget! Besides displaying the realtime instantaneous wind speed in your choice of MPH, KM/H, M/S, or Knots, it also stores and records the maximum gust AND average since it was powered up! In addition, realtime wind speed is also displayed on a Beaufort wind scale ranging between 0 and 12. Housed in a rugged, weather resistant case and includes a neck strap for easy carrying. Runs on a single lithium button cell that is included.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA5010</td>
<td>Handheld Wind Speed Anemometer</td>
<td>$49.95</td>
</tr>
</tbody>
</table>

High Resolution Air Pressure/Elevation Sensor
✔ Pressure resolution greater than 0.0001 kPa!
✔ 128 x 64 pixel graphical display!
✔ Shows realtime elevation & pressure changes!
✔ USB computer interface for easy data transfer!
✔ 13,824 samples of FLASH storage available!
✔ Special pilots menu
✔ Multiple built-in alarms!

“The Most Advanced And Accurate Ramsey Kit To Date!”

We really did it this time! The UP24 is one of our most advanced kits to date, and an absolute MUST for anyone serious about the environment around us! But the applications only begin there.

The unique design allows unprecedented super high resolution measurements and display of absolute atmospheric air pressure. The UP24 senses ambient air pressure and critically calculates elevation with unheard of precision! Using a highly sensitive sensor and 24-bit A/D converter in a special noise-immune design, less than 1/3 of an inch of elevation resolution is achieved! Yes, we said 1/3 of an inch! This high accuracy and resolution opens the door to a host of sophisticated environmental air pressure monitoring applications.

Unlike your normal run-of-the-mill barometer, air pressure is sensed in Pa’s or KPa’s. What are those you may ask? Pascals or kiloPascals. However, don’t be afraid, for your convenience, and to fit any application you may have, it is also displayed in millibars, bars, PSI, atmospheres, millimeters of mercury, inches of mercury, and feet of water! Take your pick! The range of the UP24 is 15KPa to 155KPa.

We’ve talked about air pressure, now let’s talk about elevation! The incredibly precise 24-bit A/D converter in the UP24 looks at the air pressure and converts it to elevation above sea level. In both graph and test, the elevation is displayed to a resolution of 1/3”! Yes, I said 1/3 of an inch! The applications for the super accurate elevation meter are endless. From watching and recording elevations during hiking trips to measuring and recording the wave heights on boats! Let your imagination take over from there!

What if you’re in the field and you want to save data captured in your UP24? The built-in FLASH storage provides 13,824 samples of storage. Then you can transfer your data to your PC with a standard USB interface.

While the UP24 is small enough to be kept in your coat pocket it boasts a large 2.78” x 1.53” 128x64 pixel LCD display screen making viewing easy. Display modes include both realtime pressure and elevation graph displays as well as pressure and elevation statistics. There are 12 user selectable sample rates from 1/10th of a second all the way up to every 15 minutes.

 Needless to say, you cannot put all the specs and screen shots in the limited space of this ad! Visit our website at www.ramseykits.com for full specs and information.

What if you’re looking for the finest air pressure and elevation sensor, check out the UP24, truly a marvel in the industry! Available in a ready-to-build kit or a factory assembled and tested version. Check our website at www.ramseykits.com for more information!

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP24</td>
<td>High Resolution Air Pressure/Elevation Sensor Kit</td>
<td>$239.95</td>
</tr>
<tr>
<td>UP24W</td>
<td>Factory Assembled and Tested UP24</td>
<td>$299.95</td>
</tr>
<tr>
<td>AC125</td>
<td>110VAC Power Adapter/Charger</td>
<td>$9.95</td>
</tr>
</tbody>
</table>

More than just friendly on-line ordering!
 Clearance Specials, Ramsey Museum, User Forums, Dealer Information, FAQ’s, FCC Info, Kit Building Guides, Downloads, Live Weather, Live Webcam, and much more!

www.ramseykits.com

800-446-2295

Where Electronics Is Always Fun!
✔ Build It!
✔ Learn It!
✔ Achieve It!
✔ Enjoy It!

www.ramseykits.com

590 Fishers Station Drive
Victor, NY 14564
(800) 446-2295
(585) 924-4560

Prices, availability, and specifications are subject to change. Not responsible for typos, stupid, random, blind, or inappropriate ad placement. Permission of this Springtime ad will not guarantee that the snow stops! Robin got her ad copy early for a change! Visit www.ramseykits.com for the latest pricing, specials, terms and conditions. Copyright 2006 Ramsey Electronics, Inc...to there!
Q&A

In this column, I answer questions about all aspects of electronics, including computer hardware, software, circuits, electronic theory, troubleshooting, and anything else of interest to the hobbyist.

Feel free to participate with your questions, comments, or suggestions.

You can reach me at: TJBYERS@aol.com

SO MANY TO CHOOSE FROM

Q I have noticed a large variety of “impedance” ratings for speakers; such as four ohms, eight ohms, 16 ohms, and others. Why so many? Is it just to make the design of the power amplifier easier by matching the output impedance?

— Jeff Dunker

A Well, that’s part of the answer — but it’s not the whole story. Let’s begin with the physical construction of a loudspeaker, as shown in Figure 1.

Basically, a loudspeaker consists of a voice coil (electromagnet) suspended in a magnetic field. When a current is run through the coil, it creates a magnetic field that forces the coil inside or outside the magnetic field — according to the strength of the current and its polarity. The stronger the electromagnetic field, the farther the displacement (throw) of the voice coil with respect to the permanent magnet.

If an AC voltage is applied across the voice coil, it will move in and out as the field changes polarity. The voice coil is glued to a paper or plastic cone that moves in step with the voice coil. This movement translates the electron flow into air movement — a.k.a., sound.

Early on in the development of audio amplifiers, many methods were used to produce this movement. The most feasible was and is the voice-coil loudspeaker described above. The critical element of this design is the voice coil itself. It is nothing more than many turns of copper wire — wire that has resistance that’s measured by the foot.

For example, a typical eight-ohm, four-layer woofer voice coil contains about 120 feet of number 28 solid copper wire. That’s a lot of wire to shove into the small gap between the north and south poles of the permanent magnet. Consequently, it’s physically more practical to use a smaller wire with more resistance than it is to use larger wire, which is harder to work with when forming a rigid voice coil destined for a small space.

But here comes a trade-off. Current times voltage makes watts. So voice coils with more resistance require more voltage to produce the same wattage. In the days of vacuum tubes, this wasn’t a problem. They required hundreds of volts on the plate and an output transformer in their design, so loudspeakers of that era were typically 16 to 32 ohms because the value best fit the tube to transformer coupling — and the materials and manufacturing methods of the time.

With the advent of semiconductors, voltages decreased and currents increased. That coupled with the discovery of rare-earth permanent magnets with stronger magnetic fields (versus Alnico) made it realistic to use lower resistance coils. For example, the car stereo market uses almost nothing but four-ohm speakers due to voltage limitations available in cars (specifically 12 volts). More power can be driven into a four-ohm speaker than an eight-ohm speaker (assuming the same driving signal).

Are four-ohm speakers better than eight-ohm speakers? Absolutely not! The ohm rating of a speaker has nothing to do with the quality of the speaker. But it has a lot to do with the way you wire an array of speakers together. Is an eight-ohm speaker really eight ohms? Not likely. Due to the highly complicated nature of a loudspeaker, its impedance is not a simple number, but an AC reactive value that changes with frequency and loading that can vary between six and 20 ohms. But that’s a story for another day. For now, when a speaker is said to be four or eight ohms, this is understood to be its nominal impedance.

Q&A.qxd 2/9/2006 2:24 PM Page 20
I'M BUSY!

Q I have one land line phone service to my house that I share with the upstairs and my computer room in the basement. I have it connected so that if I want to go on to the Internet, I flip a switch that disconnects all the phones in the house and connects the line to my computer only. If the wife goes to use the phone and hears no dial tone, she knows I'm online. Works great — except for one problem — I can't tell if she's on the phone before I flip the switch (short of listening in on her conversation!). Is there a circuit (possibly LED) that will light when she is using the phone?

— Ted Petra

A Here's a very reliable circuit — Figure 2 — that has several unique features. Specifically, it isn't polarity sensitive to the phone line (the red and green wires are interchangeable) and it will run for about a year on two AA cells. This is thanks in part to the low 0.25 µA standby current of the 4093 IC, and the fact that the LED flashes for a short 16 milliseconds once every second. All stages are Schmitt NAND gates. The first gate functions as a voltage comparator, the output of which goes high when the telephone line voltage drops below 15 volts. This triggers the second gate, which is configured as a pulse generator. Ordinarily, this design produces a symmetrical square wave with a 50% duty cycle. By adding a 1N4148 steering diode and a 33K resistor in the discharge path, the duty cycle is lowered to 16% for an average current of less than 100 µA when the phone is in use (don't email me with your math without first looking at the 4093 data sheet!). The final gate buffers the pulse generator and drives the LED.

BOWL-A-RAMA CIRCA 1909

Q I am an electronics vocational teacher at the Orleans BOCES (Vocational). My students are working on a new project and we've hit a snag. We are making a Skeeball game and I need to trigger the input to our Automation Direct PLC with a signal from a sensor when the ball drops into the scoring hole. I am trying to use a 2N3904 transistor and trigger it with a photoresistor. I think our trouble is that the ball is 3" across and we're using LEDs to shine on a CdS photocell. It works fine if the light is a small flashlight, but not the blue LEDs we have tried. We really want to use LEDs for reliability. The PLC operates at 24 VDC.

— Bill Leggett

A Silly to say — I didn't know what Skeeball was — even though I used to hang out in arcades in my teens (circa 1960). I guess Skeeball had fallen out of favor by that time. So I did some research on this 1909 invention and discovered your problem in recreating it. The original design used crosshair switches and latching relays (a very clever design/game for its time!), not photoresistors. A CdS photoresistive cell is the wrong choice. Their primary application (today) is in night/day applications where they turn on and off street lights. To accomplish this, they have a very large surface area — an area that a single LED is hard pressed to cover with any effect. This is why the flashlight works (full sun) and the LED doesn't (moonlight).

The answer is to replace the photoresistor with a phototransistor (www.allelectronics.com CAT# PTR-1). It's about 1/4" in diameter and is easily recessed into a hole drilled into the wood/plastic wall of your Skeeball cylinder. Use a high-intensity red LED (All Electronics CAT# LED-94) on the opposite side for your light source; red because the phototransistor is more sensitive to red wavelengths than it is to blue. For the circuit itself, you need nothing more than the phototransistor and an NPN output transistor as shown in Figure 3.

When the light strikes the photosensor — version (a) — the PLC output goes high. When the beam is interrupt-
ed by a Skeeball, the output goes low for as long as the ball falls through the slot, then returns to high. If your logic wants the sensor to be low then go high, use the (b) version of Figure 3. I've never tested these resistor values with the All Electronics parts recommended, so you may have to tweak the 10K resistors up (no higher than 100K) to get a positive response. If a brighter light source is needed, the 2.2K resistor can be reduced down to 1K with no ill effects.

THE IN-N-OUT SENSOR

Q
I have a motion light for the bathroom that is set for two minutes. I would like to replace it with an infrared sensor that would come on when I walk in and off when I go out.

— Clarence Hawkins

A
An IR heat sensor won't work as you plan because it will give false readings from a lingering shower, space heater, and other heat sources that remain after you've left the bathroom. How about an ingress/egress detector that would monitor your direction into or out of the room and control the light accordingly? All it takes is a pair of photosensors steering a logic circuit, as shown in Figure 4.

The circuit works by determining which photosensor is activated first. Let's say the light source to Q1 is interrupted first. This causes the monostable timer (4011 gates) to start and lock the states of Q1 (HIGH) and Q2 (LOW) into the 4027 flip-flop. This causes the output of the flip-flop to go high and pull in the relay. It also locks out the sensors for one minute so that further movement will be ignored. When you exit, Q2 is blocked and the Q output goes low, causing the relay to drop out.

Placement of the sensors is critical. Obviously, they have to be placed horizontally, one in front of the other. And they have to be spaced far enough apart so that both aren't darkened at the same time, yet close enough to be illuminated from a convenient light source — which can include IR LEDs, a night light, or ambient room light. The sensitivity pots adjust the trip point of the sensors. Cadmium sulfide photocells can be used in place of phototransistors Q1 and Q2.

COMPUTER PROBLEM

Q
I was trying to Network Neighborhood my two computers to share my Panasonic printer from one computer to the other. I started with My Computer and went to — Printers, Panasonic Printer, Properties, and to Details. Where it asked “To Print To The Following Port,” I mistakenly entered Panasonic instead of LPT1. Now when I try to click onto the Panasonic printer I get an Illegal Operation — with an explanation SPOOL 32 caused a stack fault in module KERNEL 3.2.DLL at 016f:bff7a2al.

I tried to delete the Panasonic icon, but it won’t let me. To get out of this situation, I had to End Printers Task and shut down the computer. When I restart the computer everything works okay as long as I stay away from the Panasonic icon. Even highlighting the icon puts the system into an illegal program situation. Is there a way to rectify this problem?

— Scott Jones

A
Normally I don’t answer questions that deal with specific operating system software errors, but this is one I ran across myself recently and can answer without reserve. The problem is in the Windows XP Registry. You have cross-linked the two devices (port and printer) and XP is confused, which is why you are getting the error message. You need a good Registry software program to set things straight.

I personally use Registry Mechanic from PC Tools (www.pctools.com), which sells for $29.99, but a search of the web will turn up both freeware and shareware for less — most of which I haven’t tested. I suggest that all Windows XP users do an occasional scan of their Registry — and each time you make a change to your system. You never know what secrets are lurking in a new application.

T-BIRD TAIL LIGHTS

Q
A friend who creates miniature dioramas of vintage automobiles recently asked me if I had ever seen a circuit that would simulate the turn signals for a 1967 Ford Thunderbird. When triggered, the first LED would light, then a second LED, and then a third. At this point, the display goes dark and the cycle repeats. He wants to activate...
either the left- or right-turn signal from outside the diorama using a momentary contact switch. Do you have any suggestions?

— Jon Westcot

A

In the original Ford design, the direction indicator used a series of cams on a single shaft that would close then open three micro switches in sequence when the shaft was rotated. Essentially, a mechanical timer that turned on when the turn switch was activated. Of course, that was 40 years ago, before they began putting microprocessors in cars.

Today, the solution is a serial in/parallel out shift register — like the 4015 circuit shown in Figure 5. A shift register is a series of flip-flops that moves (“shifts”) a train of pulses from the input to the output. If you monitor the pulse train at each stage, you can watch it ripple from the beginning to the end. This is what a serial in/parallel out shift register does.

To make a T-Bird signal, the flip-flops are first cleared to zero. The data input (pin D) is then taken high and transferred to the first flip-flop on the rising edge of the clock signal (generated by the 4011 CMOS oscillator). This sets the Q1 output high. Again, the data input is set high and clocked into the first flip-flop. This causes the data bit in the first flip-flop to advance and be locked in the second flip-flop. We now have outputs Q1 and Q2 high and output Q3 low — that is until the next clock pulse which moves the bits one more step down the line and lights all three LEDs.

Now comes the fourth clock pulse. At this point, we enter another one (high) into the register, which causes Q4 to go high. It just so happens that when the reset input (pin R) goes high — notice it’s tied to Q4 — it clears all the outputs to zero. Lights out. The next clock pulse then inputs a one bit into the first flip-flop, and it begins all over again.

To start the sequence, you need to press and hold down the left or right push-button — depending on which direction you want to go. Pressing both at the same time will give you the brake light effect of the T-Bird and later the Mercury Cougar.

Q

I have a small TV that fits well at my desk/work station. It’s an older model Panasonic TR-1010P with a telescoping antenna and no external antenna connection. Is there a modification that will allow me to connect this TV to cable?

— Richard Gravina

Decatur, GA

A

A few fixes pop to mind. But the fact that this is a pocket TV with a 1.5” screen limits the choices. As in, it rules out popping the cover and adding a jack. The point of entry has to be through the whip antenna.

If your desk is metallic, or has a metallic apron or legs, first tie the braid of the coax from the cable to a metallic part of the desk. If it’s all wood, place a piece of aluminum foil under the TV set (making a ground plane) and tie that to the braid.
ond, collapse the antenna to minimum length and rested position. Finally, connect the center conductor of the cable to the rod antenna through a 100 pF or similar low-value capacitor.

If the signal strength of the cable is too strong, the TV’s AGC (automatic gain control) won’t be able to cope and some channels will distort. If this happens, place a cable attenuator (20 dB) in line with the cable before the capacitor take off.

STAMP COLLECTING SECRETS

I’m trying to make a UV watermark detector (using UV LEDs) to help find watermarks on stamps. I’ve tried to use the basic LED flashlight approach to no avail.

— Phil Perez
USMC, Ret.

Watermarks are placed on business letterhead, bank notes, currency, and postage stamps. Originally, watermarks meant the areas of a document where the paper was pressed thinner than the whole — usually in the form of an image or initials. In recent years, watermarks have given way to fluorescent paper/inks and phosphor tagging.

Fluorescence — Stamp paper or inks containing fluorescent dyes that glow when exposed to long-wave ultraviolet light with a peak wavelength of 365 nm. There is no afterglow. Fluorescent papers usually glow a bluish-white; stamp inks containing fluorescent dyes can glow in a variety of colors.

Phosphor Tagging — A clear phosphor colloidal solution (tagging ink) applied over a stamp, to its paper, or mixed with the ink. Tagging glows when exposed to short-wave ultraviolet light that peaks at 254 nm, and has a brief afterglow that is used by automatic canceling machines to find, face, and cancel an envelope’s stamp. Reddish tagging was only used for air mail stamps from 1963 to 1978. Beginning 1978, bluish-green tagging was used for all subsequent air mail stamps.

Now for the bad news. There are very few ultraviolet LEDs on the market that emit at 380 nm, fewer at 365 nm — and none that emit below 365 nm, certainly not at 254 nm. Which leaves you with fluorescent tubes. Fortunately, blacklight tubes — as they are called — are readily available at these wavelengths. And they don’t require a special light fixture. A battery-operated, fluorescent lamp often sold for emergency lights in auto glove compartments is perfect. You can find the blacklight tubes at gem shops or stamp supply stores.

COOL WEBSITES

It seems like every week I discover another way to do an Internet search. For instance, I just ran across Lexxe — an ask-a-question site at www.lexxe.com. It lets you surf the net using plain language. Got a question? Lexxe has the answer — but it can be slow.
We’ve added thousands of money saving Jameco ValuePro™ and Jameco ReliaPro™ products. These products are manufactured for us and shipped directly to you, eliminating costly supply chain layers.

We’re also finding unique ways to help you save even more on name-brand products. Rather than print unneeded information in our catalog, we’re printing just enough information to let you know what we offer and where to find it on our website.

Less space means less paper, less postage, less waste and less costs. A simple and potentially big savings we can pass on to you!

Ordering is simplified, too! Just call us or visit our website and give us the product number. No SKU for you to provide, no messy search terms, just a simple manufacturer’s part number.

We’re constantly updating the technical documents on our site as well. So as you’re thumbing through our catalog, be sure to look for additional products referred to on our website at www.Jameco.com.
All of the MC68HC908MR16 groundwork was done in the previous installment of Design Cycle, and we’ve got plenty of new MC68HC908MR16 stuff to cover this time around. So, be sure to download all of the MC68HC908MR16 C project files I’ve provided so you can follow along live and in real-time with the text and new MC68HC908MR16 projects I’m about to present. I’ll stop flapping my jaws so we can get to work. Let’s begin by bringing up the MC68HC908MR16’s RS-232 serial port.

CODING AND ACTIVATING THE MC68HC908MR16 RS-232 PORT

Before we begin, I would like to point out that when you see numbers like “0x12345” in this text, the 0x denotes hexadecimal representation. A 0b preceding a string of 1s (ones) and 0s (zeros) denotes a binary representation of the number in the spotlight. An “x” inside a binary or hex number string represents a “don’t care.” As you’ll see, I will use an “x” as a place holder when I’m highlighting certain bits in a binary number or set of hex characters.

You’ll also want to go ahead and download all of the MC68HC908MR16 project files, as I’ll be referencing them as we go along. You can get them from the Nuts & Volts website (www.nutsvolts.com) or from the EDTP Electronics website (www.edtp.com).
Obtaining an MC68HC908MR16 datasheet from the Freescale website would be a good idea, as well. Okay, now that you’ve been given the keys and shown the secret codes, let’s go get ’em.

We’ll build our RS-232 serial port code on the foundation we previously laid for the LED blinker code. As you can see in the Photo 1 screen shot, I’ve selected the AsyncroSerial Bean from within the Bean Selector window and double-clicked on it to add it to our new C project (MR16_ADC), along with the BitIO Bean we added previously. I then proceeded to configure the AsyncroSerial Bean, which I renamed to RS-232, using the Bean Inspector.

The result of my selecting and configuring the AsyncroSerial Bean and initiating a compile was the creation of a file called RS232.c, which holds all of the C and assembler routines necessary to send and receive characters via the MC68HC908MR16’s SCI (Serial Communications Interface). Recall that the same file creation process occurred when we planted the LED_BIT I/O Bean in last month’s installment of this column and spawned the LED_BIT.c file.

If you take the time to explore the Bean Inspector’s Methods and Events areas, you’ll find that many of the advanced RS-232 functions are unavailable. I figure that’s because we’re using a “FREE” C compiler and you get what you pay for. In any case, all we want to do is send and receive characters via the MC68HC908MR16’s serial port and there are enough options we can choose from in the Bean Inspector Methods area to make that happen.

Okay, so now — thanks to the AsyncroSerial Bean — we have some workable RS-232 send/receive code, in addition to our LED blinker I/O code. Adding the RS-232 Bean also posted some changes in the MC68HC908MR16 startup files. Let’s examine the low-level initialization code in Listing 1.

At first glance, the statement setReg8Bits(PTB, 0x04); (which you and I didn’t write) is obviously a function or macro that is most likely setting some bits in an eight-bit register. However, the question may arise as to what the arguments of this statement represent. An intuitive guess would be that the bit 2 of I/O Port B is being set (0b00000100). In this case, my guess is correct and as Spock would say, “Random chance seems to have operated in our favor.”

To be sure of what the statement’s intentions are, all we have to do is place the cursor on the statement in question and right-click. You will be prompted to be taken to the coded definition of the statement which, in this case, is a macro. The definition of setReg8Bits(PTB, 0x04); is contained within the PE_Types.h file and looks like this:

```c
#define setReg8Bits(RegName, SetMask)   (RegName |= (byte)(SetMask))
```

Once armed with the supporting macro code, translating setReg8Bits(PTB, 0x04); is easy. The PTB (Port B) data latch (RegName) is being “OR’ed with the mask value SetMask (0x04), which sets bit 2 of Port B. The next statement, setReg8Bits(DDRB, 0x04); places bit 2 of Port B into output mode by setting bit 2 of the Port B Data Direction Register.

A look at Schematic 1 tells you that the two lines of C source we’ve just digested are working on the LED, which is attached to bit 2 of Port B. While your eyes are on the schematic, note that the RS-232 port pins are located in Port F territory. Fire up your copy of CodeWarrior Development Studio for HC08 v5.0, pull up the Listing 1 C source (the Cpu.c file from the project MR16_RS232) and right-click on the clrSetReg8Bits(DDRF, 0x10,0x20); statement. A window containing the PE_Types.h file contents will appear. The breakdown of the code behind the clrSetReg8Bits(DDRF, 0x10,0x20); statement will look like this:

```c
#define clrSetReg8Bits(RegName, ClrMask, SetMask)
   (RegName = (RegName & (~(byte)(ClrMask))) | (byte)(SetMask))
```

The first argument, ClrMask (0x10), specifies which RegName bit to clear, while the second argument, SetMask (0x20), sets the bit set fourth in the mask, which is bit 5, in this instance. The inclusion of DDRF in the macro as RegName implies that we are working on the Data Direction Register of Port F. Thus, we are clearing bit 4 of Port F’s Data Direction Register providing an input I/O pin for our SCI receive pin.

Conversely, we are setting bit 5 of Port F’s Data Direction Register to provide an output I/O function for our SCI transmit pin.

A right mouse click on the next statement, RS232_Init();, tells us that the C statement represents a function, which is found in the RS232.c file we generated when we activated and compiled our RS232 Bean. Once you navigate to the RS232.c file, you’ll find that the RS232_Init function simply sets the desired baud rate (we defined the baud rate in the Bean Inspector) and activates the SCI asynchronous transmitter and receiver.

We’re done with the foundation of our RS-232 serial port code. What I hope that you have come away with is that you can right-click on functions, macros, declarations, and variable definitions in the project’s C source and be taken to the location of a lower level of source code. which will, in most cases, yield a pretty good explanation of the object you right clicked on.

The code snippet from MR16_RS232.c shown in Listing 2 applies the RS-232 routines provided by the AsyncroSerial Bean (the RS232 Bean in our program) and echoes any incoming character. I modified our initial LED blinker program for use in the RS-232 echo code. Every pass through the endless loop alternately illuminates and extinguishes the LED. When you’re not thumping on the keyboard to send a character, the blinking LED gives some indication that the program is actually running.

Now that we have a primitive communications portal by way of the MC68HC908MR16’s SCI, let’s press forward and cook up an analog-to-digital converter Bean.
CODING AND ACTIVATING THE MC68HC908MR16 ADC

Looking at the MC68HC908MR16 datasheet, I found that the MC68HC908MR16 houses a 10-channel analog-to-digital converter module with 10 bits of resolution (0x3FF or 0b1111111111 full scale). In a nutshell, the MC68HC908MR16 employs an analog multiplexer to select one of 10 analog input channels that feed a successive approximation-based analog-to-digital converter subsystem, which signals the end of an analog-to-digital conversion by raising a flag or generating an interrupt request. The 10-bit analog-to-digital conversion result is placed in a pair of special-purpose MC68HC908MR16 data registers, ADRH and ARDL. For now, let's put the MC68HC908MR16 datasheet aside and see what the ADC Bean can do for us.

The BEAN configuration process for the ADC BEAN is identical to that of the RS-232 and LED_BIT Beans we configured previously. I accessed the Bean Selector window and double-clicked the ADC Bean to insert it into the new ADC project, which is called MR16_ADC. I noticed that the analog input was assigned to the I/O pin that I was using for the LED. I still want to blink the LED as a run indicator and I don't want to change or throw away the LED code I've already written. So, I deleted the newly inserted ADC Bean and moved to the Port I/O folder in the Bean Selector window. Once there, I double-clicked on the BitIO Bean and inserted it into my new MR16_ADC project. Once I saw that the LED had once again assumed my desired position on Port B, I configured the LED_BIT Bean to match the configuration I laid out in the previous RS-232 application we just discussed. I then reinserted the ADC Bean, saw that it was assigned to the next available Port B I/O pin, named it ANALOG, and started the Bean configuration process.

I deleted the newly inserted ADC Bean and moved to the Port I/O folder in the Bean Selector window.

Once there, I double-clicked on the BitIO Bean and inserted it into my new MR16_ADC project. Once I saw that the LED had once again assumed my desired position on Port B, I configured the LED_BIT Bean to match the configuration I laid out in the previous RS-232 application we just discussed. I then reinserted the ADC Bean, saw that it was assigned to the next available Port B I/O pin, named it ANALOG, and started the Bean configuration process.

The Bean Inspector wouldn't let me enter anything that would jeopardize the functionality of the MC68HC908MR16 analog-to-digital
Design Cycle

Although there were multiple choices for analog-to-digital converter resolution offered, all of them were disabled with the exception of one. I was forced to choose 10 bits of analog-to-digital converter resolution and I was offered only two choices for conversion time, which were 18.446 µS and 27.669 µS. I chose the 27.669 µS conversion time as its error percentage was specified at 0.000979% versus 2.479% for the 18.446 µS conversion time.

Within the Methods area of the ADC Bean, I decided to allow the full use of the 10 bits of resolution and mixed any code generation that truncated the analog-to-digital converter’s output to eight bits. After compiling the MR16_ADC project for the first time to establish the project’s supporting file system and the Bean code for the ANALOG.c file, I copied the MR16_RS232 project’s LED blinker code — the endless loop structure — and related includes and variable definitions into the ADC project’s MR16_ADC.c application file.

As we discovered earlier, I again had to change the PLL value from 0x1E to 0x66 in the MR16_ADC project’s Cpu.c file so that the PLL could lock and provide an accurate clock signal. At this point, I should have a simple LED blinker. Just to check things out, I compiled the project again and loaded it into the MC68HC908MR16. The LED blinked as designed. Things are good.

From experience, we know that the Processor Expert has generated all of the necessary analog-to-digital converter initialization files, which it placed in a file named after the ADC Bean (ANALOG.c). Before we start to add any analog-to-digital converter functions and macros to our project, let’s examine the initialization actions that were taken against the analog-to-digital converter configuration registers.

Access the package of MC68HC908MR16 projects you’ve downloaded from the Nuts & Volts or EDTP websites and pull up your copy of ANALOG.c from within the MR16_ANALOG project. ADCCLK is the first analog-to-digital converter register that is altered in the analog-to-digital converter initialization function ANALOG_Init. The macro setReg8 is used to load the ADCCLK register with 0x64. The MC68HC908MR16 datasheet tells us that the three most significant bits of the most significant nibble (0b011x) determines the ADC Clock Divide Ratio, which in our case divides the ADC clock by eight. The least significant bit of the most significant nibble (0bxxx0) has a value of zero, which tells us that the analog-to-digital converter is getting its clock from the external clock (CGMXCLK).

Recall that the frequency of CGMXCLK is equal to the frequency of the crystal, which is, for us, 4,9152 MHz. The MC68HC908MR16 datasheet goes on to say that the analog-to-digital converter internal clock must lie between 500 kHz and 1,048 MHz. This internal ADC clock frequency range is called fADC. We know that our analog-to-digital converter clock divisor is 8 and our CGMXCLK is 4,9152 MHz. We can calculate our fADC as follows:

\[
\text{f}_{\text{ADC}} = \frac{\text{CGMXCLK}}{\text{ADC Clock Divide Ratio}} = \frac{4,9152\text{MHz}}{8} = 614.4\text{kHz}
\]

Now that we’ve calculated fADC, which is also our ADC frequency, and found it to be within specifications, we can apply some simple math and justify that conversion time figure of 27.669 µS that the Bean Inspector forced me to choose. Analog-to-digital converter conversion time is defined as follows:

\[
\text{Conversion Time} = \frac{16 \text{ to } 17 \text{ ADC Cycles}}{\text{ADC Frequency}}
\]

I’ll save us some time and tell you that the Bean Inspector does not use 16 cycles to compute the analog-to-digital converter conversion time. So, substituting the known values we’ve previously dug up and using 17 ADC cycles:

\[
\text{Conversion Time} = \frac{17}{614.4\text{kHz}} = 27.669\mu\text{S}
\]

Okay, another mystery solved. Now, let’s finish up deciphering the ADCCLK value I specified right justified analog-to-digital converter results in the ANALOG Bean configuration. That is reflected by the two most significant bits of the least significant nibble of the ADCCLK value (0bxxxx01xx). Bits 0 and 1 of the ADCCLK register are always zero.

The ADSCR (ADC Status and Control Register) is the next register acted upon by the ANALOG_Init function. Again, a setReg8 macro loads the ADSCR register. This time the value loaded is 0x1F, which powers off the analog-to-digital converter module. Hopefully, we’ll see some code later that enables the analog-to-digital converter and looks for input from our designated analog input pin. With that, let’s put some analog-to-digital converter code together. Listing 3 is a code snippet that is taken from the MR16_ADC.c file. Let’s talk about it from top to bottom.

The variable ANALOG_OutV is defined in the ANALOG.c file. To use it here, we must declare it as an external variable. The rest of the variable declarations aren’t new. However, I did throw out the “a” and substituted “result” to make things a bit more readable in the source code. The variable declarations are followed by a call to initialize the analog-to-digital converter initialization text, I resorted to caveman tactics to talk about it from top to bottom.

Development Studio for HC08 v5.0 C compiler does not include printf functionality automatically in the libraries. So, instead of implementing the printf workarounds presented in the help text, I resorted to caveman tactics to convert the hexadecimal analog voltage readings into something a human can read.

In true caveman style, I allocated four bytes (ones, tens, hundreds, thousands) to represent a number in the format of x.xxx decimal. I also provided a +5.12V power supply for the MC68HC908MR16 hardware to provide for 0.005-volt steps for all of 1024 (0 through 1023) steps of the 10-bit analog-to-digital converter (+5.12V / 1024 = 0.005V per step).
Doing these things allowed me to add five to the ones variable for each step of voltage measured by the MC68HC908MR16's analog-to-digital converter. The ASCII values 0x30 through 0x39 represent a readable 1 through 9, respectively. So, I initialized all of the digit variables to 0x30 (readable zero) and looked for an overflow to 0x3A after each increment of five operation. The result is an up-counter that converts the value of ANALOG_OutV to a human readable number between 0.000 and 5.120, which represents the voltage applied to the MC68HC908MR16's analog-to-digital converter input pin. You can observe the caveman counter's operation by single stepping through the code in debug mode. Once the incoming voltage is converted to human readable form, I used our RS-232 code to send the ASCII voltage reading to a terminal emulator running on a PC. To eliminate missing characters and to make the voltage values a bit easier to read, the ASCII characters need to be paced to the terminal emulator and instead of writing some homebrew delay code, I enabled the Delay100US in the Methods area of the Cpu Bean Inspector.

I recommend you use Tera Term Pro as the terminal emulator. You can get a free copy of Tera Term Pro from the Tera Term Pro home page at http://hp.vector.co.jp/authors/VA002416/tera_term.html You can see the ADC code running and talking to Tera Term Pro in Photo 2.

EASY PWM WITH THE MC68HC908MR16

There are two ways to get a usable PWM signal out of the MC68HC908MR16. The first method entails reading the 41 pages of the MC68HC908MR16 datasheet describing the care and feeding of the MC68HC908MR16’s multi-channel PWM subsystem. Then, write the PWM code you need. The second method does not require any datasheet study and allows you to programmatically set the PWM period and duty cycle in real time units of microseconds or milliseconds.

Behold Listing 4. Just by looking at the code snippet in Listing 4, you already know which of the aforementioned PWM generation methods I used. The song remains the same. I selected the PWM Bean from the Timer folder within the Bean Selector and double-clicked it into my new MR16_PWM project. Configuration of the PWM Bean included renaming the Bean to SERVO, setting a PWM period of 20 mS, and setting up the pulse polarity to produce a high-going pulse.

I compiled the project and inserted the result=SERVO_SetDutyUS function, which was generated in the SERVO.c file. Notice the absence of my omnipresent LED blinker code. There’s no need for it here, as I attached an Airtronics 94102 servo to the fourth bit of the MC68HC908MR16's Port E. The source code you are looking at in Listing 4 continually takes the servo rotor to and from both the clockwise and counterclockwise extremes stopping at the center point with each traversal.

ROTATING OUT

All of the additional modifications to the solderless breadboard can be seen in Photo 3. As you can see, I’ve added an RS-232 port, a potentiometer, and a hobby servo. All of this circuitry could have just as easily been assembled in a point-to-
point or wire-wrap configuration.

Like the A-10 Thunderbolt (affectionately called the Warthog), which is built around a massive Avenger 30 mm seven-barrel cannon, the MC68HC908MR16 is actually built around the gaggle of six PWM outputs it supports. Using the CodeWarrior Development Studio for HC08 v5.0 and its Beans to generate PWM code is a quick and easy way to put PWM to work for you. However, even though I’ve used Beans exclusively throughout our discussions, you don’t have to use Beans to generate working MC68HC908MR16 code with the CodeWarrior Development Studio.

If you prefer to roll your own code from top to bottom and compile using the CodeWarrior Development Studio for HC08 v5.0, you can do so. The Beans are there to help you get your project up and running quickly. As you have seen, you can also generate Beans and then back-track through the generated C source to see how “they” did it.

EDTP Electronics (www.edtp.com) is offering an MC68HC908MR16 mounted on a 64-pin platform just like you see in Photo 3 for those of you that want to build up your own MC68HC908MR16 system. A detailed, close-up shot of the MC68HC908MR16 MCU module is included in the code package I’m providing for download to help you build up an MC68HC908MR16 module like mine.

I’m always available for a question or comments, so please feel free to contact me via email: peterbest@cfl.rr.com I hope that this series of Freescale MC68HC908MR16 columns will help you put the MC68HC908MR16 into your Design Cycle.

SOURCES

- Freescale
 www.freescale.com
 MC68HC908MR16
 CodeWarrior Development Studio
 for HC08 v5.0

- EDTP Electronics, Inc.
 www.edtp.com
 MC68HC908MR16 mounted on
 64-pin printed circuit board
Now you can have all your Nuts & Volts issues from calendar year 2004 archived on a CD that can be searched, printed, and easily stored.

You can purchase said CD from us, for your own personal use, and donate your old paper copies to your local school or library. (Your spouse will love you for it!)

Earlier years are in the works as well, so stay tuned for their availability.

Nuts & Volts Back Issues on CD

$29.95 plus $4.95 s/h USD

You asked for it, you got it!

To order, go to: www.nutsvolts.com
or call 1.800.783.4624

Nuts & Volts
430 Princeland Court
Corona, CA 92879

Nuts & Volts
Back Issues on CD

$29.95

Great Gift Idea!

Create Your Own Exciting Experiments

Upgrades and replacement parts available at:
www.cs-sales.com

Elenco’s new Snap Circuits make learning electronics fun and easy. Just follow the colorful pictures in our manual and build exciting projects, such as: FM radios, digital voice recorders, AM radios, burglar alarms, doorbells, and much more! You can even play electronic games with your friends. All parts are mounted on plastic modules and snap together with ease. Enjoy hours of educational fun while learning about electronics. No tools required. Uses “AA” batteries.

6 versions available.
Build up to 750 projects!

As low as $29.95!

Great Gift Idea!

Elenco’s new Snap Circuits make learning electronics fun and easy. Just follow the colorful pictures in our manual and build exciting projects, such as: FM radios, digital voice recorders, AM radios, burglar alarms, doorbells, and much more! You can even play electronic games with your friends. All parts are mounted on plastic modules and snap together with ease. Enjoy hours of educational fun while learning about electronics. No tools required. Uses “AA” batteries.

6 versions available.
Build up to 750 projects!

As low as $29.95!
ZAPiT Games™ has unveiled the Game Wave™ — a new game system which allows multiple simultaneous play, bundled in a curvy console.

“Game Wave™ is unique in that it restores a social dimension to games, said Jeff Hurst, ZAPiT Games. “It combines the group interaction of traditional board games with the excitement of interactive video. People find they just have to talk and laugh with each other during play.”

Developed by ZAPiT Games, Game Wave™ is a proprietary DVD-based console that hooks up easily to your TV. It comes with four specially designed color-coded wireless remote units (batteries included), a removable storage dock that holds up to six remotes (additional remotes are optional), and all the gear required for TV connection.

To get play started right away, Game Wave comes with 4 Degrees — The Arc of Trivia™, which offers 25 hours of no-repeat trivia play for up to six people, playing against each other and against the clock with their own color-coded wireless remote. With 4 Degrees, everyone can play and anyone can win.

The game features rich graphics and hundreds of still and video images, along with digital-quality sound. 4 Degrees features six categories of questions: Arts, History, Science, Sports, Lifestyle, and Geography. Players get four clues for each question — hence the four degrees — and there is a large range of posers on everything from Cinderella to the Taj Mahal. Scoring is based on the speed and correctness of answers. Players can answer any time — no more waiting for turns. Game Wave features a library of other proprietary titles including REWIND™, which takes players on a video and photo tour of the world’s craziest and greatest events from the past and tests general pop culture knowledge. The game also features special True or False and News or Not categories.

Other titles available in 2006 include:

- **4 Degrees — Volume 2 Pop Culture**: Offering all-new pop culture trivia challenges in the tradition of 4 Degrees — Volume 1.

- **4 Degrees — Bible Trivia**: A pictorial quiz of Biblical trivia that will challenge the whole family.

- **Zap 21**: A variation on Classic Blackjack that lets up to six people play at the same time.

- **Letter Zap!**: Players build words from letter cubes, playing against the clock and each other.

- **Piñata**: Players compete against each other and the clock using pictures, sounds, and letter clues to guess the mystery phrase.

- **Roll the Bones**: A series of fun dice games.

Game Wave also plays DVD movies. It retails for $99.99, which includes the console, four color-coded wireless remotes with batteries, a removable storage dock for the remotes, RGB and S-video cables to hook it up to a TV, and the 4 Degrees game. Each game title sells separately for $24.99. Additional remotes retail for $24.99 for a pair.

Game Wave is available at www.barnesandnoble.com, www.mastermindtoys.com, and the ZAPit Games website listed below.

ZAPit Games
Web: www.zapitgames.com

REDEFINING EASE-OF-USE WITH COMPLETE $20 MCU DEVELOPMENT TOOL

Texas Instruments Incorporated (TI) now offers the eZ430-F2013, the world's smallest, complete microcontroller (MCU) development and evaluation tool, available for only $20. In a compact Universal Serial Bus (USB) stick form factor, the eZ430 tool allows new users to evaluate the MSP430 MCU architecture in minutes and, for the first time, gives experienced developers all the resources they need to complete an entire MSP430F20xx project from start to finish. For more information on the new eZ430-F2013 tool, go to TI's website.

“We take our customer’s time and development costs very seriously,” said Mark Buccini, TI's advanced embedded controls director of marketing. “The eZ430 is not only great for fast MCU evaluation, but it is also the only full MCU development tool contained in a USB stick available today. With the eZ430, developing embedded design projects with MSP430F20xx MCUs is a snap.”

The eZ430-F2013 tool connects to a standard PC USB port and is self-powered, requiring no extra cables or power supplies. Contained within the USB stick is an emulation interface board and an easily removable MSP430F20xx target board, which differentiates the eZ430 from other fixed-function evaluation systems. Using TI's
innovative Spy bi-wire debug interface, only two signals — power and ground — are needed to connect the emulation interface and target, enabling very compact, high-performance MCU development in a low-cost environment.

The emulation board communicates with the MSP430 MCU target devices’ emulation logic non-obtrusively, in-system and subject to the exact same electrical characteristics as the final application, which eliminates costly, time-consuming intermediate steps. This board uses a TI TUSB3410 for the USB interface and a TPS77301 to provide 3V regulation to the system. The target board makes all 14 MSP430F2013 pins available on an industry standard 0.1 inch through-hole header and includes an LED for immediate development feedback.

The eZ430 tool includes a free IAR Kick Start Embedded Workbench IDE containing a debugger, assembler, and C compiler. This is the same IDE currently used for all MSP430 MCUs, meaning designers can leverage existing code and expertise. To jump-start new projects, users can tap into over 100 free C and assembler source code examples that are available from TI’s website.

The MSP430F2013 MCU is part of the recently introduced MSP430F20xx series, operating up to 16 MIPS in a robust fail-safe environment with no external components. The MSP430F20xx series’ fully programmable clock system is stable over temperature and voltage, providing wake-up from an industry-leading 500 nano-amp standby to full-speed operation in less than one micro-second. Ultra-low power combined with on-demand high-performance lets designers tune their systems to stay in standby longer so their applications conserve more power and use smaller, lower cost batteries.

Operating from 1.8 to 3.6V, MSP430F20xx MCUs allow direct battery operation and are available in a 14-pin footprint as small as 4x4mm. A choice of converters includes an analog comparator for very cost-sensitive applications, a 200 kilosamples per second (KSPS), 10-bit analog to digital converter (ADC) for real-time signal processing, or a 16-bit sigma-delta ADC for high-precision systems. All devices include an enhanced watchdog timer for extreme reliability, a multi-function 16-bit timer and in-system programmable Flash for greater design flexibility and field upgrade capability. With 128B of RAM, a full-featured 16-bit RISC CPU, and complete development in C, developers can reuse existing MSP430 instruction set architecture (ISA) libraries for faster time-to-market.

From ultra-low-power MSP430 devices and 32-bit general-purpose TMS470 ARM7-based MCUs to high performance TMS320C200™ digital signal controllers, TI offers designers a broad range of embedded control solutions. Designers can also accelerate their design to market by tapping into TI’s complete software and hardware tools, extensive third party offerings, and technical support. For more information on TI’s broad range of controllers, see www.ti.com/mcu

Texas Instruments, Inc.
Web: www.ti.com/ez430

What you want, When you want it ...

What we do …
• Precision Sheet Metal
• Machining
• Electronic Circuit Design
• PCB Layout

No Minimums, Any Volume
US Based Company with Mfg in USA and China
Highly Competitive
Quick Turn-around when needed

Precision Sheet Metal with
NC Punching
Laser Cutting

Machining with fast turns
CNC mills
5 & 7 Axis capability
Screw Machine work

Manufacturing Consortium Int’l
www.mfgconsortium.com
105 Serra Way, #201 Milpitas, CA 95035
Tel: 408-772-3175 or 408-807-256 Fax: 408-456-5070
Email all Sketches / dwgs / CAD files to gk@mfgconsortium.com
We accept VISA / MASTER CARD
MONOLITHIC DUAL JFETs

Linear Integrated Systems (LIS), a leading full-service manufacturer of specialty linear semiconductors, announces the immediate availability of its LSK389 series of monolithic N-Channel Dual JFETs. The LSK389 series is a monolithic dual version of the recently released LSK170 Single N-Channel JFET. This family of ultra low noise dual JFETs was specifically designed to provide users a better performing, less time consuming, and cheaper solution for obtaining tighter IDSS matching, and better thermal tracking, than matching individual JFETs. Available packaged in surface mount, ROHS compliant versions, the LSK389 is an ideal improved functional replacement for the through-hole Toshiba 2SK389.

Both PC and Peripheral programs understand your data items (even odd sized ones), and give you convenient variables to handle them.

- Large data Reports
- 64,000 bytes/sec per Interface
- Easily creates devices with multiple Interfaces, even multiple Identities!
- Automatically does MULTITASKING
- Makes standard or special USB HID devices

NEW! “Developers Guide for USB HID Peripherals” shows you how to make devices for special requirements.

Full Speed It writes your USB Code!

NEW! HiDmaker FS for Full Speed FLASH PIC18F4550

HIDmaker FS Combo: Only $599.95

Downloads the HiDmaker FS Test Drive today!

www.TraceSystemsInc.com
301-262-0300

The Standard for checking Capacitors in-circuit

Good enough to be the choice of Panasonic, Pioneer, NBC, ABC, Ford, JVC, NASA and thousands of independent service technicians.

Inexpensive enough to pay for itself in just one day’s repairs. At $209, it’s affordable.

And with a 60 day trial period, satisfaction guaranteed or money-back policy, the only thing you can lose is all the time you’re currently spending on trying to repair all those dogs you’ve given up on.

CapAnalyzer 88A

Available at your distributor, or call 561-487-6103

Electronic Design Specialists

www.eds-inc.com

Locate shorted or leaky components or conditions to the exact spot in-circuit

Still cutting up the pcb, and unsoldering every part trying to guess at where the short is?

CapAnalyzer 88A

Your DVM shows the same shorted reading all along the pcb trace. LeakSeeker 82B has the resolution to find the defective component. Touch pads along the trace, and LeakSeeker beeps highest in pitch at the defect’s pad. Now you can locate a shorted part only a quarter of an inch away from a good part. Short can be from 0 to 150 ohms

LeakSeeker 82B

Still cutting up the pcb, and unsoldering every part trying to guess at where the short is?

$209

The LSK389 series is packaged in surface mount SOIC-8 and thru-hole TO-71 six lead packages and lead-free, ROHS compliant versions are available.

“Our new LSK389 series features a unique design construction of interleaving both JFETs on the same piece of silicon that provides excellent matching and thermal tracking, as well as a low noise profile having nearly zero popcorn noise,” says Dr. John Hall, Linear Integrated Systems founder and president.

Linear Integrated Systems domestic in-factory stock provides short lead times, helping to ensure no disruption in production schedules.

Applications include audio amplifiers and preamps, discrete low-noise operational amplifiers, battery-operated audio preamps, audio mixer consoles, acoustic sensors, sonic imaging, instrumentation amplifiers, microphones, sonobuoys, hydro-
phones, and chemical and radiation detectors. Cost is $3 US ea. (1,000 pcs).

FIRMWARE-ONLY USB DRIVER

Objective Development has released a new version of their firmware-only USB driver for Atmel’s AVR microcontrollers (AVR-USB), just in time for the driver’s one year anniversary. This version adds new licensing options and free USB Product IDs bundled with all license types, even with the free Open Source compliant license.

AVR-USB is targeted to small companies and hobbyists designing hardware with USB connectivity based on standard AVR microcontrollers. It implements a low speed USB device in the same way as a Software-UART implements asynchronous serial data transfer. The only hardware resources needed from the AVR microcontroller are two I/O pins; one of them must be an edge triggered interrupt.

Since RS232 ports have become rare in modern computers, USB is the method of choice for connecting various gadgets to the PC. The major drawback for small companies and hobbyists is the relatively large upfront investment which is usually required to work with USB: You need to buy a USB Vendor ID from usb.org (currently $1,500 US) and maybe a new development system for USB capable microcontrollers. Furthermore, microcontrollers with USB are often available in SMD packages and large quantities only, making things even harder for small startup companies and hobbyists.

AVR-USB addresses all these issues. It comes with an Open Source license, a USB Product ID which can be used for free (shared according to the certain implementation rules), it is based on the free GNU compiler as its development environment, and works with low-cost AVR microcontrollers which are available in DIP packages. The PC side driver can be constructed with libusb, a free USB abstraction library which is available for Windows, Linux, Mac OS X, and BSD Unix. No Microsoft SDK or development environment is required for Windows driver development.

Two affordable commercial license types are available for those who cannot agree to the publication requirement of the Open Source license. The entry level license for 199 EUR allows using AVR-USB in up to 150 units and comes with a dedicated USB Product ID for exclusive use. The professional license for 500 EUR has virtually no limit in the number of units (fair use) and comes with two dedicated USB Product IDs. AVR-USB can be downloaded as part of an example application at www.obdev.at/products/avrusb/powerswitch.html.
When I first learned the art of manipulating the I/O pin on my computer's parallel port, I was in techno-heaven! Suddenly, connecting my projects to the computer and adding software became a breeze. I no longer had to try and build complex timers to operate my homebrew sprinkler system controller — I could simply use my computer to turn on a transistor which would drive my sprinkler valve solenoid. I could then fully customize my sprinkler system to water the established grass on the right days at the right times (even with very strange watering restrictions), and also give my newly planted grass a five minute drink every half hour from 11am to 3pm. It seemed to me that any project could benefit from an interface with my computer's parallel port — home security systems, automatic lighting, and weather stations, to name a few.

This all changed with the advance of Microsoft Windows. No longer could I directly address my parallel port, and when I finally did figure out how to put data on it, I just got errors about not having a printer connected. I was able to make an LED blink on and off quite randomly, but it quickly became evident that I was going to need some other method for getting data into and out of my computer.

For a long time, I just didn't have a convenient (or inconvenient) way of utilizing the power of
my PC in my projects. I looked around at some other products and software, but none of them really seemed to fit my need. I needed something that I could use over and over again in a variety of different applications, a single board that could interface with several different projects at once, but was also cost-effective enough to justify dedicating it to a single project if that project demanded it.

I finally began to develop my own computer interface board, which would transform a standard serial port into something more like the old parallel ports from the days of DOS.

What Does the Board Do and How Does it Work?

The Data Acquisition Board (DAQ) converts standard serial I/O from a PC into a 20 pin parallel I/O bus. Each of the 20 I/O pins is individually configurable as an input or an output. You can read the state of each pin, or change the state if it’s configured as an output, about a 1,000 times per second.

There is also the potential, with some additional firmware, to add up to five analog inputs with 10 bits of resolution. You can communicate with the board using binary commands or text commands. The text commands are easy to use, and can even be executed with Microsoft HyperTerminal. The binary commands require a better understanding of ones and zeros, but are much faster than the text commands. The board operates at bit rates up to 115.2K, and down to 300.

Why Did I Go With a Serial Port Interface Instead of a Parallel Port or USB?

Although many will disagree with me, there are a few advantages to a serial connection:

1. Serial cables are cheap — you can make your own without too much trouble, and if you’re not worried about noise, you can sploog one together with just three wires: TX, RX, and GND.

2. At the lower bit rates, you can use serial cables 50 ft or longer. This has enabled me to connect some projects to the computer that would not otherwise have been practical without a wireless setup.

3. A computer’s serial port is easy to access; you can use virtually any programming interface, and all you need are the standard drivers already installed on your PC.

Hardware Design

The DAQ is built around the PIC16F873A microcontroller (see the schematic in Figure 2). I used a 1 8432 MHz crystal oscillator for the clock because it’s compatible with most of the standard serial port bit rates. You may notice that 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 all divide into 1 8432M evenly. Because of this, the DAQ can operate at all those bit rates with virtually no error.

RC6 and RC7 (pins 17 and 18 on the PIC) are the TX and RX lines for the serial communications; you can’t just connect those two pins directly up to your PC however. The PIC is powered by a single +5V power supply, but a standard serial interface requires a negative voltage, as well as a positive voltage — a logical high is negative and a logical low is positive. Likewise, the transmit line coming from your computer swings positive and negative — if it was connected directly to the PIC, it would most certainly damage the chip.

The TX signal from the PIC needs to be inverted and swing positive and negative, and the RX going to the PIC needs to be inverted and go from 0V to +5V. I decided to go with the LT1181ACN RS232 driver IC to interface between the microcontroller and the computer. This is a handy little IC! When the TX pin on the PIC goes high, the TX out pin on the LT1181 goes to about -8V. Likewise, when the TX pin on the PIC goes low, the LT1181 goes to about +8V. No additional power supply needed!

How do you get + and -8V out when you only have a +5V power supply? The LT1181 not only does the inverting for you, it also has a charge pump on the chip to generate a + and - voltage supply. Capacitors C5-C8 are filter caps for the switching network on the IC.

The MCLR pin on the PIC (pin 1) and its associated components (R5, R6, and C4) don’t make a very interesting circuit. The circuit simply causes the MCLR pin to go high a short time after power-up which, in turn, causes the PIC to reset. I did want to pass on, however, that I tried a few different resistor and capacitor values before going with the ones I did.

A 10 µF cap for C4 intuitively seems very large for this application, however, smaller values for this cap cause a very frustrating problem. The DAQ would be operating just fine, and then it would freeze up for no apparent reason. I went over and over my firmware trying to find the never-ending loop I was sure was causing the problem, but I never found it. I checked and rechecked every solder joint trying to find the loose wire, but I never found that either.

After hours of troubleshooting and getting nowhere, it finally occurred to me that the PIC may be resetting intermittently. After a little more investigation, I found this to be the case. I then started experimenting with different values for R5 and C4. 10 kohms and 10 µF is what I ended up with. Again, a 10 µF electrolytic capacitor doesn’t seem like the right answer to me, but I’ve used the DAQ board.
quite a bit in many different applications over the past year since I made the change, and I haven't run into that problem again.

The rest of the pins on the PIC (besides the power supply pins) are used as digital I/O. In the original design, each connector to the outside world was directly connected to its corresponding pin on the PIC. This worked very well and I didn't have any problems until the first time I accidentally applied a +12V signal to an input pin. The PIC didn't like that too much, and promptly quit working all together.

Since then, I've added some protection. As illustrated in the schematic, each I/O pin has two resistors in series between the connector and its pin on the PIC. Between the two resistors is a 5.1V zener diode to ground. The 220 ohm, 1/2 watt resistor in combination with the 5.1V zener should protect against a +15V signal applied to the input indefinitely, however the resistor will get hot. Any more voltage applied for an extended period of time may cause the resistor to “let out its smoke.” The 100 ohm resistor limits the current from the PIC.
through the zener, to ground, if the pin is configured as an output.

Firmware Design

For an in-depth look at the firmware, it may be best for you to take a look at the full program. You can find the complete code by going to www.kitsdoneright.com/daq.html and clicking on the 'DAQ.asm file' link. It may also help to take a look at the user's manual and text commands (found on the same website) to get a feel for how the commands work before delving into the code. I wrote the code in assembly language using Microchip’s MPLAB IDE.

The main program loop is relatively short and simple. It starts after setting up the serial port and I/O pins, and is labeled ‘PoleFirstByte.’ Most of the time, the processor just loops through the first three lines of the main loop...

```
PoleFirstByte
SEL_MEM_0
btfss PIR1, 5
goto PoleFirstByte
```

The first line you see — ‘PoleFirstByte’ — is not really a line of code, but just a label which marks the memory location of the first line of the main program which is 'SEL_MEM_0.' This stands for 'SELect MEMory bank 0' and is defined at the very beginning of the code, it can be replaced with 'bcf STATUS, 5.'

The PIC16F873A has two memory banks: bank 0 and bank 1. You have to tell the processor which memory bank you are using, or you may end up accessing the wrong memory locations. Clearing bit 5 of the STATUS register is how you tell the processor that you want to use bank 0, and the code 'bcf STATUS, 5' does just that. Next, you want to see if the PIC has received any data from the serial port.

Once a byte has been received on the serial port, the PIC will set bit 5 of the PIR1 register high. The second line of code instructs the processor to check the status of bit 5 in the PIR1 register and then skip the next line of code only if that bit is high. It’s most likely that the bit is low, in which case the third line of code will be executed, which instructs the processor to go back to the memory location marked by ‘PoleFirstByte’ and start all over again.

These three lines of code are executed a few hundred thousand times a second until a byte is received on the serial port, then things get a little

Cost Cutting

If you’re going to incorporate the DAQ into another project, you can significantly cut down on the cost by leaving out several of the unnecessary parts. If you’re not concerned about applying an over-voltage to your inputs, you can eliminate R8-R46, and D1-D20. You can also eliminate P3-P12 if you want to hardwire your I/O. If you already have a +5V supply, you can eliminate P1, R1-R4, C1-C3, and U3. Altogether, that’s 186 solder joints you don’t have to worry about! By eliminating all those parts, it will also be much easier to put together without the PCB, further cutting down on cost. See Figure 3 above for the schematic.
more interesting.

The first byte in a serial transmission always has the command number (if you’re using binary commands) or is a textual character. The rest of the main program loop just checks that first byte to see what to do next.

If the first byte is a binary command, then the program goes to the corresponding function which executes that command. If the first byte is a textual character, then the program goes to the memory location marked by ‘cmd_text’ where the rest of the command string is received, processed, and finally the command is executed by the processor.

Assembly Instructions

You can find detailed assembly and test instructions by going to www.kitsdoneright.com/daq.html and clicking on the ‘Assembly instructions’ link. You will also find a parts placement diagram, the images for the PCB (should you decide to make your own), and the parts list on the website. You can also download the complete firmware (DAQ.asm) so you can make your own custom modifications to the code.

The hex file is provided for download so you can just program the PIC without having to first compile the code. You can purchase a preprogrammed PIC, as well as the printed circuit board or the entire kit on the website. The website has many other resources, including programming examples and a utility program for testing your completed DAQ.

Possible Improvements

I use the DAQ board quite a bit, and it works very well for me, but there are a few improvements that could be made. The most obvious improvement would be to convert it to USB. This would greatly increase the speed of the DAQ, although it would also decrease the distance your project can be from the computer.

In regards to protection, you may have noticed that the DAQ inputs are protected relatively well to voltages over +5V, but not as well if you apply a negative voltage. In this case, the input pin would be clamped at -6V, overstressing the PIC by .3V more than the manufacturer’s specification allows for.

The addition of Schottky diodes in parallel with the zeners might be a good idea to clamp any negative voltages to -2V. One other improvement that wouldn’t take more than some additional firmware would be the addition of analog inputs. Turning PORT1 pins 0-3 and PORT2 pin 0 into analog inputs wouldn’t be too difficult if you’re using the binary commands. If you want to use the text commands, however, you will have to convert the binary number produced by the ADC into text — doable, but a little more difficult. The good news is, there’s lots of room left in the PIC to add features. The current program only takes up about half of the program memory available.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS</th>
<th>SUPPLIER</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R4</td>
<td>Panasonic</td>
<td>ERD-S1TJ1R0V</td>
<td>1 ohm, 1/2 watt, 5%, Carbon Film</td>
</tr>
<tr>
<td>R6, R7</td>
<td>Panasonic</td>
<td>ERD-S2TJ102V</td>
<td>1K ohm, 1/4 watt, 5%, Carbon Film</td>
</tr>
<tr>
<td>R8-R27</td>
<td>Panasonic</td>
<td>ERD-S2TJ103V</td>
<td>10K ohms, 1/4 watt, 5%, Carbon Film</td>
</tr>
<tr>
<td>R28-R46</td>
<td>Panasonic</td>
<td>ERD-S2TJ221V</td>
<td>220 ohm, 1/2 watt, 5%, Carbon Film</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
<th>SUPPLIER</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C3</td>
<td>AVX Corp.</td>
<td>SA305E474MAA</td>
<td>0.47 µF, 50V, Ceramic</td>
</tr>
<tr>
<td>C4</td>
<td>Panasonic</td>
<td>ECE-A1CKS100</td>
<td>10 µF, 16V, Electrolytic</td>
</tr>
<tr>
<td>C5-C8</td>
<td>AVX Corp.</td>
<td>SA305E474MAA</td>
<td>0.47 µF, 50V, Ceramic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIODES</th>
<th>SUPPLIER</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1-D20</td>
<td>Fairchild</td>
<td>1N751ATR</td>
<td>5.1V zener, 1/2 watt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICs</th>
<th>SUPPLIER</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>Microchip</td>
<td>PIC16F873A-I/SP</td>
<td>Microcontroller</td>
</tr>
<tr>
<td>U2</td>
<td>Linear Tech.</td>
<td>LT1181ACN</td>
<td>RS232 Driver/Receiver</td>
</tr>
<tr>
<td>U3</td>
<td>NJR</td>
<td>NJM7805FA</td>
<td>Voltage Regulator, 5V, 1.5A</td>
</tr>
<tr>
<td>U4</td>
<td>ECS</td>
<td>ECS-2100A-018</td>
<td>1.8432 MHz Crystal Oscillator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTORS</th>
<th>SUPPLIER</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>CUI, Inc.</td>
<td>PJ-202A</td>
<td>Power Jack, 2.1 mm, PCB mount</td>
</tr>
<tr>
<td>P2</td>
<td>Kobiconn</td>
<td>152-3409</td>
<td>9 pin D-sub Receptacle</td>
</tr>
<tr>
<td>P3, P5, P7</td>
<td>Phoenix Contact</td>
<td>1984785</td>
<td>Terminal Block, 3.5 mm, Four Position</td>
</tr>
<tr>
<td>P8, P10, P11</td>
<td>AMP</td>
<td>640456-4</td>
<td>Vertical Header, Four Position, 100 in</td>
</tr>
<tr>
<td>P4, P6</td>
<td>AMP</td>
<td>640456-8</td>
<td>Vertical Header, Eight Position, 100 in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th>SUPPLIER</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Adapter, 9 VDC, 300 mA</td>
<td>Xicon</td>
<td>412-109033</td>
<td>Power Supply</td>
</tr>
</tbody>
</table>

NV
Time for a Switch?

NCD Relay Controllers are the Most Powerful Line of Computer Controlled Switches Available!

RS-232 Relay Controller with 16 Channels of 1A DPDT Relays, Expandable to 256 Relays. 7 Baud Rates up to 115.2K. 16 User Programmable Timers Activate Relays for User-Set Duration. Suitable for Duration, Watchdog and Server Reboot Applications.

Wireless 4 Channel Relay Controller with 20A 250VAC Switching. Operates up to 3,000 Feet Away, XR Expansion Allows you to Control up to 128 Relays.

Wireless 16 Channel Relay Controller with 10A 250VAC Switching. Operates up to 3,000 Feet Away, XR Expansion Allows you to Control up to 128 Relays.

RS-232 or Wireless Data Collection and Control with 16 On-Board Relays, 16 Channels of Digital I/O and 8 Channels of 10-Bit A/D. Expandable to 512 Relays, 4096 Inputs, and 96 Channels of 12-Bit A/D. Optional LCD Shown.

The Ultra Series Offer RS-232 or Wireless Data Collection and Control without the Relays. Expandable to 512 Relays using XR Expansion Relay Boards, Expandable to 4096 Inputs and 96 Channels of 12-Bit A/D.

This Expansion Module Adds 48 Channels or Contact Closure Inputs to the Ultra Series Controllers (shown above). Chain More Inputs End to End, Expandable to 4096 Contact Closures Inputs.

This Expansion Adds 16 Channels of 12-Bit A/D Inputs to the Ultra Series Controllers (shown above). Chain More Inputs End to End, Expandable to 96 Channels of A/D. Can Also be Chained to the Contact Closure Expansion Shown Above.

RS-232 Relay Controller with 32 Channels of 5A DPDT Relays, Expandable to 256 Relays. 7 Baud Rates up to 115.2K. 16 User Programmable Timers Activate Relays for User-Set Duration. Suitable for Duration, Watchdog and Server Reboot Applications.

National Control Devices, LLC
Phone: (417) 646-5844
FAX: (866) 562-0406

AirControl Allows You to Transmit Wireless Data to over 1.7 Million NCD Devices Located up to 3,000 Feet Away!

TranSend Offers High-Speed Wireless 2-Way Communication to over 1.7 Million NCD Devices Located up to 2,000 Feet Away!

If computer control is your thing, then you're in good company. We specialize in computer controlled data collection and switching with a full blown RS-232 and Wireless line of products that meet the needs of our most demanding customers. We are not your typical electronics manufacturer. We actually support our customers, one at a time, making it easy for first time users to get started. Whether you need wireless, RS-232, Ethernet, Internet or Embedded data collection and switching, we likely have a product that will work in your most demanding application. So if you're looking for a unique device to fill a niche application, and a company that supports it's products and you, then maybe it's time for a switch. Free software, manuals, and tutorials are on our web site. Just let us know if you have any questions...we're always glad to help!

www.controlanything.com

March 2006 NUTSVOLTS 43
Analog music synthesizers — the kind with all the knobs and patch cords — were extremely popular 10 to 15 years ago. In those days, the name Moog (pronounced like vogue) was a household name. Digital music synthesizers eventually overshadowed the popularity of the analog ones and a steady stream of ever-improving computer-driven instruments continues to line the shelves of music stores.

Today, however, whether due to nostalgia or the same thing that drives old clothes back into style, analog synthesizers are seeing a resurgence of popularity.

This article will show you how to build a very cool analog sound synthesizer. You will learn about analog sound generation, have a great project building experience, and have hours of sound synthesizing fun. I would say that the difficulty of this project is somewhere between an intermediate and advanced level. It involves making a printed circuit board, fabricating a front panel and case, and a good bit of wiring and soldering. I think you will find it well worth the effort. I am making PC boards available for sale from my website, if you would rather not etch one yourself. I invite you to visit my website at www.musicfromouterspace.com and hear the Sound Lab Mini-Synth for yourself.

Introduction

Refer to Figure 1. The Sound Lab Mini-Synth is a battery-powered analog sound synthesizer complete with two voltage-controlled oscillators (VCOs), a white noise source (Noise), a mixer (MIX), one voltage controlled state variable filter (VCF), one voltage controlled amplifier (VCA), an attack release envelope generator (AR), and one low frequency oscillator (LFO). Together, these modules provide sound sources, sound modifiers, and modulators — the tools to create a wide range of electronic sounds. Let’s take a look at each module in detail.

Attack Release Envelope Generator

The Attack Release Envelope Generator (AR) is one of the Sound Lab’s modulators (see Figure 2). It produces a voltage which rises and falls at a rate set by the attack and decay pot settings, respectively. The higher the knob setting, the longer the rise (attack) or fall (decay) time of the voltage produced by this module. Sounds generally have a characteristic envelope or overall shape. The envelope of the sound of a bell, for instance, has a fast
attack and a decay that depends on the size of the bell. A violin can be played so that the sound has a very slow attack and decay or a fast pizzicato attack and subsequent fast decay. The Sound Lab's AR can be used to control the VCA (which modifies the amplitude of the unit's sound sources), the VCF (which modifies the harmonic content of the unit's sound sources), and the VCOs (the pitch sources for the unit).

With S2 in the off state and S3 set to “Trig’d,” the circuit functions as follows. When S1 is momentarily pressed, it discharges C2 (to about 1.6 volts) through R2, which causes pin 2 of IC1-A to go high. This pushes a positive pulse through C1 and D1, which sets the flip-flop made up of IC1-E and IC1-F. IC1-F pin 12 goes high and C3 begins to charge at the rate set by the Attack pot R10 from -8 volts to about 6.5 volts (this voltage is buffered by the IC2-B voltage follower), at which point IC1-B's output goes low and IC1-C's output goes high and the IC1-E/IC1-F flip-flop is reset by the high logic level presented to pin 13 via D5. (Whew!) This causes IC1-F pin 12 to go low and discharge C3 at a rate determined by R11.

When the Repeat switch is on and the voltage at IC2-B is lower than -6 volts, then IC1-D pin 8 goes high and sets the IC1-E/IC1-F flip-flop again, thus, causing the cycle to begin again and subsequently repeat. Notice that I am allowing negative voltages to reach the inputs of the Schmidt triggers, but that they are protected from drawing high current through their internal protection diodes during that time by the high value resistors in series with their inputs.

When S3 is in the “Gated” position, the repeat function is disabled. In this configuration, a high level is presented to the “Attack” diode/pot combo as long as S1 is held pressed (because the output of IC1-A is high when S1 is held pressed). Gate mode allows C3 to charge from -8 volts to about +8 volts maximum.

When S1 is released, a low level is presented to the “Release” diode/pot combo (because the output of IC1-A is low when S1 is not pressed). The

![FIGURE 2. Attack Release Envelope Generator Schematic.](image-url)
output of IC2-B is fed to R15, the AR Envelope output level adjustment pot. The circuit point “AR” is the wiper of R15, which is fed to the AR-Gen switches of the modules.

While contemplating this circuit, remember that the inverters are Schmidt triggers and that their inputs must go lower than a third of the supply voltage before their output goes high, and then the input must go to greater than two-thirds of the supply voltage before the output goes low. This characteristic is known as hysteresis.

The zener diode on the external gate is meant to protect against gate signals greater than nine volts. When the external gate is high, Q8 will discharge C2 the same way the switch S1 does.

NOTE: If you don’t plan to use the external gate capability of the device, you can eliminate the following components: D7, R199, R1, D8, Q8.

Low Frequency Oscillator, Noise Source, and ±9 Volt Battery Power Supply

The low frequency oscillator is another modulator used to produce cyclic voltage changes with which the unit’s sound generators and sound modifiers can be controlled (see Figure 3). By applying the LFOs triangle wave to the control voltage input of a VCO, you will produce the sound of a siren. If you increase the frequency of the LFO enough, you will begin to hear bell-type tones as the oscillator being modulated starts to produce a characteristic ring-modulated sound. The noise generator is used to produce non-pitched sounds like rain, wind, or steam and, of course, the batteries power the unit. By using the recommended low power op-amps, the batteries will last a long time.

Let’s discuss this part of the circuit. Two 2N3904s walk into a bar. One makes a lot of noise and gets thrown out while the other one sits and quietly drinks his stout. The punch line? Some transistors are noisier than others. So how do we get noise out of any 2N3904? We do it with this circuit.

Notice that we do the usual ... reverse bias a low V(ebo) emitter base junction, listen to the junction through C10, and a gain of about 1,000. If this transistor is whispering, it is still whispering into a lot of gain. This circuit does not care if this transistor is in a confessional — you are going to get at least 100 mV of noise from the first stage.

We take whatever we are getting...
from the first LF444 and feed both inputs of a second LF444 through two 1M resistors. We hang a capacitor off of the inverting input and — voila — the inverting input always lags the non-inverting one. As the noise voltage is taking its time trying to go up and down (due to the cap) on the inverting input, it is racing up and down on the non-inverting input.

This results in the voltage on the non-inverting input randomly being higher or lower than the voltage on the inverting input as the noise voltage randomly changes. Since the op-amp is wired as a full blast comparator, its output is swinging up and down between the voltage limits of the LF444 in time to the noise fluctuations. Varying the cap and varying which input you hang the cap on will change the characteristics of the noise at the output of the second stage.

The LFO is a simple inverting integrator with positive feedback. IC7-A ramps up when its input is held low and then ramps down when the input is brought high. IC7-B is a comparator that senses the output of IC7-A and goes high when the voltage out of IC7-A goes above its positive threshold. This high voltage is fed back to the input of IC7-A, which goes low in response until IC7-B goes low and then the cycle continues.

Switch S16 and Diodes D9 and D10 control the shape of the LFO's waveform (centered for triangle either pole gives ramp and sawtooth). In low range (S17 on), a 2 µF cap (C13) is placed in parallel with the integrator capacitor (C14) to reduce the range of frequency provided by the Frequency pot R90.

Two nine-volt batteries power the Sound Lab and the two by-pass caps absorb any large current spikes generated during operation. All of the circuits in the Sound Lab together draw less than 6 mA.

Voltage-Controlled Amplifier and Voltage-Controlled Filter

The VCA and VCF are sound modifiers (see Figure 4). The VCA allows you to modulate the amplitude of the unit's sound sources with the AR and the LFO. It can produce tremolo effects, ring modulation, and amplitude envelopes. The VCF lets...
you modulate the harmonic content of the unit’s sound sources. It produces wah-wah sounds, dripping water, howling wind, or growling oscillators. VCFs are my favorite synthesizer modules.

These two circuits are practically straight out of the National Operational Amplifiers Data book data sheet for the LM13700 Dual Operational Transconductance Amplifier (OTA). The transconductance characteristic of these op-amps makes them perfect for VCAs and VCFs.

In the VCA, the control voltage controls the current flow through the amp and subsequent level of the signal at the output. S4 switches the AR Gen control voltage on or off. When on, the level of the AR Generator output pot determines how much the AR Generator controls the signal amplitude at the output of the VCA. S5 switches the LFO control voltage on or off. When on, the level of the LFO output pot determines how much the LFO controls the signal amplitude at the output of the VCA. R19 controls the initial amplitude at the output of the VCA. When S4 or S5 is on, it is best to turn R19 off or nearly off.

In the VCF, the OTAs operate as voltage-controlled resistors that change the pass-band (in band pass mode) and cut-off frequency (in low pass mode) from low (for low control voltage) to high (for high control voltage). The resonance control adjusts the feedback around the circuit and, thus, the gain at the cut-off frequency. At high resonance settings, the filter rings, adding harmonics to the filtered signal which give the classic synthesizer wahhhh sound when the cut-off frequency is swept from low to high.

The filter also acts as the mixer as all of the signal sources are presented to its input via attenuation pots (R29, R38, and R44). The input to the VCA is either the low pass output or the band pass output determined by the setting of switch S6. S7 switches the AR Gen control voltage on or off. When on, the level of the AR Generator output pot determines how much the AR Generator controls the

\[\text{FIGURE 5. Voltage-Controlled Oscillators Schematic.} \]
cut-off frequency of the VCF. S8 switches the LFO control voltage on or off. When on, the level of the LFO output pot determines how much the LFO controls the cut-off frequency of the VCF. R37 controls the initial cut-off frequency of the VCF. When S7 or S8 is on, it is best to turn R37 off or nearly off.

Voltage-Controlled Oscillators

The oscillators are the heart of any synthesizer and they provide the main sound generating capability (see Figure 5). Just about every sound you hear has some pitch to it — a voice, a trumpet, an airplane, etc. The pitch may be modulated or modified, but it is there a great majority of the time.

The Sound Lab uses two voltage controlled ramp oscillators to provide pitch sources. IC5-B and IC5-A and associated transistors and components comprise a linear voltage to logarithmic current converter. The control voltages that are summed by IC5-B range from -8 to 8 volts. The resulting current ranges from around 1 µA to 1 mA and, since the oscillators go up approximately one octave every time the current doubles, this gives the oscillator a nice range from a sub-audible 0.6 Hz to about 8.3 kHz.

Oscillation occurs because as the current is pulled out of the input of integrator IC5-D, its output goes high until IC5-C (comparator with hysteresis) pin 8 goes high and shorts the integrating capacitor (C8), which causes the cycle to begin anew and subsequently repeat. IC6 is used in a similar configuration.

The output of IC6-D (point ZZ) is fed into comparator IC2-A in order to provide a square/pulse wave shaper for Oscillator 2. The control voltage fed into IC2-A pin 2 via resistors R86 and R87 determines the comparator threshold and thus the point at which the output (pin 1) goes high and low.

Varying R85 will change the pulse width and vary the timbre of Oscillator 2 when Rect Wave is selected. S15 permits the LFO output voltage to modulate the pulse width, which can cause the output of Oscillator 2 to sound like two oscillators tuned very close together (when approximately 1 Hz LFO frequency is used).

S11, S13, S12, and S14 are used.
to feed the AR Generator and LFO outputs to the CV inputs of the VCOs. When on, you will hear the obvious effect as you advance the LFO and/or AR Gen output adjustments.

S9 causes Oscillator 2 to sync to the frequency of Oscillator 1. This provides some very cool timbres that you will hear if you turn on Sync and then tune Oscillator 1 lower than Oscillator 2 and sweep Oscillator 1 upward in frequency.

NOTE: If you don’t plan to use the external CV (Control Voltage) capability of the device, you can eliminate the following components: R62 and R63.

Construction

I highly suggest that you build the Sound Lab Mini-Synth on a PC board, but you can wire wrap it, breadboard it, or plain-old kludge it if you want to. Building the Sound Lab into an unusual case — perhaps involving some Plexiglas — can be an interesting project, but the front panel should be conductive (aluminum or steel). You can see the PC board layout and Parts legend for the Sound Lab Mini-Synth on the Nuts & Volts website (www.nutsvolts.com).

I can’t stress enough how smart it is to use IC sockets. De-soldering ICs is never any fun and, as a matter of fact, it’s a royal pain. If you ever have to de-solder an IC, here is the correct method: First, cut all of the legs so that the body of the IC comes away from the board. Then, de-solder and remove each leg individually (unless you have one of those cool chip de-soldering tips for your soldering iron). Doing it this way — though tedious — will lessen the chance of PC board damage.

Front Panel

Once you decide on a case, drill all of the holes to accommodate the switches and pots that you bought. Figure 6 shows a useful layout, but feel free to be creative. Mount all of the switches and pots and then tighten the mounting nuts for every-
thing. If the case material is non-conductive, you will need to ensure that the potentiometer bodies are grounded in some manner. I highly recommend that the front panel be made of conductive material, as mentioned previously.

Wiring the Sound Lab

Use stranded copper wire (I suggest 22 to 24 AWG) to wire up the front panel (see Figure 7). You will notice that several components are mounted on the front panel. Use care in attaching them to one another and to the pots and switches as necessary, and make sure nothing is shorting to anything it is not supposed to be touching. Use shrink tubing and/or terminal strips to insure good mechanical stability and electrical integrity.

As you wire the front panel, measure how long each wire needs to be as follows. With the wire still on the spool, unwind some and map out the path you want the wire to take. Leave yourself a little extra length for stripping and to insure that no wires are pulling on component terminals. When several wires are going to terminate at the same place, map all of those out and then solder them all to the common terminal together.

It's a good idea to run the wires from point-to-point first and dress them all neatly and then solder the discrete components to the front panel component terminals. Neatness now pays big dividends when you are troubleshooting and/or modifying the unit later. Use several colors of wire to avoid visual confusion during troubleshooting and/or modification.

When populating a circuit board, I like to start with the IC sockets, then the jumpers, then the resistors, and finally, capacitors. Essentially, working from low parts to high parts will make the whole job easier. Put in about 10 components at a time, bending the leads to hold them in place.

Now, trim the leads and solder the components in place — keep

FIGURE 8. Sound Lab Mini-Synth Front Panel to PCB Labels.

Mount a couple of terminal strips and solder the junctions of the wires and the resistors to them for support. Be careful not to short the resistor leads to the pot bodies.
Going until you are done.

RadioShack sells a very nice “Nippy Cutter,” which is excellent for trimming component leads. Remember to leave enough lead to solder to (about an 1/8 inch) and be sure that adjacent leads aren’t shorted to one another.

When you are ready to connect the board to the front panel, it’s a good idea to do so in a manner that will let you fold (and unfold) the board under the front panel easily so that when you want to modify or troubleshoot the project, it will be far more convenient to do so. A little extra length on the wires from the panel to the board will translate into a lot less frustration later.

Figures 8 and 9 show the points that get connected together. Connect the labeled circuit point from the board to the front panel point with the same label. Again, measure the wires and install them one at a time unless two wires go to the exact same point. I would suggest approaching the project in the following phases:

- Gather the components.
- Etch and drill the circuit board.
- Drill and label the front panel and make a case.
- Populate the circuit board.
- Populate the front panel.
- Wire the front panel to the circuit board.
- Go make some cool sounds.

FIGURE 9. Sound Lab Mini-Synth PCB to Front Panel Labels.

FIGURE 10. Sound Lab Mini-Synth Front Panel.

ABOUT THE AUTHOR

Ray Wilson lives and works in Parker, CO. He is an avid electronics hobbyist who started his career in the medical electronics world. Today, when he is not updating his analog synthesizer website, building some new synthesizer module, or playing his guitar, he is managing a group of 20 software engineers in Englewood, CO. This is his first contribution to Nuts & Volts Magazine. His website is at www.musicfromouterspace.com
Testing the Sound Lab

Everyone who builds an electronic project spends a bit of time getting everything working. A missed solder joint here, a component with an incorrect value there, and all of a sudden things don’t work. Here is some information to help you get everything going.

The first thing to do if you are having a problem is to remove the batteries (test and make sure they’re good) and then look over all of the components on the circuit board. Are they all there? Are they all soldered in place? It is easy to overlook soldering a lead.

Next, review the panel wiring. Are all of the wires there? Are they all soldered to the correct place? Then, look over the wiring from the front panel to the PC board. Are they all there and, again, are they all soldered from and to the correct place?

I have built and tested the Sound Lab and I am certain that if it is wired correctly, it will definitively work. If you are still having a problem and you are certain that the construction is complete, try substituting known good ICs for the ones on the board (I hope you used sockets). If you are still having a problem, re-read the circuit descriptions and probe the circuit using a signal tracer, oscilloscope, and/or DVM to make sure that it is functioning as described.

PARTS LIST

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>VALUE</th>
<th>SCHEMATIC DESIGNATOR OR ADD’L INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9V Battery Connectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9V Batteries</td>
<td>9 Volt</td>
<td>IC1</td>
</tr>
<tr>
<td>1</td>
<td>CD40106 Hex Inverter</td>
<td>CD40106</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ceramic Capacitor</td>
<td>0.001µF</td>
<td>C1</td>
</tr>
<tr>
<td>1</td>
<td>Ceramic Capacitor</td>
<td>0.006µF</td>
<td>C14</td>
</tr>
<tr>
<td>1</td>
<td>Ceramic Capacitor</td>
<td>0.01µF</td>
<td>C2</td>
</tr>
<tr>
<td>2</td>
<td>Ceramic Capacitor</td>
<td>0.02µF</td>
<td>C8, C9</td>
</tr>
<tr>
<td>1</td>
<td>Ceramic Capacitor</td>
<td>0.1µF</td>
<td>C10, C11, C15, C19, C20</td>
</tr>
<tr>
<td>1</td>
<td>Ceramic Capacitor</td>
<td>100µF</td>
<td>C6, C7</td>
</tr>
<tr>
<td>1</td>
<td>Ceramic Capacitor</td>
<td>1µF NPO</td>
<td>C22</td>
</tr>
<tr>
<td>1</td>
<td>Ceramic Capacitor</td>
<td>2µF</td>
<td>C13</td>
</tr>
<tr>
<td>2</td>
<td>Ceramic Capacitor</td>
<td>330pF</td>
<td>C21, C17</td>
</tr>
<tr>
<td>2</td>
<td>Ceramic Capacitor</td>
<td>560pF</td>
<td>C5, C4</td>
</tr>
<tr>
<td>2</td>
<td>Ceramic Capacitor</td>
<td>1µF</td>
<td>S19</td>
</tr>
<tr>
<td>1</td>
<td>DPST Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DPST Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Electrolytic Capacitor</td>
<td>100µF</td>
<td>C16, C18</td>
</tr>
<tr>
<td>1</td>
<td>Electrolytic Capacitor</td>
<td>2µF</td>
<td>C3</td>
</tr>
<tr>
<td>1</td>
<td>LF442 Dual op-amp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LF444 Quad op-amp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LM13700 op-amp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MFP102 N-Channel JFET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Phone Jack</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/4” Jack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/4” Jack</td>
<td>100K</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Potentiometer(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>1M</td>
<td>R15, R19, R27, R29, R37, R38, R44, R48, R55, R58, R88, R90, R92</td>
</tr>
<tr>
<td>2</td>
<td>Resistor 1/4 watt 5%</td>
<td>2K</td>
<td>R61, R80</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>1 Meg</td>
<td>R56, R59, R66, R67</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>100K</td>
<td>R1, R4, R12, R14, R24, R36, R54, R67, R62, R63, R68, R69, R73, R74, R79, R86, R93</td>
</tr>
<tr>
<td>9</td>
<td>Resistor 1/4 watt 5%</td>
<td>10K</td>
<td>R26, R32, R50, R52, R64, R65, R102, R103, R199</td>
</tr>
<tr>
<td>4</td>
<td>Resistor 1/4 watt 5%</td>
<td>150K</td>
<td>R17, R30, R33, R39</td>
</tr>
<tr>
<td>7</td>
<td>Resistor 1/4 watt 5%</td>
<td>1K</td>
<td>R22, R23, R34, R35, R45, R88, R98</td>
</tr>
<tr>
<td>9</td>
<td>Resistor 1/4 watt 5%</td>
<td>1M</td>
<td>R2, R8, R9, R87, R99, R95-R97, R91</td>
</tr>
<tr>
<td>4</td>
<td>Resistor 1/4 watt 5%</td>
<td>200K</td>
<td>R28, R31, R84, R89</td>
</tr>
<tr>
<td>8</td>
<td>Resistor 1/4 watt 5%</td>
<td>20K</td>
<td>R40, R42, R43, R46, R47, R70, R72, R80</td>
</tr>
<tr>
<td>4</td>
<td>Resistor 1/4 watt 5%</td>
<td>220K</td>
<td>R77, R78, R82, R83</td>
</tr>
<tr>
<td>2</td>
<td>Resistor 1/4 watt 5%</td>
<td>2M</td>
<td>R5, R13</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>3K</td>
<td>R21</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>5M</td>
<td>R7</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>4.7K</td>
<td>R41, R81</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>4.7M</td>
<td>R3, R100</td>
</tr>
<tr>
<td>4</td>
<td>Resistor 1/4 watt 5%</td>
<td>470K</td>
<td>R16, R18, R20, R71</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>47K</td>
<td>R49, R75, R76, R104, R101</td>
</tr>
<tr>
<td>2</td>
<td>Resistor 1/4 watt 5%</td>
<td>600Ω</td>
<td>R6, R94</td>
</tr>
<tr>
<td>1</td>
<td>Resistor 1/4 watt 5%</td>
<td>620K</td>
<td>R25</td>
</tr>
<tr>
<td>1</td>
<td>SPDT Switch (center off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SPDT Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SPST Push Button</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SPST Switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Silicon Diode</td>
<td>1N914</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Silicon Zener Diode</td>
<td>9.1V Zener</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NPN Transistor</td>
<td>2N3904</td>
<td>Q1-Q4, Q7, Q8</td>
</tr>
</tbody>
</table>

ADDITIONAL MISCELLANEOUS PARTS REQUIRED

- 1 1/16” thick aluminum plate 9” x 7” for mounting the pots and switches.
- Assorted hardware: 1” 6-32 nuts and bolts, 1/2” #8 wood screws, etc.
- Wire, solder, and typical assorted electronics hand-tools.
- DVM (Digital Volt Meter) and a signal-tracer or oscilloscope for testing.

NOTES

- You can substitute a TL084 and TL082 in place of LF444 and LF442, respectively; but they draw quite a bit more current, which will decrease battery life.
- You can substitute an LM13600 in place of the LM13700.
- You can substitute a 1N4148 for a 1N914.
With a 1,700+ page catalog of the newest information 4 times a year, and daily updates to over half a million products on-line, you can depend on Mouser for easy ordering in nanoseconds!

mouser.com (800) 346-6873

EASY ORDERING IN NANOSECONDS

ATTENTION! ELECTRONICS TECHNICIANS

EARN YOUR B.S.E.E. DEGREE THROUGH HOME STUDY

Our Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete the program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through our Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the engineering level. Advance rapidly! Many finish in 12 months or less! Students and graduates in all 50 states and throughout the world! Established Over 50 Years! Write or call for free Descriptive Literature. (601) 371-1351

COOK'S INSTITUTE
OF ELECTRONICS ENGINEERING

4251 CYPRESS DRIVE, JACKSON, MISSISSIPPI 39212
FAX: (601) 371-2910

Visit us TODAY on the World Wide Web at http://www.cooks.edu

EASY ORDERING IN NANOSECONDS

NEW Products
NEW Technologies
NEW Suppliers

The NEWEST Semiconductors | Passives | Interconnects | Power | Electromechanical | Test, Tools & Supplies

COOK'S INSTITUTE
OF ELECTRONICS ENGINEERING

4251 CYPRESS DRIVE, JACKSON, MISSISSIPPI 39212
FAX: (601) 371-2910

Visit us TODAY on the World Wide Web at http://www.cooks.edu

At I.I.T. our goal is to offer you high quality quick-turn custom fabrication. Whether it be parts, enclosures, or sheet metal, we understand the need for fast, affordable, small quantity prototype orders. We don't require minimums, so we are there to help you whether your order is for one piece or multiple prototypes. You won't find a group more capable and dedicated to its clients; developing a comfortable relationship while maintaining professional standards. All this and the MOST COMPETITIVE PRICING in the industry!

Visit our website at www.iitmetalfab.com for a list of materials, including various metals and plastics or call Sales at 208-665-2166

First paid order includes free shipping.

Integrated Ideas & Technologies, Inc.
3896 N. Schreiber Way
Coeur d'Alene, ID 83815

Mouser and Mouser Electronics are registered trademarks of Mouser Electronics, Inc. Any other product and company names mentioned herein are trademarks of their respective owners.
<table>
<thead>
<tr>
<th>Product</th>
<th>Features</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch-sensing ICs</td>
<td>Quantum ICs - World-beating capacitive sensor ICs for switching and control with patented features like Adjacent Key Suppression, Spread Spectrum, adjustable sensitivity. QRG ICs in use worldwide by the world's largest consumer/appliance manufacturers.</td>
<td>$81 (10K)</td>
</tr>
<tr>
<td>EMI Tests</td>
<td>EMI shielding tents made from NiAg fabric. -86dB 20kHz to 18GHz. Portable tabletop to mountlab size for on-site, on-demand precompliance testing. External PVC or aluminum frame.</td>
<td>From $5000</td>
</tr>
<tr>
<td>USB to 24 x I/O</td>
<td>USBIO2A - 24 latched I/O lines self-powered from your PC's USB port. Ubicom SX52 allows individual pin I/O programming I/O control via PCs USB port. USB I/O 24 from $69.</td>
<td></td>
</tr>
<tr>
<td>USBwiz</td>
<td>Easy add USB peripheral to your system. No USB knowledge needed, plug and play.</td>
<td>$39.95 Demoboard $69.95</td>
</tr>
<tr>
<td>Stepper Motor</td>
<td>Easy-Step™ 3000 - advanced stepper motor drive and control system for unipolar stepper motors up to 35V/2A and 3 Amps - ideal for robots/industrial control.</td>
<td>from $197</td>
</tr>
<tr>
<td>Mini Web Server</td>
<td>PicoServ™ Miniature Web Server allows remote I/O and servicing. Collect analog & digital data over a web connection. Remote sensing, control, SCADA, building control, etc.</td>
<td>From $197</td>
</tr>
<tr>
<td>easyRADIO</td>
<td>easyRADIOTH EM00TR5 Transceiver Modules make wireless data transmission simple for USA and Europe! And wireless capability to your project today! from $35 (100pr)</td>
<td>$75</td>
</tr>
<tr>
<td>USB TC-08</td>
<td>USBTCP - USB connected and powered 8-ch thermocouple data logger. Samples up to 10 tips with built-in JC-1 for -270 to 1820 degC.</td>
<td>only $474!</td>
</tr>
<tr>
<td>IZC for PCs</td>
<td>PCIO3LV - Industry-standard I2C card for PCs. WIN32I/PCI software gives windows-interface to develop and debug I2C bus systems. UCAS3LV is new USB version. NOWI only $49.95</td>
<td></td>
</tr>
<tr>
<td>Graphics LCD Kits</td>
<td>LCD Starter Kits - let you custom-program graphics LCDs into your product quickly! Touch-panels too! Creates perfect LCD screens with any font & animated graphics within minutes. LCD from $151</td>
<td></td>
</tr>
<tr>
<td>CleverScope</td>
<td>CleverScope - 100 MHz, Spectrum, Absorpt, Logoscale & 8 bit, test ICs for PCs. 4 Msamples storage! Easy-A, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.</td>
<td>from $197</td>
</tr>
<tr>
<td>Signal Wizard</td>
<td>Signal Wizard - easy-use realtime DSP-based filter board for audio bandwidth signals. Design filters in seconds without any DSP knowledge! Signal Wizard II only $399!</td>
<td></td>
</tr>
<tr>
<td>Ethernet Temp/Hum</td>
<td>Ethernet to I2C - TR-72W - Networked logger for remote ment of ambient. Send small or phone warnings if thresholds exceeded. Optional Ethernet for remote locating & more. TR-72W $5271</td>
<td></td>
</tr>
<tr>
<td>SM PCB Adapters</td>
<td>LiteRADIO - transceiver radios for wireless beyond 50m. $299.</td>
<td></td>
</tr>
<tr>
<td>Hand Held Scope</td>
<td>LEDP-Th1 - low cost, self-powered USB-based digital temperature/humidity sensor. Easily monitor temp/humidity (dwi.pt. from PC's USB port. DLP-Th1 from $99.95)</td>
<td></td>
</tr>
<tr>
<td>CAN-USB</td>
<td>CAN-USB - intelligent CAN connection from PC's USB port. Provides plug-in easy opto-isolated. Other CANbus boards and systems available from Janz AG. from $239.</td>
<td></td>
</tr>
<tr>
<td>USB Temp Logging</td>
<td>LPS-1000B - Economical benchtop RF test endoscope for troubleshooting, tuning, testing electronic devices in an RF-free environment. 8.717W10"/D inside. Built-in illumination. LPS-1000B from $222.</td>
<td></td>
</tr>
<tr>
<td>2ch PC Scope</td>
<td>2ch PC Scope - Swordfish - unique hand-held PC Scope: 5MHz, scope, 200kHz data logger, FFT spectrum analyzer, voltmeter and frequency meter. 10-bit ADC with a true sampling rate of up to 40MSPS. PS404M10 only $1275.</td>
<td></td>
</tr>
<tr>
<td>AudioWave</td>
<td>AudioWave - Software turns your Soundcard into a Sweep Generator! Easy-to-use digitally-controlled LF-signal-generator, 1Hz-20kHz. Great for sound card AudioWave only $59.95.</td>
<td></td>
</tr>
<tr>
<td>Digital ProLab</td>
<td>Digital ProLab - Easy-use Logic SimHardware Control software - not programmable! Circuit, logic and front-panel simulation, and hardware control, experiments. Digital-ProLab only $79.95.</td>
<td></td>
</tr>
<tr>
<td>USB to 12C</td>
<td>USB I2CIO - provides a simple “drop-in” solution for connecting your PCB to 50kHz I2C + 20 I/O lines. Free software. Use multiple boards for more 2C/O boards. USB I2CIO only $79!</td>
<td></td>
</tr>
<tr>
<td>Call 1-888-75AELIG</td>
<td>Call 1-888-75AELIG - Mention Offer! SBW to get a free STARBUCKS Card with your order!</td>
<td></td>
</tr>
</tbody>
</table>

FREE COFFEE

SAELIG Co. searches the world to bring you unique, easy-to-use control and instrumentation products from overseas. Customers include Intel, Philips, NEC, , Apple, , Microsoft, Dell, Xerox, Universal, T.I., Harris, Sony, J&L, Thomson, Sandisk, General Dynamics, H-P/Compaq, etc.

Also: Touch-sensing ICs, Voltage Loggers, Stepper Motor Controller, PC for harsh environments, Temp Loggers, Automotive Diagnostic Kit, PCL In/Out for Healthcare, Wireless controller, Oscilloscope, TIG testing, Inductor modules, BBC Compact control, USBwiz IC, EtherIO, Video Motion Detectors, Industrial IO modules, Software for soundcard - front panels - logic simulation and hardware control - CAD.

If you don't see what you need maybe we can find it for you! - Ask for sales!
A
fter a bit of experimenting, I think I have a great start towards a really cool interface that will work with any bike.

Interface

I thought to myself: What is the best way to interface to a PC?

Well, every PC and laptop has USB. The downside is that the interface can be expensive and pocket PCs don’t have a USB interface that’s accessible.

Printer ports are out because they are increasingly being replaced by USB. I could use IRDA, but again, the interface circuitry would be too complicated.

What about serial? Most of the newer laptops don’t have serial ports anymore. Even the laptop I’m using to write this article does not have one. However, you can pick up a USB-to-Serial converter for under $25 at Walmart.

I decided to try the serial port route.

One of my first questions was how to detect the peddle movement on the exercise bike. Easy! I decided to use a Hall-effect sensor. These can be purchased at several online stores for a few dollars.

There are several Hall-effect sensors available. We will be using a 6853 chip that runs off of 5V and has a normally low signal on its output lead (pin 3). When a magnetic field is detected, it floats the lead so you can pull it high with a 1K resistor. Some Hall-effect sensors will latch and need to be released. This type will not work for this project.

By connecting the output lead to the receive pin of a serial interface, the PC will read a 0 each time the sensor sees a magnetic field. The neat thing is that the result will be the same at just about any baud rate. Why does this work?

The idle state of an RS232 signal is -12 volts. This is the low state. When the start bit occurs, it goes from the low (idle) state to high. Sound familiar? This is what happens when our sensor detects a magnetic field. Well, kind of. In reality, we go from a 0 level to a +5V. This will work on 90% of the newer devices as they are very forgiving. They see anything less than 5V as a low and above 3V as a high. I tested it on every device I had in my lab, which

GET MOTIVATED

I have Type 2 Diabetes and have to exercise on a regular basis to keep my blood sugar under control.

One form of low impact exercise is an exercise bike, however, as with any exercise, we are more likely to do it on a regular basis if we can stay motivated.

As a software and hardware developer, I decided to create an interface to one of my exercise bikes. Before I started, I set out with a few requirements.

- The interface had to work with any bike.
- The interface had to work with a Desktop PC, Laptop, or Pocket PC.
- The cost of the interface had to be very cheap and use a minimal amount of components.
consists of 12 desktop PCs, three laptops, four pocket PCs, and various serial converters of one type or another.

The Basic Circuit

Take a look at Figure 2. This is how you would connect to a desktop PC or laptop. Pocket PCs are considered DTE devices, so you will need a male connector and will have to connect the sensor output to pin 2 of the DB9 connector.

Don’t rush out and build this circuit because we are going to do it one better.

I don’t want to have to use a battery or AC adapter, so I decided to power the interface. By adding a 78L05 and a diode, you can create a self-powered version, as shown in Figure 3.

We are using pin 4, DTR to power the circuit. First, we run it through a diode so we don’t blow anything up if the DTR is set low. When low, the cathode side of the diode will float, effectively turning off the circuit. Once DTR is raised, the positive voltage will drive the 78L05 and get regulated down to 5V. You don’t need much since the whole circuit only pulls a few milliamps.

Sensor Hookup

How you connect the sensor depends upon your bike. All bikes have some sort of rotating part that the peddles are connected to. The bike I have has an onboard computer so it already has a sensor. Figure 4 shows how I just hot glued my sensor to the top of the existing sensor.

It already has a magnet mounted on the main drive so I simply oriented my sensor so that the front of the sensor faced the magnet, as shown in Figure 5.

I strapped the cable down with tie wraps to help secure the sensor. If your bike does not already have a magnet, you will need to hot-glue one to the drive mechanism somewhere. Keep in mind that if you don’t want to open up your bike, it is possible to mount the sensor on the exterior of the bike and a magnet on one of the peddle arms. This is what I plan on doing to one of my other bikes.

That’s it on the interface. It will...
cost you around $5 for the parts, depending on what you have in your junk box. As far as assembly goes, I soldered the 78L05, diode, and resistor directly to the connector.

Software

Now, for the fun part. We will use a development program called Zeus. There is even a special free Nuts & Volts version up on the Nuts & Volts website (www.nutsvolts.com). Let’s see how this will work.

Sensor Test

I’m going to start with a simple program just to test if the sensor is working properly.

Program 1 is fairly straightforward. We open up the com port. If the ComOpen returns a 0, we have an error so we display an error message and exit the program.

Once we have an open port, we raise DTR with the ComDTR command. This provides power to the interface.

We then run a very tight loop that checks the status of the com buffer with the ComBuff command. If it returns anything greater than 0, we know we have a sensor event.

We increment the Rot variable then print the received value, as well as the Rot value.

Note that you have to access the ComInput command to pull the data out of the buffer or the ComBuff command will just keep getting larger and won’t ever return a 0.

Race Program 1

I’m not going to list the Race Program 1 here because it can be found on the Nuts & Volts website, as well as the Kronos Robotics website. I will, however, walk you through each section of the code.

There are four functions used to make up Race Program 1.

- initBike(ComPort)
 This function opens the indicated port and sets DTR to power the interface.

- DrawTrack()
 This function draws the track. You can change the FormBrush values to change the track colors.

- PlotPlayers(Player, Rotations)
 This function plots a player pip at a particular position on the track based on its Rotation value. Note that player 1 is the sensor and players 2-4 are the bot players.

- Main()
 This is the entry point of the program. This is where most of the work gets done and, due to its complexity, it is broken down into its own sub sections.

Main Setup

Here we set up the program by creating a few arrays.

Tots Total of all rotations (sensor events).
Rots Current rotations of current lap.
Pos Race position.

First, Second, Third, and Fourth.

Laps Completed laps.

A call to initBike is also made. Notice that I am using com port 4. You will need to pass the com port number your interface is connected to.

Main Loop

Here we set a variable called ticks. This variable will increment every 10 milliseconds. Once we get a tick value greater than 3, we reset the counter and using a random number generator, increment the position of each of the bot pips. For instance, take the following snipit of code:

```plaintext
if Random(1,10) > 4 then
  rots(2) = rots(2) + 1
endif
```

Here, a random number between 1 and 10 is generated. If it is greater than 4, we will increment the bots rotation count. This equates to a 40% chance of this particular pip advancing one position every 40 ms.

By changing the value from 4 to 8, you effectively double the skill level of this bot. This would give the appearance of that bot running faster on average.

After the rotations are calculated, we then draw the track and plot all four player pips.

Main Calculate Position

Here, we do a quick bubble sort to calculate each players position in the race.

Main Display Lap Data

Here, we display the text data indicating the player name, his position, and number of laps completed.

Main Check Com Buffer

Here, we check for activity on the com buffer. If we have activity, we increment the (player 1) rotation counter.

Going Further

I consider this a starting point as
there are plenty of enhancements you can make to the program. Here are a few ideas.

- You could keep track of lap times using the Getms command and creating a LapTime Array.
- You could calculate other data points like speed, calories, and distance. If you have a computer on your bike, this will be easy as you have something to help you calibrate your calculations.
- You could keep track of all your laps so that you could replay them as one of the bot players to race against your own times.
- You could dynamically change the skill levels of the bots, thus simulating the fact that players will start to slow down as they get tired.
- You could add sound effects or voice commands to your program using the PlaySound command.
- You could upgrade to ZeusPro and add bitmaps and double buffering for smoother graphics.
- Add missiles so you can blow up any of the bot pips that get in your way.

Final Thoughts

If you plan on building a pocket PC version of this software, I recommend building and testing it first with a PC or laptop. You can always use a null adapter to connect to the pocket PC if you build the circuit to interface to the PC.

Feel free to experiment with the code to create the ultimate motivator. Contact me in care of the KronosRobotics website and I will post your code up on the website. You can also post your code up on the forums listed in the Web Links sidebar.

I successfully used a Bluetooth-to-RS232 adapter to connect my pocket PC without a cable. This type of converter is a valuable one to add to your workbench. I keep one in my laptop bag, as well.

Be sure to visit both the KronosRobotics and KRMicros website for other versions of the bike interface code.

Web Links

- Nuts & Volts website
 www.nutsvolts.com
- KronosRobotics website
 www.kronosrobotics.com
- KRMicros website
 www.krmicros.com
- KronosRobotics forums
 www.kronosrobotics.com/forums

PARTS LIST

None of the parts are critical; for instance, any diode will work. You will need a DB9 female if you are connecting to a PC or laptop and a DB9 male if connecting to a pocket PC. Other Hall-effect sensors will work. Just make sure you use the non-latching type.

- 78L05 Regulator Kronos Robotics #16207
- 6853 Sensor Kronos Robotics #16211
- 1K Resistor Kronos Robotics #16178
- 1N4148 Diode Kronos Robotics #16135
- DB9 Male Kronos Robotics #16254
- ZeusNV Nuts & Volts website
- ZeusPro KRMicros website under development section

PAR TS LIST

None of the parts are critical; for instance, any diode will work. You will need a DB9 female if you are connecting to a PC or laptop and a DB9 male if connecting to a pocket PC. Other Hall-effect sensors will work. Just make sure you use the non-latching type.

- 78L05 Regulator Kronos Robotics #16207
- 6853 Sensor Kronos Robotics #16211
- 1K Resistor Kronos Robotics #16178
- 1N4148 Diode Kronos Robotics #16135
- DB9 Male Kronos Robotics #16254
- ZeusNV Nuts & Volts website
- ZeusPro KRMicros website under development section

Final Thoughts

If you plan on building a pocket PC version of this software, I recommend building and testing it first with a PC or laptop. You can always use a null adapter to connect to the pocket PC if you build the circuit to interface to the PC.

Feel free to experiment with the code to create the ultimate motivator. Contact me in care of the KronosRobotics website and I will post your code up on the website. You can also post your code up on the forums listed in the Web Links sidebar.

I successfully used a Bluetooth-to-RS232 adapter to connect my pocket PC without a cable. This type of converter is a valuable one to add to your workbench. I keep one in my laptop bag, as well.

Be sure to visit both the KronosRobotics and KRMicros website for other versions of the bike interface code.

Web Links

- Nuts & Volts website
 www.nutsvolts.com
- KronosRobotics website
 www.kronosrobotics.com
- KRMicros website
 www.krmicros.com
- KronosRobotics forums
 www.kronosrobotics.com/forums
Electro-Hobbyist Alert -- HSC is your source!

Even before there was a place called “Silicon Valley”, HSC was the favorite stop of hardware hackers, Techno-Tinkerers, entrepreneurs and engineers on a budget! We have been buying and selling the Valley’s excess inventory for 40 years now, and our collection is second-to-none! We are also factory-authorized distributors for many fine lines of parts, tools, equipment and accessories, so we feel we should be your first stop when shopping for electronic basics. Give our ever-expanding website a try and see what we mean!

Silicon Valley’s Electro-Hobbyist Alert--HSC is your source.

Get to our website for details and shipping info.

Since 1964!... Silicon Valley’s BEST place to shop for Electronics!

Order Toll-Free: 1-800-4-HALTED (442-5833)
or...ONLINE AT: www.halted.com

Terms: Some quantities limited; all items are subject to prior sale. Minimum order: $10.00 plus shipping. Orders under $20.00 subject to $3.00 handling fee, in addition to shipping. All orders shipped by UPS Surface unless otherwise specified. $7.50 UPS charge added for COD. Visit our website for detailed information on domestic and international shipping.

Logon to our website for secure shopping cart, powerful search engine, and latest news! www.halted.com

Call 1-800-4-HALTED (1-800-442-5833) to order...
...or use our web search! Deals @ HSC! Search

Fujitsu PenCentra Tablet Computer - Good to Go!

- Fujitsu PenCentra 130 computer
 - 131 MHz NEC VR4121 MIPS CPU
 - 32MB DRAM, 2MBROM, 8MB Flash
 - Color DSTN Touch LCD 640 x 480
 - PCMCIA, VGA, PS/2, USB, Serial ports
 - Win CE 2.11 Pro in PROM (no disk!)
 - Microsoft Pocket Office, Outlook, IE
 - “Radio Ready” for LAN/WAN/PC Card
 - Internal microphone, speaker & jacks
 - Stylus, Mini Keyboard, Dock & PSU
 - New in box, 90-day warranty!

HSC#20794 $39.95

Special! 3/$99.00!

Outlets by the foot!

- TrippLite PS6010-20T Outlet strip
 - 5 ft. long, extruded aluminum housing
 - 10 Standard AC receptacles (US)
 - 15 ft. 12ga cord, 20A twist lock plug
 - Perfect for test benches, rack units!
 - Regular factory price over $90.00!
 - We sell reg. AC plugs, 8516PB, $2.95
 - New, factory boxed, with brackets!

HSC#20794 $39.95

Minimum order: $10.00

Rack Mount Power!

- Pullitz Engineering 555PC
 - Rack-mount power distribution unit
 - Dual 20 A EMI/RFI Filtering
 - 190-240VAC inputs, 105 - 135VAC out
 - Perfect for server rack units!
 - Dual 20A circuit breakers
 - Dual 15A AC outlets, indicator lamp, fan
 - 2U height, 3.5” x 17”, 65 lbs. weight!
 - Heavy 9’ cord with twist lock plug

HSC#20828 $125.00

TrippLite PS6010-20T Outlet strip

- 5 ft. long, extruded aluminum housing
- 10 Standard AC receptacles (US)
- 15 ft. 12ga cord, 20A twist lock plug
- Perfect for test benches, rack units!
- Regular factory price over $90.00!
- We sell reg. AC plugs, 8516PB, $2.95
- New, factory boxed, with brackets!

HSC#20794 $39.95

Special! 3/$99.00!

Rack Mount Power!

- Pullitz Engineering 555PC
 - Rack-mount power distribution unit
 - Dual 20 A EMI/RFI Filtering
 - 190-240VAC inputs, 105 - 135VAC out
 - Perfect for server rack units!
 - Dual 20A circuit breakers
 - Dual 15A AC outlets, indicator lamp, fan
 - 2U height, 3.5” x 17”, 65 lbs. weight!
 - Heavy 9’ cord with twist lock plug

HSC#20828 $125.00

TrippLite PS6010-20T Outlet strip

- 5 ft. long, extruded aluminum housing
- 10 Standard AC receptacles (US)
- 15 ft. 12ga cord, 20A twist lock plug
- Perfect for test benches, rack units!
- Regular factory price over $90.00!
- We sell reg. AC plugs, 8516PB, $2.95
- New, factory boxed, with brackets!

HSC#20794 $39.95

Special! 3/$99.00!
USB/ETHERNET DAQ

LabJack®
UE9

Available now for only ... $399 qty 1

USB/Ethernet Data Acquisition & Control

- USB 2.0/1.1 and Ethernet
- 14 analog inputs (12- to 16-bit)
- Stream input data up to 50 kHz
- Use with C, VB, LabVIEW, etc.
- Includes DAQFactory Express
- Operates from -40 to +85 deg C

LabJack Corporation, Colorado, USA
info@labjack.com, (303) 942-0228

www.labjack.com

PIC Programming Made Easy!
Proton+ PICBASIC Development Suite

Next Generation IDE
Proton IDE is a professional and powerful visual Integrated Development Environment (IDE) which has been designed specifically for the Proton Plus compiler. Proton IDE accelerates product development in a comfortable user environment without compromising performance, flexibility or control.

- Code Explorer
- Compiler Results
- Programmer Integration
- Integrated Bootloader
- Serial Communicator
- Online Updating
- Plugin Architecture
- Real Time Simulation Support

Visit www.r4systems.com to see our latest Proton+ projects

SAVE TIME WITH END TO END INTEGRATIONS
NEW IDE - New IDE makes development using Proton+ even faster and more intuitive!
COMPILER - The popular Proton+ compiler has enhanced support for I2C, SPI, Dallas 1-wire bus, RS232, X10, Compact Flash Memory Cards and USB.
VIRTUAL SIMULATION - Simulate your project in Real Time using the integrate Proteus Virtual PIC Boards.

The Complete Electronics Design System
EASY TO USE CAD TOOLS AT FANTASTIC PRICES!

Schematic and PCB Layout
- Powerful and flexible schematic capture.
- Auto-component placement.
- Rip-up and Retry PCB routing.
- Polygonal gridless ground planes.
- Library of over 8000 schematic and 1000 PCB foot prints.
- Bill of materials, DRC reports and more.

Mixed Mode SPICE Circuit Simulation
- Berkeley SPICE3FS simulator with custom extensions for true mixed mode and interactive simulation.
- Six virtual instruments and 14 graph based analysis types.
- 6,000 models including TTL, CMOS and PLD digital parts.
- Fully compatible with manufacturers’ SPICE models.

Proteus VSM - Co-simulation & debugging for popular Micro-Controllers
- Supports PIC16 & PIC12, AVR, 8051, HC11 and ARM micro-controllers.
- Latest version includes 40 new PIC16’s.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Provides source level debugging for popular compilers and assemblers from HiTech PICC, Crownhill, IAR, Keil and others.

PCB AutoRouting
- Proteus PCB design includes an interface to the Electra Gridless autorouter.

Toll FREE 1-800-658-1180

Proton+ PICBASIC Development Suite

SEND$AVE EMAIL!

FREE DOWNLOA$ABLE DEMO! Save Time. Save Money.
Proton Starter Kit – $199 Complete Systems from $499
“This is clearly superior in every respect.”

R4 SYSTEMS INC. www.r4systems.com info@r4systems.com
R.I.P. SONY® AIBO
1999 – 2006

In a bit of corporate euthanasia, Sony Corporation has announced the cancellation of its four-legged robotic pet program — Aibo. As part of a major restructuring plan aimed at thwarting its waning fiscal fortunes, Sony will formerly cease production of this lovable, albeit costly, robot dog in March 2006.

What about those approximately 150,000 owners of this dog? What will they do if their pet needs to see a vet? In the same breath announcing the death of the $2,000 Aibo, Sony also promised to extend its maintenance (both parts and service) program for an additional seven years.

Most of the current Aibo owners interviewed in a CNN.com news report (“Sony Puts Robot Dog to Sleep,” February 2, 2006) weren’t convinced about the sincerity of Sony’s maintenance extension. Feeling that this gesture was more of a marketing dog bone than a genuine doggie treat, these jaded owners thought that Sony should be relegated to the global electronic dog pile and not their beloved puppy pal. But Sony isn’t about to play dead.

Attempting to roll over from its current financial woes, Sony will concentrate on its core electronics business and its massive entertainment arm. Although still reeling from a recent marketing fiasco over its brutish music copy-protection enforcement scheme, Sony is hoping to fetch a brighter bottom line when their revolutionary PlayStation® 3 video game console is released.

STUDENT-BUILT BUOY LAUNCHES OCEAN STUDIES

Over the holidays, high-school sophomore Katie Nance painted her room a cool shade of blue. But she and her schoolmates chose something much bolder for the ocean buoy they recently constructed for an international oceanography program. Their bright red buoy is being launched off the coast of Antarctica. If all goes well, the buoy will phone home, thanks to a satellite connection, sending back data on ocean temperatures that will be available to scientists and students around the world.

The buoy project is part of an education program called Argonautica organized by the French space agency, the Centre National d’Etudes Spatiales. With help from JPL, a small group of students from a local French/American school, the Lycee International de Los Angeles, has become the first US participant. The roughly dozen team members were drawn from different classes, ranging in age from 9 to 17. Dr. Mohamed Abid, a senior systems engineer for NASA’s Ocean Surface Topography Mission, served as their advisor.

Argonautica is designed to help students learn about the oceans and
the role of satellites in oceanography. Participants are given an empty plastic shell from which they have to construct a functional buoy fitted with sensors capable of withstanding harsh ocean conditions, plus an anchor to keep the buoy in position as it drifts with the currents.

The first challenge, says seventh grader Turner Edwards, “was figuring out what we wanted to measure. Some wanted to measure the salt in the water, some temperature, and some currents. It was hard to decide.”

They had expert help. Abid is the author of a new book titled Spacecraft Sensors. “We had a number of options,” he says, “so we made lists of the pros and cons of our different choices. We finally chose the temperature sensor.” The next steps were to understand how the sensors work, test them, and make sure they will survive in salt water.

For Nance, the hardest part of the project was all the calculations that needed to be done. “We had to figure out where we were going to put the sensors, how much weight needed to be in the anchor, how many volts we needed for the Argos card — the satellite transmitter.”

Last December after more than a year of work, the Argonautica team completed their buoy with seven temperature sensors and an anchor, which they constructed from plastic pipe and cement. The final step was the red paint. “It looked really good,” says Nance, “but there’s not much you can do with a buoy.”

Isabelle Autissier, a well-known French sailor, is launching the buoy from her ship Ada2. She is on an expedition to retrace the routes of some early Antarctic explorers, including Jean-Baptiste Charcot and Ernest Shackleton. Students will be able to track their buoy and other Argonautica-built buoys from the French space agency’s education website and correlate the data they collect with measurements of sea surface height made by the Jason satellite, a joint US/French mission.

“This was so much fun to build and put together,” says Nance. “We were so proud of ourselves. The best part was working as a team.” Edwards agrees, “It was really fun to collaborate. It was nice to come from nothing and do a project from start to finish.”

“It’s great to see what they can accomplish,” says Abid. “Now that they can see what they can do, their expectations get higher. They believe that next time they can build something even more complex.”

In France, about 60 school groups participate in Argonautica each year, and the program is expanding in Europe. “We think it is a great program and wanted to bring it to the States,” says Annie Richardson, who coordinated the effort in Los Angeles. Richardson is an outreach coordinator at JPL for the Jason mission and the upcoming Ocean Surface Topography Mission. “Many of the
Argonautica materials are in French, so we started our pilot project with a small group of students who speak French, but we hope to expand the program to include more schools. We’re also developing a pilot Argonautica program for the Boys and Girls Club.

More information about Argonautica can be found at www.cnes.fr/html/_98_3112_3147_.php More information about ocean surface topography is available at http://sealevel.jpl.nasa.gov

MICROCHIP BROADCASTS FROM SPACE

Microchip is playing a special role in the release of an unusual earth-orbiting satellite.

The international effort is testing the idea of using old space suits as satellites. Astronauts will release an old space suit, now fitted with the equipment needed to broadcast a
recorded message and various data about its mission over ham radio frequencies. The message and broadcast are controlled by three boards integrated by Microchip. Microchip built the controller board using a PICC microcontroller unit and a switchbox board. The company then integrated those two with the translator box, according to Steven Bible, an applications engineer at Microchip and a ham radio enthusiast.

The devices will play back recorded greetings from children in several languages and also the suit’s temperature, battery voltage, and the mission’s elapsed time in a nine-minute sequence that will be repeated over and over. The message will be broadcast at ham radio frequencies so classrooms around the world can listen to it, Bible said.

“The purpose of the mission is mainly educational,” he said, adding that the organization in charge of including the radio was ARISS or the Amateur Radio on International Space Station. The chairman of that organization is Frank Bauer, a NASA engineer. Bible was personally contacted by a friend and asked if he and his company could participate.

“What this organization does is plan ham radio activities from the International Space Station,” said Bible. “There is a ham radio station on board. Astronauts use it to talk to schools around the world. They do this once a week.”

The PRIMER Trainer is now New & Improved and even easier to use. The PRIMER is a flexible instructional tool featured in Prentice Hall textbooks and used by colleges and universities around the world. Ruggedly designed to resist wear, the PRIMER supports several different programming languages. A comprehensive Self Instruction Manual and an Applications Manual provides lessons, theory, and sample code for a number of Hands-On lab projects.

Application Projects Include:

- Scan Keypad Input & Write to a Display
- Detect Light Levels with a Photocell
- Control Motor Speed using Back EMF
- Design a Waveform Generator
- Measure Temperature
- Program EEPROMs
- Bus Interface an 8255 PPI
- Construct a Capacitance Meter
- Interface and Control Stepper Motors
- Design a DTMF Autodialer / Controller
- Programming a Reaction Time Tester

Primer Training Kit starting at $120.00 USD
ROBO Business 2006
CONFERENCE & EXPO

June 20-21, 2006
Sheraton Station Square
Pittsburgh, PA

The International Business Development Event for the Mobile Robotics and Intelligent Systems Industry

Five Comprehensive Tracks
• Business Development and Partnership
• Technology and Standards
• Applications and Products
• Investment Opportunities
• Markets and Industries
 - Security and Defense Robotics
 - Intelligent Transportation and Field Robotics
 - Healthcare Robotics
 - Consumer Robotics

Produced by:
Founding Sponsor:
Premier Sponsors:
Sponsors:
Association Co-sponsors:
Academic Co-sponsor:
Media Sponsors:

I n 1911, Russian space pioneer Konstantin Tsiolkovsky famously wrote, “The Earth is the cradle of humanity, but mankind cannot stay in the cradle forever.”

NASA’s early space program culminating in the 1969 landing on the moon was something of a false start — much was accomplished, and then essentially abandoned for budgetary reasons. The Space Shuttle today seems both a limited and dated technology, and NASA’s current resources leave little room for expansion. But if Burt Rutan, Paul Allen, and Richard Branson have their way, private industry will be taking its own first baby steps in helping mankind leave the cradle.

Rutan is the veteran aviation designer who won the $10 million Ansari X Prize in 2004, which called for a reusable manned spacecraft to fly to the edge of space (100 kilometers/62 miles) twice within two weeks. His SpaceShipOne design fulfilled those requirements by flying on September 29th and October 4th of 2004, with a pilot and approximately 400 pounds of weight to simulate the weight of two crewmen. Paul Allen of Microsoft personally funded Rutan’s Scaled Composites (www.scaled.com) — the company that built SpaceShipOne and owns the technology behind it.

The flamboyant Branson created Virgin Galactic (www.virgingalactic.com) to put that technology to

Refer to the photos above:

PHOTO A. SpaceShipOne in feather mode prepares for re-entry from space. Video capture courtesy of Vulcan Productions/Discovery Channel.

PHOTO B. SpaceShipOne is shown gliding back to base during flight 15P in an air-to-air photograph. Photo courtesy of Jim Campbell/Aero-News Network.

PHOTO C. SpaceShipOne sits on the ramp on its landing gear.

PHOTO D. Shown just before touchdown at 90 mph, SpaceShipOne returns to the runway.

PHOTO E. SpaceShipOne lands in front of a crowd of 27,500 people after its first flight to space. Photo courtesy of Jim Campbell/Aero-News Network.
commercial use. In July 2005, the two businesses announced in a press release their intent to form "The Spaceship Company (TSC), a new aerospace production company which will build commercial manned suborbital spaceships and launch aircraft. Scaled Composites has agreed to develop the new systems and to provide TSC with the technology required to allow them to produce the flight vehicles, as well as to support the spaceline operators."

In an attempt to support the efforts of Virgin and Scaled, the state of New Mexico announced plans to construct a purpose-built commercial spaceport — one of seven current or planned facilities in the US. The New Mexico site will house Virgin Galactic's world headquarters and mission control for its personal spaceflight business. The spaceport will be built on a 27 square mile site in Upham, about 30 miles east of Truth or Consequences.

By 2008, Virgin Galactic plans daily commercial spaceflights, increasing to three seven-passenger spaceflights per day from that facility. Virgin currently estimates that they'll launch 50,000 passengers into space during their first 10 years of operation. Current seat prices are $200,000 a pop, but just as airline seat prices have fallen dramatically in the last 30 years ("You are now free to move about the country...") Virgin expects these ticket prices to drop, as well.

Entrepreneurs Want to Make Sci-Fi a Reality

Why are entrepreneurs such as Branson, Paul Allen, and Jeff Bezos of Amazon.com becoming increasingly involved in funding private spaceflight ventures? In addition to a growing number of technology advancements that make such efforts progressively more feasible, there's also a cultural component. Glenn Reynolds of Instapundit.com is the author of An Army of Davids (published by Nelson Current), a 2006 book on empowering technologies, with a chapter titled "Space: It's Not Just For Government, Anymore." Reynolds says, "You now have a generation of rich guys who, like me, grew up on science fiction, and really want to make this stuff a reality. I think it's kind of like what you saw in the 1920s and 1930s, when you had a lot of relatively young rich guys who were investing, and sometimes even participating, in the pursuit of these various aviation prizes (Howard Hughes being the most famous example, but there were actually a lot of them)."

If you think that sci-fi and the "he who dies with the most toys, wins" theme isn't a strong influence at Virgin Galactic, consider that the first Virgin Space Ship is named the V.S.S. Enterprise. And Burt Rutan doesn't want his legacy to be just the design of SpaceShipOne. Instead, he says, "I
want to be remembered for helping make affordable space tourism happen, so my kids and hundreds of thousands of people can experience the magic of space.”

Richard Branson is famous for spending his fortune on testosterone-pumping adventures, such as his giant hot air balloon, the first to successfully cross the Atlantic. And his boat, “Virgin Atlantic Challenger II,” which crossed the Atlantic Ocean in 1986, in the fastest-ever recorded time.

And if there is any man who can rival, and perhaps surpass Branson in the “never outgrow your boyhood fantasies” department, it’s Paul Allen. He owns the Seattle Seahawks, and turned his interest in and love for music into Seattle’s multimedia Experience Music Project Museum, complete with a Jimi Hendrix wing. He’s turned his fascination with science fiction into the Science Fiction Museum and Hall of Fame.

With a combined net worth of well over $27 billion, as well as the track records of several highly profitable businesses behind them, the Rutan-Allen-Branson team seems well poised to pull off making a commercial success out of their collective inner-child’s love for sci-fi.

In contrast, NASA’s manned spaceflight efforts appear to be largely stuck for the foreseeable future, with the Space Shuttle, an early 1970s-design that’s become known as the DC-3 of space — or “the DC-1 and a half,” as Arthur C. Clarke once sardonically quipped after the Challenger explosion of 1986. While NASA has successor designs on the drawing board, its bureaucracy poses deep structural problems that prevent much of a return to the glory days of Neil and Buzz. “Its fixed costs are actually very, very high,” Reynolds says. “If you actually look at the NASA budget, nearly all of it goes to just keeping the lights turned on and the paychecks flowing, and there’s not a lot of money left to actually do stuff.”

Suborbital Bootstrapping

The current priority of Virgin Galactic is sub-orbital tourist-oriented flights. Their preliminary travel brochures picture the flights as part of a luxurious and expensive experience, including transportation to the New Mexico spaceport, lectures, “meet the astronaut” events, and world class dining. But just as in the days of Project Mercury, suborbital space travel is a way of bootstrapping towards orbital flight — a far more significant goal.

Reynolds is not surprised that tourism is driving the initial commercialization of space travel. “People laugh at tourism as an industry, but it’s something like the third biggest industry on the planet — it’s huge! If space tourism were only as big as terrestrial tourism, it...
Of course, there are not only financial, but safety risks involved in developing commercial space flight. Branson said around the time of the New Mexico spaceport’s debut that Virgin Airlines is “used to transporting millions of people ... transporting them safely. And we want to keep that impeccable record. We know what our priorities are.”

But there were many deaths associated with aviation during its barnstorming days (they didn’t call those early pilots “death-defying” for nothing). And sooner or later, there will be a Challenger or Apollo 1-like disaster during these early days of manned commercial spaceflight. Rand Simberg of Transterrestrial.com who calls himself “a recovering aerospace engineer” believes that such a setback wouldn’t be permanent to this fledgling industry. “If it’s clearly negligence on the part of the service provider, it will certainly be devastating for them, but not for the industry as a whole,” he says, “Any more than an airplane crash killed the aviation industry in the early days in the ’20s and ’30s when, in fact, many died in airplanes.”

But risk always encourages pioneers and adventurers. The barnstormers of the 1920s paved the way to flying becoming an everyday experience for millions of people. In a few decades, we may very well look back with similar memories of the men behind Virgin Galactic, and their colorful efforts towards helping to leave the cradle behind for good.
Choke A Chicken
GT-3095 $15.00 + post & packing
Relieve stress with a bit of violence!
This annoying chicken dances around and squawks. Funny for about one second! Grab him by the throat and he screams and gags. Funny forever! Not recommended for children. Approx 12" tall. Requires 4 x AA batteries (not incl.)

Theremin Synthesiser Kit
KC-5295 $34.95 + post & packing
The Theremin is a weird musical instrument that was invented early last century but is still used today. The Beach Boys’ classic hit “Good Vibrations” featured a Theremin. By moving your hand between the antenna and the metal plate, you can create strange sound effects. Kit includes a machined, silk screened, and pre drilled case, circuit board, all electronic components, and clear English instructions.

Smart Card Reader/Programmer Kit
KC-5361 $34.95 + post & packing
Jaycar has noticed a substantial increase in sales of the KC-5361 Smart Card Programmer Kit & ZZ-8800 Programmable Gold Wafer Card. We strongly suspect that this may be due to persons unknown some how using these products to make unlawfully generated access codes for the latest cable TV set top boxes. We also wish to advise that we discourage this activity. For those legitimate users, the KC-5361 Programmer Kit $34.95 & ZZ-8800 Smart Card $2.25 are back in stock. Once again please be reminded that we cannot accept any responsibility for the use of these devices in other than legitimate activities.

Wafer Card
ZZ-8800 $2.25 + post & packing
This is a multi-chip ‘smart card’ based on the PIC 16F84A and is coupled with a 24LC16B EEPROM, compatible with most reader / programmer units available including the programmer above.

High Performance Electronic Projects for Cars
BS-5080 $149.95 + post & packing
Australia’s leading electronics magazine Silicon Chip, has developed a range of projects for performance cars. There are 16 projects in total, ranging from devices for remapping fuel curves, to nitrous controllers. The book includes all instructions, components lists, color pictures, and circuit layouts. There are also chapters on engine management, advanced systems and DIY modifications. Over 150 pages! All the projects are available in kit form.

Smart Fuel Mixture Display
KC-5374 $179.95 + post & packing
This new ‘smart’ version has a few additional touches such as, auto dimming for night driving, emergency lean-out alarm, and better circuit protection. Another great feature, is the ‘dancing’ display which operates when the ECU is operating in closed loop. Kit supplied with PCB and all electronic components.
- Can be fitted with air flow and EGO sensors
- Standard on all EFI systems
- Full functionality

Recommended box HB-604 $2.55 each

High Range Adjustable Temperature Switch with LCD
KC-5376 $445.00 + post & packing
Heat can be a major problem with any car, especially modified and performance cars. The more power, the more heat, so you need to ensure you have adequate cooling systems in place. This temperature switch can be set anywhere up to 2192°F, so it is extremely versatile. The relay can be used to trigger an extra thermo fan on an intercooler, mount a sensor near your turbo manifold and trigger water spray cooling, or a simple buzzer or light to warn you of a high temperature. The LCD displays the temperature all the time, which can easily be dash mounted.

Post and Packing Charges:
Order Value Cost
$25 - $49.99 $7.50
$50 - $99.99 $20
$100 - $199.99 $40
$200 - $499.99 $60
$500+ $75
Max weight 12lb (5kg) - heavier parcels POA. Minimum order $25.

Log on to www.jaycarelectronics.com/catalog for your FREE catalog!
1-800-784-0263
(Monday - Friday 09.00 to 17.30 GMT + 10 hours only).
For those who want to write:
100 Silverwater Rd Silverwater NSW 2128
Sydney AUSTRALIA
An ohm is an ohm, right? Not so fast — there are many different types of resistors. To insure that your circuit works and stays working, use the right type of resistor. In this article, you’ll learn about the common types of resistors and their special characteristics.

Resistor Fundamentals

Every conductor exhibits some resistance to the flow of electrical charge (except for superconductors). Georg Ohm discovered the exact relationship between voltage (V), current (I), and resistance (R), formulating the law that bears his name and is learned by every electronics student:

\[V = I \times R \] or \[I = \frac{V}{R} \] or \[R = \frac{V}{I} \]

As electrons flow through a material in response to an electric field, they collide with the atoms that make up the material. The collision transfers some of the electron’s energy to the atoms, which vibrate in response. These vibrations result in an increased temperature of the material. The energy that heats the material is the power dissipated, calculated as:

\[\text{Power (P)} = I^2 \times R \] or \[P = \frac{V^2}{R} \]

A perfect resistor does not care whether the current flowing through it is AC or DC. The electrons collide with atoms going in either direction. Nevertheless, practical construction details, as shown in Figure 1, create some parasitic effects, making an actual resistor act like the circuit model shown in Figure 2. The model describes how the actual resistor’s characteristics make its electrical behavior depend on frequency and on how voltage and current are applied to it.

The series inductance, \(L_s \), is primarily created by the leads attached to the resistor. Notice that for the surface-mount resistor, there are no leads, which greatly reduces \(L_s \). The electrodes also form a very small capacitor, \(C_p \), that affects the resistor’s behavior at very high frequencies. Although the resistor’s coating is a very good insulator, current can still flow in very small amounts across the surface of the resistor as a leakage current, represented by \(R_p \). This becomes important when the resistor has a very high value or is

FIGURE 1. Resistors can be constructed in a number of ways to optimize power handling, stability, or size.
Resistor Types

For a piece of conducting material to be made into a practical resistor, a pair of electrodes and leads are attached so that current can flow. The resistor is coated with an insulating material to protect the conducting material from the surrounding environment and vice versa. There are several different resistor construction methods and body styles or packages that are designed for a certain range of applied voltage, power dissipation, or other considerations.

Carbon Composition

Composition means that the resistive material is a mix of carbon and stabilizing compounds. The amount of carbon in the mix determines the resistance of the material. A small cylinder, like a pencil lead, is held between the two electrodes and coated with resin or phenolic, making a non-inductive resistor with low

L_3 that is often used in RF circuits.

Carbon comp resistors are available with power ratings of 1/4 to 2 watts. They can also handle temporary overloads much better than film resistors because the heat is distributed evenly throughout the cylinder of resistive material. It makes them a good choice for circuits that protect against and absorb pulses and transients, for example. Unfortunately, these resistors are also strongly influenced by temperature and humidity and so are not good for circuits that depend on precise, stable resistance values.

Film Resistors

In a film resistor, the resistive material is a very thin coating of carbon or metal on an insulating substrate, such as ceramic or glass. The value of the resistance is determined by the thickness of the film and the amount of carbon or metal in it. These resistors are available with very accurate and stable values.

A drawback of film resistors is that they are unable to handle large amounts of power because the film is so thin. Overloads can also damage the film by creating “hot spots” inside the resistor, changing its value permanently. The value of film resistors is sometimes adjusted before sealing by cutting away some of the film with a laser, a process called trimming.

If the film is deposited on the inside of a tube, the trimming process creates a coil-like current path that raises the L_3 of the resistor. If your circuit operates at high frequencies, be sure the resistors you select have a low value of L_3.

Surface-mount resistors are almost always film resistors. These resistors have no leads at all, so L_3 is very low. The film is deposited on a ceramic sheet. Because of their extremely small size, surface-mount resistors have very low power ratings — from 1/10 to 1/4 watt.

Wirewound

Common in power supplies and other equipment where lots of power is dissipated, a wirewound resistor is made just as you might expect. A high-resistance wire is wound on an insulating form — usually a ceramic tube — and attached to electrodes at each end.
end. These are made to dissipate a lot of power in sizes from one-watt to hundreds of watts! Wirewound resistors are usually intended to be air cooled, but some styles have a metal case that can be attached to a heatsink or metal chassis to get rid of undesired heat.

Because the resistive material in these resistors is wound on a form, they have very high LS. For this reason, wirewound resistors are not used in audio and RF circuits. Be careful when using a resistor from your junk box or a grab bag in such a circuit!

Small wirewound resistors look an awful lot like film or carbon comp resistors. There is usually a wide color band on wirewound resistors, but not always. If you're in doubt, test the resistor at the frequencies you expect to encounter. There are special versions with windings that cancel most of the inductance, but have a much higher CP that also affects the resistor's performance above 50 kHz.

Ceramic and Metal Oxide

If you need a high-power non-inductive resistor, you can use cermet (ceramic-metal mix) or metal oxide resistors. These are constructed much like a carbon comp resistor, substituting the cermet or metal oxide for the carbon composition material.

Adjustable Resistors

There are many different types of adjustable resistors. The simplest are wirewound resistors with some of the wire exposed so that a movable electrode can be attached. The most common are adjusted with a rotary shaft as shown in Figure 3. The element provides a fixed resistance between terminals 1 and 3. The wiper moves to contact the element at different positions, changing the resistance between either end of the element and terminal 2.

If an adjustable resistor has only two terminals (1 and 2 in the figure), then it is called a rheostat and acts as an adjustable resistance. Most rheostats are intended for use in high-power circuits with power ratings from several watts to several tens of watts.

If the adjustable resistor has three terminals, it is called a potentiometer or “pot” for short. Most pots are intended to act as voltage dividers and can be made into a rheostat by leaving terminal 1 or 3 unconnected. Miniature versions called trimmers mount on a circuit board and are used to make small adjustments or calibrate a circuit. They are available in single-turn or multi-turn versions.

Larger pots with 1/8” or 1/4” diameter shafts are intended for use as a user control. Pots are available with resistance values from a few ohms to several megohms and with power ratings up to five watts.

Like fixed-value resistors, the construction of the pot is important. Higher-power pots may have a wirewound element that has enough inductance to be unsuitable for audio or RF signals. Smaller pots, particularly trimpots, are not designed to be strong enough for use as a frequently-adjusted control. Most pots have relatively high values of CP, as well.

Pots are also available with elements that have a non-linear taper or change of resistance with wiper position. For example, a log taper pot has a resistance that changes logarithmically with shaft rotation. This is useful in attenuator circuits, for example. An audio taper pot is used to create a voltage divider that mimics the loudness response of the human ear so that volume appears to change linearly with control rotation.

Resistor Networks

In order to save space on printed
circuit boards, resistor networks are often used. These are miniature printed circuits themselves, placing several resistors on one substrate. The resistors may be isolated from each other, share one common terminal, or be connected in series. There are a number of configurations that can be found in any component supplier’s catalog.

Power Dissipation and Voltage Ratings

After value, power dissipation is the next most important characteristic of a resistor. An overloaded resistor often changes in value over time and can often get hot enough to burn itself and surrounding components. Every circuit designer learns the smell of burnt resistor sooner or later!

The common rule of thumb is to calculate how much power the resistor will have to dissipate and then use the next largest size or a factor of two higher dissipation rating, whichever is larger. The power rating is based on unobstructed air circulation around the resistor. For resistors dissipating more than a watt, arrange nearby components so that air can circulate freely. If possible, mount power resistors horizontally so that convection cools all parts of the resistor equally.

Another important rating is maximum applied voltage. Voltages above this value may cause an arc between the resistor terminals! At high voltages, \(R_T \) can also become significant, allowing current to leak around the internal resistance. High-voltage resistors must be kept clean. Fingerprints, oil, dirt, and dust all create unwanted current paths, lowering \(R_T \) and increasing leakage or even arcing. This is why resistors for use in high-voltage circuits are long and thin with their terminals far apart — to minimize leakage and maximize the ability to withstand high voltage.

How to Read a Resistor

Learning the resistor color code (“Bad boys ravish ...”) is a rite of passage for electronics techs the world over. A handy Web guide is available at www.proaxis.com/~iguanalabs/resistors.htm along with other handy tutorials, or just type in “resistor color code” to an Internet search engine. Surface mount and power resistors may also have the value printed on their body as a three- or four-digit code with the final digit acting as an exponent. For example, ‘513’ means 51 x 10³ or 51KΩ.

About the Author

H. Ward Silver is an engineer, writer, and teacher with over 30 years of practical experience in medical electronics, instrumentation design, and broadcasting. He is the author of Two-Way Radios and Scanners for Dummies and Ham Radio for Dummies by Wiley Press and numerous articles for QST magazine. Ward’s ham radio call sign is NØAX.
AUTOMOTIVE

50 Awesome Auto Projects for the Evil Genius
by Gavin D J Harper

The Evil Genius format is the perfect “vehicle” for 50 incredible automotive projects that are compatible with any car, no matter what make, model, or year. Focusing on low-cost, easily obtained components, 50 Awesome Auto Projects for the Evil Genius lists the items needed to complete each project along with a troubleshooting and repair section. $24.95

ELECTRONICS

PSP Hacks, Mods, and Expansions
by Dave Prochnow

Packed with the mother lode of geek tweaks, tricks, and upgrades, award-winning how-to writer Dave Prochnow’s PSP™ Hacks, Mods, and Expansions gives you everything you need to morph your Sony PlayStation® Portable into the hottest handheld on the planet. You can’t find more PSP fun, finesse, and future-features anywhere! To make the whole trip more grandly exciting, Dave smooths the way for those who merely aspire to geekdom. Within this book’s covers, you’ll find complete, goof-proof, illustrated, insider’s guidance. $24.95

MORE Electronic Gadgets for the Evil Genius
by Robert E. Iannini

This much anticipated follow-up to the wildly popular cultclassic Electronic Gadgets for the Evil Genius gives basement experimenters 40 all-new projects to tinker with. Following the tried-and-true Evil Genius Series format, each project includes a detailed list of materials, sources for parts, schematics, documentation, and lots of clear, well-illustrated instructions for easy assembly. Readers will also get a quick briefing on mathematical theory and a simple explanation of operation along with enjoyable descriptions of key electronics topics. $24.95

Electronic Sensors for the Evil Genius — 54 Electrifying Projects
by Thomas Petruzzellis

Nature meets the Evil Genius via 54 fun, safe, and inexpensive projects that allow you to explore the fascinating and often mysterious world of natural phenomena using your own home-built sensors. Each project includes a list of materials, sources for parts, schematics, and lots of clear, well-illustrated instructions. Projects include rain detector, air pressure sensor, cloud chamber, lightning detector, electronic gas sniffer, seismograph, radiation detector, and much more. $24.95

Bionics for the Evil Genius
by Newton C. Braga

Step into the future — (or the past, if you have a touch of Dr. Frankenstein in your soul) — with these 25 incredibly cool bionic experiments! Demonstrating how life forms can be enhanced, combined, manipulated, and measured with electronic and mechanical components, these inexpensive projects from internationally renowned electronics guru Newton Braga provide hours of fun and learning. Totally safe, Bionics for the Evil Genius guides you step by step through 25 complete, intriguing, yet low-cost projects especially developed for this book — including an electric fish, a bat ear, a lie detector, an electronic nerve stimulator, a panic generator, and 20 other exciting bioelectric/mechanical projects! $24.95

PORTABLE INTO THE

SONY PLAYSTATION®

EVO

SERVO CD-Rom

Starting with the first SERVO issue — November 2003, all of the issues through the 2004 calendar year are now available on a CD that can be searched, printed, and easily stored. This CD includes all of Volume 1, issues 11-12 and Volume 2, issues 1-12, for a total of 14 issues. The CD-Rom is PC and Mac compatible. It requires Adobe Acrobat Reader version 6 or above. Adobe Acrobat Reader version 7 is included on the disc. $29.95

Embedded Ethernet and Internet Complete
by Jan Axelson

Learn how to design and program devices that host Web pages, send and receive e-mail, and exchange files using FTP. Put your devices on the Internet and monitor and control your devices from across town or around the world. Create private, local networks that enable your devices to share information, send commands, and receive alarms and status reports. Plus: learn about Ethernet controllers, hardware options for networks, networking protocols, and more. $49.95

HOME COMPUTING

Anti-Hacker Tool Kit
Third Edition
by Mike Shema

Stop hackers in their tracks! Organized by category, Anti-Hacker Tool Kit, Third Edition provides complete details on the latest and most critical security tools, explains their function, and demonstrates how to configure them to get the best results. It is completely revised to include the latest security tools, including wireless tools. This book also includes new tips on how to configure the recent tools on Linux, Windows, and Mac OSX. $59.99

If you don’t see what you need here, check out our online store at www.nutsvolts.com for a complete listing of the titles available.
Nuts & Volts CD-Rom

Here's some good news for Nuts & Volts readers! Starting with the January 2004 issue of Nuts & Volts, all of the issues through the 2004 calendar year are now available on a CD that can be searched, printed, and easily stored. This CD includes all of Volume 25, issues 1-12, for a total of 12 issues. The CD-Rom is PC and Mac compatible. It requires Adobe Acrobat Reader version 6 or above. Adobe Acrobat Reader version 7 is included on the disc. $29.95

Winning Results with Google AdWords
by Andrew Goodman

Don't get lost in the digital haystack! With thousands of links for every search, the chances of your products being found online are slimmer than a needle. But there's good news — you can pinpoint your marketing message with help from Winning Results with Google AdWords. You'll discover AdWord essentials, how to bid for and win the keywords you want, how to track your results, and much more. Create a profitable ad campaign using online marketing, paid search, targeting, and leveraged branding. $24.99

PIC in Practice
A Project-based Approach
Second Edition
by David W. Smith

PIC in Practice is a graded course based around the practical use of the PIC microcontroller through project work. Principles are introduced gradually, through hands-on experience, enabling students to develop their understanding at their own pace. The book can be used at a variety of levels and the carefully graded projects make it ideal for colleges, schools, and universities. Newcomers to the PIC will find it a painless introduction, whilst electronics hobbyists will enjoy the practical nature of this first course in microcontrollers. $29.95

Robot Builder's Bonanza
Third Edition
by Gordon McComb/Myke Predko

Everybody’s favorite amateur robotics book is bolder and better than ever — and now features the field’s “grand master” Myke Predko as the new author! Author duo McComb and Predko bring their expertise to this fully-illustrated robotics “bible” to enhance the already incomparable content on how to build — and have a universe of fun — with robots. Projects vary in complexity so everyone from novices to advanced hobbyists will find something of interest. Among the many editions, this book features 30 completely new projects! $27.95

Programming & Customizing the PICAXE Microcontroller
by Myke Predko

This book is a fully updated and revised compendium of PIC programming information. Comprehensive coverage of the PICMicro’s hardware architecture and software schemes will complement the host of experiments and projects making this a true “learn as you go” tutorial. New sections on basic electronics and basic programming have been added for less sophisticated users, along with 10 new projects and 20 new experiments. The CD-ROM contains all source code presented in the book, software tools designed by Microchip and third party vendors for applications, and the complete data sheets for the PIC family in PDF format. $49.95

Programming and Customizing the PICAXE Microcontroller
by David Lincoln

This beginner-friendly guide from IT pro and PICAXE expert, David Lincoln, shows you just what Revision 3.0 of Education’s PICAXE can do — and helps you make it do it! Packed with ready-to-build projects for all the flavors of PICAXE, the guide provides step-by-step help that’s ideal for those just starting out with microcontrollers but also takes more experienced programmers where they need to go fast. Using plenty of examples, Programming and Customizing the PICAXE Microcontroller clarifies this versatile chip’s basics and coaches you through sophisticated applications. $39.95

CNC Robotics
by Geoff Williams

Written by an accomplished workshop bot designer/builder, CNC Robotics gives you step-by-step, illustrated directions for designing, constructing, and testing a fully functional CNC robot that saves you 80% of the price of an off-the-shelf bot — and can be customized to suit your purposes exactly because you designed it. $34.95

The Official Robosapien Hacker's Guide
by Dave Prochnow

The Robosapien robot was one of the most popular hobbyist gifts of the 2004 holiday season. The brief manual accompanying the robot covered only basic movements and maneuvers — the robot’s real power and potential remain undiscovered by most owners — until now! This is the official Robosapien guide — endorsed by WowWee (the manufacturer) and Mark Tilden (the designer). This timely book covers all the possible design additions, programming possibilities, and “hacks” not found anywhere else. $24.95

Mechatronics for the Evil Genius
by Newton C. Braga

If you’re fascinated by electronics and mechanics, this hands-on tour of the junction where they meet will bring you hours of fun and learning. Noted electronics author Newton Braga’s Mechatronics for the Evil Genius guides you step by step through 25 complete, intriguing, yet inexpensive projects developed especially for this book. You will build your own mechanical race car, combat robot, ionic motor, mechatronic head, light beam remote control, and 20 other entertaining learning projects that take you to the heart of mechatronics. Each experiment builds on those before it so you develop a hands-on, practical understanding of mechatronics. $24.95

Microcontroller Programming & Customizing
Microcontroller Programming and Customizing the PICAXE
Third Edition
by Gordon McComb/Myke Predko

This new & revised edition of Programming & Customizing the PICAXE Microcontroller is suitable for the 21st century programmable. $39.95

Mechatronics for the Evil Genius Second Edition
by Newton C. Braga

If you’re fascinated by electronics and mechanics, this hands-on tour of the junction where they meet will bring you hours of fun and learning. $24.95

PIC in Practice
A Project-based Approach
by David W. Smith

PIC in Practice is a graded course based around the practical use of the PIC microcontroller through project work. Principles are introduced gradually, through hands-on experience, enabling students to develop their understanding at their own pace. The book can be used at a variety of levels and the carefully graded projects make it ideal for colleges, schools, and universities. Newcomers to the PIC will find it a painless introduction, whilst electronics hobbyists will enjoy the practical nature of this first course in microcontrollers. $29.95

CNC Robotics
by Geoff Williams

Written by an accomplished workshop bot designer/builder, CNC Robotics gives you step-by-step, illustrated directions for designing, constructing, and testing a fully functional CNC robot that saves you 80% of the price of an off-the-shelf bot — and can be customized to suit your purposes exactly because you designed it. $34.95

March 2006 NUTSVOLTS 77

CALL 1-800-783-4624 today!
Or Order online @ www.nutsvolts.com

Nuts & Volts CD-Rom

Here’s some good news for Nuts & Volts readers! Starting with the January 2004 issue of Nuts & Volts, all of the issues through the 2004 calendar year are now available on a CD that can be searched, printed, and easily stored. This CD includes all of Volume 25, issues 1-12, for a total of 12 issues. The CD-Rom is PC and Mac compatible. It requires Adobe Acrobat Reader version 6 or above. Adobe Acrobat Reader version 7 is included on the disc. $29.95

Winning Results with Google AdWords
by Andrew Goodman

Don’t get lost in the digital haystack! With thousands of links for every search, the chances of your products being found online are slimmer than a needle. But there’s good news — you can pinpoint your marketing message with help from Winning Results with Google AdWords. You’ll discover AdWord essentials, how to bid for and win the keywords you want, how to track your results, and much more. Create a profitable ad campaign using online marketing, paid search, targeting, and leveraged branding. $24.99

PIC in Practice
A Project-based Approach
Second Edition
by David W. Smith

PIC in Practice is a graded course based around the practical use of the PIC microcontroller through project work. Principles are introduced gradually, through hands-on experience, enabling students to develop their understanding at their own pace. The book can be used at a variety of levels and the carefully graded projects make it ideal for colleges, schools, and universities. Newcomers to the PIC will find it a painless introduction, whilst electronics hobbyists will enjoy the practical nature of this first course in microcontrollers. $29.95

Robot Builder’s Bonanza
Third Edition
by Gordon McComb/Myke Predko

Everybody’s favorite amateur robotics book is bolder and better than ever — and now features the field’s “grand master” Myke Predko as the new author! Author duo McComb and Predko bring their expertise to this fully-illustrated robotics “bible” to enhance the already incomparable content on how to build — and have a universe of fun — with robots. Projects vary in complexity so everyone from novices to advanced hobbyists will find something of interest. Among the many editions, this book features 30 completely new projects! $27.95

Programming & Customizing the PICAXE Microcontroller
by Myke Predko

This book is a fully updated and revised compendium of PIC programming information. Comprehensive coverage of the PICMicro’s hardware architecture and software schemes will complement the host of experiments and projects making this a true “learn as you go” tutorial. New sections on basic electronics and basic programming have been added for less sophisticated users, along with 10 new projects and 20 new experiments. The CD-ROM contains all source code presented in the book, software tools designed by Microchip and third party vendors for applications, and the complete data sheets for the PIC family in PDF format. $49.95

Programming and Customizing the PICAXE Microcontroller
by David Lincoln

This beginner-friendly guide from IT pro and PICAXE expert, David Lincoln, shows you just what Revision 3.0 of Education’s PICAXE can do — and helps you make it do it! Packed with ready-to-build projects for all the flavors of PICAXE, the guide provides step-by-step help that’s ideal for those just starting out with microcontrollers but also takes more experienced programmers where they need to go fast. Using plenty of examples, Programming and Customizing the PICAXE Microcontroller clarifies this versatile chip’s basics and coaches you through sophisticated applications. $39.95

CNC Robotics
by Geoff Williams

Written by an accomplished workshop bot designer/builder, CNC Robotics gives you step-by-step, illustrated directions for designing, constructing, and testing a fully functional CNC robot that saves you 80% of the price of an off-the-shelf bot — and can be customized to suit your purposes exactly because you designed it. $34.95

We accept Visa, MC, AMEX, and Discover
Prices do not include shipping and may be subject to change. Ask about our 10% subscriber discount on selected titles.
Before I received my first computer as a gift — a Commodore VIC20 — I was fascinated with computer control. Many years ago, I interfaced a circuit built around a chip I found at RadioShack, which made the VIC20 talk via its expansion port. Nobody in my family seemed to care too much, but I was excited that I had figured out how to control external electronics from a computer. There have since been many books written on how to use the parallel port or serial port on a PC to control electronics, and USB is taking over as the communication port of choice.

Despite the USB revolution, the RS232 serial port interface is still the most common method of communicating with various off-the-shelf modules found in the pages of Nuts & Volts. You can get RS232 style serial LCDs, dataloggers, servo motor controllers, and DC motor controllers, just to name a few. You can also find loads of Windows PC software all over the web that will accept or send ASCII data from the serial port.

Therefore, in my opinion, one of the fundamental projects every PIC hobbyist should know is how to communicate between a PIC and a PC serial port. After that, you can add an RS232 to USB converter if you need USB.

GETTING STARTED

For this article, I wanted to keep it simple and demonstrate how to have a PC user control a bank of LEDs. By entering the number on the PC, the user can turn on a specific LED at a remote location only connected to the PC by a serial cable. The remote module will have a PIC to handle the interface and start the communication by sending a message to the PC asking which LED to light. The PC user enters their choice, hits the “enter” key, and the PIC circuit receives it and then lights the proper LED. It’s simple two-way communication with a functional purpose.

For the software — once again — I turn to the PICBasic Pro sample version to handle the software. At the end of the article, though, I’ll address some of the options for going beyond the sample version’s limitation of 31 commands, as some email has
requested. For the hardware, the PIC16F876A fits the job perfectly.

The PICBasic Pro compiler offers two ways to implement serial communication: the SEROUT and SERIN commands, which are the software implementation of serial “bit-bang” communication, and the HSERIN and HSEROUT commands, which implement the hardware serial port on the PIC that runs in the background.

What I mean by background is the hardware serial port can send and receive serial data while a main loop of code is also running at the same time. I felt this was a little too advanced for the beginner, so I’ll use the SERIN/SEROUT here and save the hardware commands for another application.

PROJECT DESCRIPTION

The project I’ll present here may be simple, but it’s also a building block for bigger projects in the future. I’m going to control a bank of eight LEDs from the Hyperterminal terminal program found on most PCs running Windows. The serial cable will connect the PC’s serial port to an RS232 interface circuit built into the remote PIC/LED circuit. The interface circuit will adjust the signal voltage levels to what the PIC/PC need to see.

At some point, I’ll introduce this same RS232 interface circuitry to program the PIC in-circuit via bootloader mode, but for now, all programming will be done with the EZPIC serial port programmer.

Figure 1 shows what I’m trying to describe. The PC connects to the RS232 circuit through a straight-thru nine-pin cable. The RS232 circuit uses a standard MAX232 style chip with built-in charge pump to match the 0-5V PIC signal and -12V to +12V PC signal. The PIC16F876A has the standard PIC circuit connections with a 4 MHz resonator and MCLR pull-up resistor. The LEDs are connected to Port B and are driven on with a high signal from the individual Port B pins.

RS232 BASICS

Serial communication can send any data you want as long as it comes in the form of bytes. It can take on many forms, and one is called the RS232 standard. In Figure 2, I show a typical RS232 signal format. The first pulse is low and that is called the start bit. After that, eight bits are sent, which is a byte of data. Following the data is a high bit, which is the stop bit or end-of-data indicator.

Every character a computer can show has a numerical code associated with it, and there are 256 different codes (the maximum amount for eight bits). This just means that there are 256 different characters that can be sent as a byte inside a serial message. This ASCII code table can be found with a simple Google search.

This RS232 signal format I described is known as 8N1 data bits, no parity check, and one stop bit. Later, we’ll set up the Hyperterminal program to receive 8N1 data at a speed of 9600 bits per second.

Since the PC and PIC have to communicate in the same language to understand each other, the width of the pulses is critical to determine if a pulse is actually multiple 1s or 0s, or a single bit. Timing is, therefore, very important to the success of communication.

Matching the bit rate between the PC and PIC confirms the PIC and PC are talking the same version of the language. It’s like trying to watch an American citizen speak with a British citizen. They both speak English but sometimes they need a little help with interpretation.

SOFTWARE

The PICBasic Pro program is shown in Listing 1, which is available on the
Two variables are created named "old" and "new." These will be used to store the LED number to light and which one to turn off.

Next, the ports are set up for their proper input and output mode. Remember, on a PIC a "0" makes the pin an output and a "1" makes the pin an input. In this project, Port C pin 6 is the transmit pin and is made into an output. Port C pin 7 is the receive pin so it's made an input. The rest of the port pins are also made into inputs since that puts them in a safer high impedance mode.

The main loop of code starts with the "main" label. The first command implemented is the SEROUT command that sends the statement; "Enter which LED to light (0-7):" out to the PC. Anything within quotes in the SEROUT command will be sent as it's seen. In other words, the SEROUT will automatically look up the ASCII code for each character and send those codes out serially. The 10 and 13 that follow are the ASCII number codes for line feed (10) and carriage return (13). The results of this command will be displayed on the Hyperterminal screen, as shown in Figure 7.

```
main
serout portc.6, 2, ['Enter which LED to light (0-7):', 10, 13]
```

The SERIN command comes next, and it just waits for a response ASCII code to be sent from the PC user. One thing I didn't point out is the format. The pin being used for SERIN or SEROUT follows the command and then a number "2" follows that. The "2" represents True 9600 bits per second in PICBasic Pro language. If you have the full version of PICBasic Pro, you can also enter T9600 instead of "2" when you include a definition file at the top of the program. But the sample version doesn’t allow "includes," so you have to use the raw "2" value.

After the "2" in the SERIN line is the pound sign and the variable "new." What the pound sign does is tell SERIN to receive the ASCII value and then convert it into the actual numerical value it represents. For example, the ASCII code for the number "1" is actually 31h. When the PC user chooses to light LED1, 31h is sent to the SERIN command and is then converted to decimal value one.

```
serin portc.7, 2, #new
```

Converting "new" to the numerical value "1" (binary 00000001) instead of the ASCII character "1" (binary 00110001) allows us to directly use the variable as the pin number in the HIGH and LOW commands set the proper mode automatically, but it's best to learn this way of controlling the PIC in your programs.
The program pauses to allow the PC to get the data. I just threw this in as a precaution since some PCs can run a little slow.

Pause 100

Now the LEDs are controlled with simple HIGH and LOW commands. The previous LED value is stored in the variable "old" and the LED is turned off with a LOW signal on that pin.

low old

A HIGH signal on the "new" LED value just received turns the selected LED on.

high new

The "old" variable is made to match the "new" variable so the next time through, the program will shut off the lit LED.

old = new

The last step is to jump to the top of the program at the "main" label so it can all be done again.

goto main

HARDWARE

I cheated a little on the hardware setup shown in Figure 3. I like to build most of my projects on breadboards, so I developed a bunch of breadboard modules. I used three of them here which made the setup go faster. You can easily build the same setup with discrete components.

The PIC16F876A is plugged directly into the breadboard and has the resonator and pull-up resistor installed with it. The RS232 interface circuit is one of the breadboard modules which is shown connected to the serial cable. The LEDs are another breadboard module and the connection header lines up perfectly with the PORT B pins of the PIC, saving me jumper wires.

The PIC gets its five-volt power from the breadboard rails which are connected to one of my breadboard power modules. This makes it easy to connect an AC adapter to the breadboard.

The power module has pins that line up with the breadboard rails to supply five volts and ground throughout the breadboard. Both the RS232 and LED module have pins that plug into the power rails so I save more jumpers. Okay, it goes beyond being lazy. If I had a dollar for every mis-wired jumper that left me pulling my hair out blaming my code, I could probably retire.

HYPERTERMINAL

Setting up Hyperterminal for proper communication takes a few steps. The first step is to open Hyperterminal and you will be asked to open a new connection. Actually, this is the first step in Windows 98. If you use XP or some other version of Windows' Hyperterminal, you'll be asked for a phone number and other information before you get to the screen in Figure 4. Just enter a bogus phone number and follow through until you get to the screen shown.

The screen in Figure 4 sets up the connection file name. Enter the connection name you want and click "OK." Then the connection setup window will pop up asking for your connection method, as shown in Figure 5 (you might have to go through a few more bogus entry screens). From the selection window, choose the serial port you want to connect to. In my case, it was COM1.

Click "OK" and you'll be asked to choose your connection format. Figure 6 shows the setup as 9600 bits per second, eight data bits, no parity, and one stop bit. You also want to make the flow control selection “none.” After you click on “OK,” you’re ready to receive data.

The final working screen is shown in Figure 7. It shows the communication lines the PIC has sent out and shows my response, as the PC user, three different times. The last one chose to turn on the fourth LED, as shown lit in the hardware picture of Figure 3. The best way to start is to get everything connected and start the Hyperterminal connection. Then turn off the PIC circuit and back on so the “Enter which LED to light (0-7):” shows up on the terminal screen.

⇒ FIGURE 7. The final working screen showing the communication lines the PIC sent out and my response.
NEXT STEPS

You can see communication from PIC-to-PC and PC-to-PIC is not that difficult to accomplish. In this example, we controlled LEDs from the PC, but the LEDs could easily be replaced with transistors and relays so the PC could be controlling something more powerful.

Eventually, you could add switch inputs or sensors to the PIC circuit and then read the state of the switches or sensors and send the results to the PC. Now, replace the Hyperterminal with a nice GUI based program written in Visual Basic or similar and you have a professional looking PC control system.

MOVING ON FROM 31 COMMANDS

The 31 command limit sample version of PICBasic Pro hasn’t slowed us down, but if you want to use other PICs and larger programs, then the PICBasic Pro compiler may be worth the investment. It retails for $249.95, but I sell it for $10 off to my website visitors. I also sell a product called the Atom. It’s better known as a BASIC Stamp competitor, but in reality, it’s the free-to-download Atom Basic compiler and Atom interpreter chips that are the stars. The chips are either a PIC16F876A or PIC16F877A with a custom Atom bootloader self-programming code installed.

The Atom modules are the same footprint as the BASIC Stamp modules, but are built around these PIC16F876A and 877A PICs. The Atom Basic compiler is closer to the PICBasic Pro compiler, giving you access to all the internal PIC features. The only catch is to use the “free” compiler you have to connect an Atom module or Atom chip to your PC serial port or USB port (with Serial to USB adapter) to use the compiler, so it’s not completely free in the long run, but definitely inexpensive. I have those modules and chips, along with some of my own Atom module designs, at my website www.elproducts.com and it’s one of my favorite PIC development tools.

I’ll also talk more about other programming options in future columns, including some new stuff direct from Microchip and eventually touch on assembly language programming. I just wanted you to know these columns are taking you further than just 31 command sample versions.

I’m also excited to announce I released my second book to follow my PicBasic book. It’s titled Programming the Basic Atom Microcontroller and is written about the Atom chips I mentioned above. The book is written for the beginner to intermediate users who may want more than a monthly column can deliver. It is also available in the Nuts & Volts bookstore (www.nutsvolts.com). Lots of communicating going on, so I hope you are enjoying it. Thanks for reading and, as usual, email me with your feedback to chuck@elproducts.com NV
ULTRABRIGHT WHITE LED
SPECIAL LOW-LOW PRICING

Ultra bright white 5mm dia. LED. Brighter than most small incandescent lamps, more efficient, and now less expensive, it’s time to start using white LEDs for all of the lighting projects that used to be the exclusive domain of incandescent lamps. We’ve got a great deal on these water-clear LEDs. Slightly less bright than our standard ultra-bright white led (CAT# LED-75), but still quite bright. They operate on 3.0-3.5Vdc, 20mA. 15-25 degree viewing angle.

CAT# LED-121

65¢ each
100 for 50¢ each
500 for 45¢ each
1000 for 35¢ each

5VDC 3.7AMP SWITCHING POWER SUPPLY

YHi Model:
912-053700-05
Input: 100-240 Vac, 47-63 Hz, 40 Va.
Output: 5V, 3.7A.
S’ output cord with 2.5mm coax power plug, center positive. Ferrite RFI/EMI filter on cord. Detachable two-prong input power cord included. UL, CE.

CAT# PS-5372

$5.75 each

33” FLEXIBLE ACTUATOR CABLE

Actuator cable designed for use in automotive application. Similar to, but more heavy-duty than, the brake or gear shift cable on a bicycle, movement at one end of the cable produces movement over the same distance at the other end. Could be used for robotics or other mechanical control application. Stranded galvanized actuator cable is contained within a flexible steel flat wrap conduit with a vinyl jacket and polyethylene liner. Bullet cable ends prevent unraveling and keep the cable within conduit. Plastic or nylon press-fit end on one end of cable. Conduit is 33.5” long x 0.2” dia. Cable travel, 2.8”.

CAT# FAC-1

$1.25 each
10 for $1.25 each

7.2V 40MAH NIMH COIN CELL PACK

Varta #80906. Rechargeable. Use as RAM backup battery in some Dell computers. Consists of 6 button cells in series. 2.65” x 0.48” x 0.24.” 3” wire leads w/ 2-conductor socket connector, 1mm spacing.

CAT# NMH-16

$4.75 each

3-OUTPUT 24VDC POWER PLATFORM

Bank of three 24VDC power supplies in a low-profile fan-cooled unit. Input: 115/230VAC 50/60Hz, 20/10A. Outputs: 24VDC/ 500W, 24VDC/150W, 24VDC/ 150W. Dimensions: 10.5” x 7” x 1.7”. Three cooling fans. Molex connectors for input and outputs and sensing. Spec sheet available on our web site. UL, CE, TUV. These are new units in original condition.

CAT# PS-017

$95.00 each
10 for $85.00 each
100 for $72.50 each

50 MM PIEZO ELEMENT

Murata 7BB-50-1A10
Larger than usual, 50mm (2”) diameter, piezo element. 6” color-coded leads.

CAT# PE-50

75¢ each
10 for 65¢ each
300 for 45¢ each

4-15VDC PIEZOELECTRIC BUZZER

TDK# PB2130UP002A. Soft to medium-loud high-pitched tone. 0.82” diameter x 0.63” high plastic case with mounting ears. Holes on 1” centers. PC pins on 0.5” centers. Resonant frequency: 3.3 kHz. Operating voltage: 4-15Vdc. Current: 20mA. Sound pressure: 75 dB(A)/100cm.

CAT# SBZ-213

$3.50 each
100 for $3.25 each
1000 for $2.75 each

1 FARAD 5.5 VOLT “SUPER CAP”

1 Farad, 5.5 Volts. High-capacitance, memory back-up capacitor. Slowly releases its charge to provide back-up power in temporary shut-down situations. 0.78” diameter x 0.30” thick. PC leads on 0.2” centers.

CAT# CBC-17

$3.50 each
10 for $3.25 each
100 for $2.75 each

24 X 1 LCD

Wintek# WDC2401P-1GNNA. Module size: 4.25” x 0.79” x 0.3” Display size: 3.5” x 0.4”. Built-in driver. 14 pin male header, pins on 0.05” centers. Includes hook-up diagram.

CAT# LCD-111

$185 each
10 for $15.50 each

Call, Write, FAX or E-MAIL
for a FREE 96 page catalog.
Outside the U.S.A. send $3.00 postage.

March 2006

QUALITY Parts
FAST Shipping
DISCOUNT Pricing

MAIL ORDERS TO:
ALL ELECTRONICS CORP.
14928 OXNARD ST., VAN NUYS, CA 91411-2610

FAX (818) 781-2653 • INFO (818) 904-0524
E-MAIL allcorp@allcorp.com

NO MINIMUM ORDER • All Orders Can Be Charged to Visa, Mastercard, American Express or Discover • Checks and Money Orders Accepted by Mail • Orders Delivered in the State of California must include California State Sales Tax • NO C.O.D. • Shipping and Handling $7.00 for the 48 Continental United States - ALL OTHERS including Alaska, Hawaii, P.R. and Canada Must Pay Full Shipping • Quantities Limited • Prices Subject to change without notice.

MANUFACTURERS - We Purchase EXCESS INVENTORIES... Call, Write, E-MAIL or Fax YOUR LIST.
A GOOD LISTENER REQUIRES A GOOD TALKER
Some Fun With Speech Synthesis

"HELLO, PLEASE TALK."
"THIS IS SO SIMPLE, I CANNOT BELIEVE IT."

Alright, those are hardly as dramatic as “Watson, come quick! I need you!” but they are just as satisfying because they are the third and fourth things my new speech board said to me. To find out what the first two phrases were, read on.

As a beginning instructor at my college (okay, it was 1984), I became fascinated with computerized speech. I spent months playing with the Votrax phoneme synthesizer and the National Semiconductor DigiTalker. Imagine my glee when one of my recent students told me he had seen a new speech synthesizer called the SpeakJet.

I immediately searched the Internet for it, as I was interested in having my senior students do a speech project for their capstone course. I found the SpeakJet at www.speechchips.com The SpeakJet (manufactured by Magnevation) is an 18-pin DIP IC that runs on five volts and requires a minimum of parts to produce speech (just a speaker will get you started). Here are some of the SpeakJet's features:

- Programmable five-channel synthesizer
- Natural phonetic speech synthesis (72 speech elements called allophones)
- 12 DTMF tones and 43 other sound effects
- Control of pitch, rate, bend, and volume
- Multiple modes of operation
- Simple interface to microcontrollers
- Three programmable digital outputs
- Internal 64 byte buffer
- Internal programmable EEPROM
- Extremely low power consumption

I contacted Kenneth Lemieux (no relation to the publishers) at Speechchips.com, told him I thought the Speakjet was interesting, and asked if I could have a loaner to play with. He agreed, and a short while later, I received his sample. Before I had time to experiment with the Speakjet, Kenneth sent me the newest product from Speechchips.com — the TTS256 Text-To-Speech translator. This 28-pin DIP IC uses a 600-rule database to convert an ASCII text string into the correct Speakjet sequence of phonemes/allophones. This is exactly what I was looking for. I was shocked at how easy it was to get everything up and running. Here is a brief timeline of my activities once I opened the Speakjet sample mailed to me:

1. First, I studied the manual for the Speakjet Supercarrier PCB. It took about 10 minutes to familiarize myself with all the jumper settings. I looked at the schematic of the PCB at the same time, which helped me understand what the jumpers actually did.

2. Next, I spent another 10 minutes

ACKNOWLEDGEMENTS
I would like to thank Kenneth Lemieux for providing me with a SpeakJet Supercarrier board and TTS256 chip to play with, as well as his interesting thoughts on speech synthesis technology. Thanks also to Jim Hewitt for designing such an easy-to-use PCB for the SpeakJet.
wire wrapping power, ground, and speaker wires to the PCB. I set my DC power supply to eight volts (there is an on-board 7805 regulator on the PCB to make +5 volts) and connected the power lead. The speaker instantly said "Ready." Wow! What a nice indication that the PCB is working. This, by the way, was the first thing the SpeakJet said to me.

3. Next, I installed the PhraseAlator application, which allows you to control the SpeakJet via a serial connection. Figure 1 shows the application window. Clicking on a sound icon — such as any of the Robot sounds R0 through R9 — instantly plays the sound sample (allophone) on the SpeakJet. All allophones required to synthesize human speech are available in the PhraseAlator, plus many other useful sounds, such as the Touch Tone and Musical sounds. The PhraseAlator controls the SpeakJet via a serial cable from the PC’s COM port, operating at 2400 baud. The PhraseAlator requires the registered file MSCOMM32.OCX to operate. Simply place a copy of the file in the \windows\system folder and then run the REGSVR32 application to register the file, as in:

```
regsvr32 \windows\system\mscomm32.ocx
```

The PhraseAlator, SpeakJet manual, and MSCOMM32.OCX are all available via download.

4. After playing with the PhraseAlator for several minutes, listening to all the different sounds (these sounds are the second ‘thing’ the SpeakJet said to me), I then interfaced the SpeakJet PCB with the 28-pin TTS256 Text-To-Speech translator designed specifically for the SpeakJet. You just send an ASCII text string to the TTS256, such as "Hello, please talk," and the TTS256 does all the work of controlling the SpeakJet to make the required words come alive.

The ASCII text string is sent to the TTS256 in serial form also, at a speed of 9600 baud. Figure 2 shows the results of my breadboarding. The TTS256 (like the SpeakJet) requires a TTL serial waveform (eight data bits, no parity, one stop bit, abbreviated as 8N1). An IC on the SpeakJet supercarrier PCB (the eight-pin DS275) converts from RS232 levels to TTL.

By carefully tapping into signals available on the PCB, and by setting the jumpers appropriately, I was able to use the DS275 to drive the TTL signals on the TTS256. The TTS256, in turn, controls the SpeakJet with its own TTL serial connection, as illustrated in Figure 3.

5. Before connecting the Z8 Encore! XP as the host controller, I used my PC and ran HyperTerminal to communicate with the TTS256. I configured HyperTerminal for 9600 baud and 8N1, established a connection, typed in the phrase “Hello, please talk,” and pressed Enter. The words “Hello please talk” played out on the speaker. I was so pleased, I entered a second phrase and heard “This is so simple I cannot believe it” come out next.

6. Now the challenge was to get the Z8 Encore! XP to make the TTS256-SpeakJet system say something useful. I searched ZiLOG’s application notes for the XP development board, and eventually found AN0191.PDF, titled ‘Reading Temperature Using the Z8 Encore! XP MCUs.’

A companion ZIP file, AN0191-SC01.ZIP, contained the compiler project files for the temperature application. This is where I spent the most time, learning how the application worked and then modifying it to send the proper ASCII strings to the TTS256. Part of this effort required a change from ZiLOG’s standard 38,400 baud rate to the slower 9600 baud used by the TTS256. I also had to set the Flow Control parameter to None in the COM port properties.

In addition, I had to add enough of a pause between messages to allow the SpeakJet to do its talking. Sending the messages too fast resulted in dropped words, as well as portions of words pronounced incorrectly. I spun my wheels for a while trying to get the wrong project working (it was not designed for the XP) and looking at
7. When I finally heard the words “The temperature is 71 degrees” come from the speaker, I had reached my...
interfacing and application goal. The total time for my effort was under two hours.

The fact that I went from a collection of devices to a working system in such a short time is a tribute to the easy-to-grasp design of the Supercarrier board, the simplicity of the TTS256 chip (only four signals, plus power and ground, are required), the ability to use serial I/O in all devices, and my own past experience with ZiLOG tools and hardware.

DESIGN CONTEST WINNERS

Now that you have seen what I did with my Z8 Encore! XP development board, take a look at what others are planning on doing. The following readers responded to my November 2005 column’s offer of a free Z8 Encore! XP development kit by submitting detailed proposals describing their intended application. Table 1 lists the individuals and brief descriptions of their proposals.

It will be interesting to see these projects become actual working circuits. I wish all the winners the best of luck and hope their interfacing goes smoothly.

While I chose to use my Z8 Encore! XP development board to control the TTS256 and SpeakJet, the BASIC Stamp, PIC, or any other microcontroller with serial I/O will also do the job. The features packed into the TTS256 and SpeakJet should keep the most dedicated hobbyist busy.

ABOUT THE AUTHOR

James Antonakos is a Professor in the Departments of Electrical Engineering Technology and Computer Studies at Broome Community College, with over 29 years of experience designing digital and analog circuitry and developing software. He is also the author of numerous textbooks on microprocessors, programming, and microcomputer systems. You may reach him at antonakos_j@sunybroome.edu or visit his website at www.sunybroome.edu/~antonakos_j
March 2006

Toroidal Terminals
Spark Gaps and Electrodes
Includes plans for two of our coils. Parallel for 60 & 120 ma.
Parts for Tesla Coils

What is a Magnetic Amplifier?

Between the vacuum tube and the transistor came another electronic control technology, now all but lost. Engineers of the 1950’s believed the simple and rugged magnetic amplifier would replace the fragile vacuum tube in all of its functions. A mag amp is so simple you can build the device yourself. Invented in the US, the mag amp was perfected by Nazi engineers for V2 rocket robotics. A mag amp can handle power levels that would destroy any tube or transistor. It is EMP-proof. Get the only literature on the mag amp now available:

Magnetic Amplifiers another lost technology
by the U.S. Navy engineers who were passionate boosters of the mag amp, this old tech manual has been edited, totally reset, and redesigned by Tesla technology author, George Trincka. (See his mag-amp feature in Nuts & Volts, February, 2006.)

$8.00
booklet, postage included

Magnetic Amplifier
Bibliography
a supplement to the above
Over five hundred citations of mag-amp related patents, scientific and technical articles, military documents, from 624 BC to 1951. A fascinating browse and a must for research.

$8.00
booklet, postage included

get both for $15.00
postage included

(877) 263-1215
guaranteed

tesla@teslapress.com
check, cash, or PayPal
(sorry, no credit cards)

High Voltage Press, P.O. Box 1525,
Portland, OR 97207, publisher of Tesla Coil, Son of Tesla Coil, Tesla: the Lost Inventions, Radio Tesla, and Tesla: The True Wireless by George Trincka. Get the complete set of 7 Tesla and Mag Amp titles for only $54.95, postage included.
teslapress.com
amazon.com
I’m not joking !!!
Only $50 for >>
* 2L Prototyping start at only $50
* Price of 2L down to $0.13 per square inch at small qty
* All with solder mask/silkcreen
* 7 days delivery, fast turn available
* Instant quote, no hidden prices
* Free professional checking
* All boards are UL proved

<<It’s true !!>
Your PCBs are made in a factory equipped with these machines!!!
* capability up to 40 layers
* 3 mil track/space
* blind & buried vias
* various materials
* high Tg, impedance control

More:
* E-testing provided
* Free re-fab for E-tested faulty boards
* Free gifts (battery, bread board, multimeter, solar battery...)
 for every new customer

RF Modules

www.EzPCB.com
sales@ezpcb.com

The PICAXE is no longer the best-kept secret in the US!

We proudly announce our appointment as distributors of PICAXE products in the US. We carry a full stock of almost all the PICAXE products, from chips to prototype boards.

The PICAXE is the best learning tool for the beginner in microcontrollers, as well as for the seasoned hobbyist and design engineer. The PICAXE line of products is in EVERY school in the U.K. and other countries of the world. We carry a full line of boards, as well as chips and peripherals.

Our latest product, shown above, is the PICAXE Experimenter's kit; but we have gone one step further! With the board, we provide a powerful PICAXE-28 chip, a comprehensive project manual, and all the parts to build most of the projects in the manual. Try it!

World Educational Services
Visit us at www.picaxe-usa.com
For further info, please call 877-437-7080
or email us at masc1@usa.net
I’ll address three factors in this month’s column. The first is the surface winds and their effect on filling and launching a weather balloon. The second factor is how the atmospheric composition and pressure on the surface will affect the initial volume of a weather balloon. With this in mind, let’s look at what it would take to launch a near spacecraft on Mars. Later, we’ll briefly look at launching a near spacecraft on Titan.

I’ll address three factors in this month’s column. The first is the surface winds and their effect on filling and launching a weather balloon. The second factor is how the atmospheric composition and pressure on the surface will affect the initial volume of a weather balloon. The last factor is how atmospheric pressure changes with altitude. This factor is important because it determines the maximum altitude that a weather balloon will reach before bursting.

FILLING A WEATHER BALLOON ON MARS

Refer to the weather report above. When a near space group fills a weather balloon, they prefer a surface wind of zero knots. Since a balloon acts like a kite sail, it blows around even in the slightest wind. A balloon can successfully be filled in winds of a few knots (a knot is equal to 1.15 miles per hour), but the measurement of the balloon’s lift is less accurate. This reduction in accuracy is a minor problem, but it does result in a less predictable ascent speed and maximum altitude for the balloon. Wind speeds greater than 10 knots will make filling a balloon nearly impossible and possibly dangerous. If the balloon doesn’t bounce around and burst during the filling, then it will yank the balloon crew around and possibly give someone a string burn as a result.

One benefit of filling a balloon on Mars is that the air pressure is much lower than it is on Earth. This is because the wind creates a force that scales by the square root of the air pressure. This means if the air pressure is reduced by 75% to only one quarter its original pressure, then the wind feels like it’s only blowing half (the square root of one quarter) as fast. Average air pressure on the surface of Mars is just under seven millibars (mb). On Earth at sea level, the average air pressure is 1,013 mb. Therefore, Mars has an atmospheric pressure that is 0.7% that of Earth. So winds on Mars feel like they’re only blowing 1/12th as fast as they do on Earth. Satellite measurements indicate that the strongest winds on Mars are between 67 to 111 mph. This means the maximum winds on Mars only feel like they are blowing at between 5.6 to 9.3 mph.

Wind speeds in the range of 100 mph and higher will create dust storms on Mars. During a dust storm, visibili-
ties can drop to only a few meters and the dirt will sandblast astronaut’s visors. So to safely launch a balloon during a dust storm, astronauts will have to fill the balloon inside of a structure, like a shed. After they finish filling the balloon, they’ll carry it outside and release it. This is the same way the National Weather Service fills and launches their radiosondes.

The Mars Pathfinder, which landed on Mars in July 1997, carried a set of wind socks on its ASI/MET mast. Pathfinder’s windsock data indicated that the Martian winds are at their strongest from morning to noon and weakest in the late afternoon and early evening.

So it appears astronauts can fill and launch weather balloons on Mars. It will be easier if they wait until after noon local time to fill the balloon. But if they want to launch during a dust storm, they’ll need to use a filling shed.

THE COMPOSITION OF THE MARTIAN ATMOSPHERE

Let’s assume our astronauts want to launch a four pound (1,816 grams) payload and 6.6 pound (3,000 grams) weather balloon. Mars has a surface gravity that’s 38% of Earth’s gravity. Therefore, on Mars, the payload will only weigh 1.5 pounds and the balloon 2.5 pounds. For our weather balloon to launch this payload, it must contain enough helium to displace at least four pounds of Martian atmosphere (the weight of the payload and balloon).

Because gravity affects the weight of air and the payload alike, we won’t calculate weights on Mars, but just use mass. So in this case, the balloon must displace an atmospheric mass of at least 4,812 grams before the balloon can begin lifting the payload.

An Avogadro’s number of gas molecules at standard temperature and pressure (STP) occupies a volume of 22.4 liters and has a mass that is equal to the gas’ atomic weight. Did you get all of that? I guess I should explain a few things about that sentence.

Avogadro’s number is 6.022×10^{23} and it’s the number of molecules in one mole of any chemical. One mole of a chemical is an amount of that chemical that has a weight in grams that’s equal to its atomic mass. So one mole of hydrogen gas weighs two grams, occupies a volume of 22.4 liters at STP, and contains 6.022×10^{23} molecules (remember that hydrogen gas is diatomic, or contains two hydrogen atoms).

Standard temperature and pressure is a temperature of 0 degrees C (or 273 Kelvins) and a pressure of one atmosphere (1.013 mb). A Kelvin is equal to a degree Celsius. The only difference between them is that the Kelvin temperature scale begins at -273 degrees Celsius, or the temperature of absolute zero, while the Celsius scale begins at the freezing point of pure water. The Kelvin temperature scale doesn’t use the word “degrees” like Fahrenheit or Celsius. So please say the temperature is 273 Kelvins and not 273 degrees Kelvin.

The Martian atmosphere is 95% CO$_2$, 3% N$_2$, and 2% is trace gases. We’ll treat the Martian atmosphere as if it were pure carbon dioxide since the nitrogen and other trace gases only affect the density of the Martian atmosphere by a small amount. Since the chemical formula of carbon dioxide is CO$_2$, its atomic mass is equal to the atomic mass of one carbon atom plus two oxygen atoms. By ignoring isotopes, I calculate the mass of a carbon dioxide molecule to be $(1 \times 12) + (2 \times 16)$, or 44 atomic mass units.

So an atmosphere of pure carbon dioxide has a mass of 44 grams per 22.4 liters at STP. Helium has a mass of four grams per 22.4 liters at STP, so 22.4 liters of helium will displace 40 grams of carbon dioxide at STP. However, the air temperature at the Martian surface is -14 degrees C (-259 K) and the pressure is seven millibars. So we must adjust the density of the carbon dioxide atmosphere on Mars.

You probably learned in your high school chemistry class that decreasing the temperature of a fixed amount of gas causes it to contract in volume and that decreasing the air pressure acting on it causes it to expand in volume. The equation used to calculate the volume of a gas outside of STP is:

$$V_f = V_i \times \left(\frac{T_f}{273}\right) \times \left(\frac{1013}{P_f}\right)$$

where

- V_f is the final volume
- V_i is the initial volume
- T_f is the final temperature
- P_f is the final pressure
Therefore, the volume required to displace 40 grams of a CO₂ atmosphere at Martian temperature and pressure is no longer 22.4 liters but, 22.4 liters * (259/273) * (1013/7) or 3,076 liters (108.6 cubic feet).

To lift our 10.6 pound Earth payload (which is the balloon and payload weight), our astronauts will need to fill the balloon to a volume of 13,066 cubic feet. This is equivalent to a spherical balloon with a radius of 14.6 feet or a diameter of 29.2 feet. This is well within the capabilities of a 3,000 gram balloon which can inflate to a diameter of 42.6 feet before bursting. But before we can actually launch the balloon, the astronauts will need to add a little extra helium to generate a positive lift. However, we'll ignore that for this article since the additional volume is small compared to the initial volume of the balloon. Now let's have our astronauts release the balloon and watch it climb into the morning skies of Mars.

ATMOSPHERIC STRUCTURE AND MAXIMUM BALLOON ALTITUDE

At the NASA Glenn Research Center (GRC) website, I found the equations describing the air temperature and pressure of the Martian Standard Atmosphere (MSA). The MSA is a mathematical model describing the average Martian atmosphere as a function of altitude. According to the webpage (listed in the sidebar), the atmospheric pressure of the Martian Standard Atmosphere is calculated by the following equation,

\[
P = 14.62 \times e^{(-0.00003 \times H)}
\]

where

- P is pressure in pounds per square foot (PSF)
- H is the height in feet

Personally, I prefer millibars of pressure and feet of altitude. (That sound you just heard was that of an SI purist having a minor heart attack after reading that last sentence.) The atmospheric temperature of the Martian Standard Atmosphere is calculated by:

\[
T = -25.68 - 0.000548 \times H \\
T = 10.34 - 0.001217 \times H
\]

where

- T is the temperature in degrees Fahrenheit
- H is the height in feet

These equations were developed by the observations of the Mars Global Surveyor, a spacecraft that is still functioning in orbit around Mars.

Figures 2 and 3 show charts of air pressure and temperature on Mars as a function of altitude that I generated from these equations.

Both air pressure and air temperature will affect the volume of the balloon. So in my spreadsheet, I combined the effects of pressure and temperature into a new column that calculates the volume of the balloon in ratio to its initial volume on the surface. Figure 4 shows the chart from that column in the spreadsheet.

In these charts, I assumed the temperature and pressure of the helium inside the balloon will be the same as the temperature and pressure of the atmosphere outside the balloon. You'll note from the chart that the volume of the balloon begins...
to decrease as it approaches 100,000 feet. That surprises me and now I have to wonder how accurate the pressure and temperature equations are at extremely high altitudes. But we’ll run with these numbers anyway since we’ll see shortly that the weather balloon will never get that high. By the way, the spreadsheets I used to create these charts are available on the *Nuts & Volts* website (www.nutsvolts.com).

According to Kaymont (the company where I purchase my balloons), the maximum volume of a 3,000 gram balloon is 40,479 cubic feet. So our astronauts’ 3,000 gram balloon carrying a 1.5 pound payload (under Martian gravity) can expand 40,479/13,066, or three times in volume before bursting. According to my chart then, the balloon will reach an altitude of 48,000 feet before bursting. That’s the same as my lowest altitude near space flight on Earth. The average altitude of my 54 flights (all on Earth unfortunately) is 84,350 feet. So it’s apparent that near space flights on Mars are going to be a lot lower than on Earth. This really isn’t too surprising though, since the surface pressure on Mars is about the same that we see at an altitude of 103,000 feet on Earth.

Let’s quickly test the accuracy of this chart and its conclusions. So as a test, I have created a spreadsheet for the Earth’s standard atmosphere and with data that was collected on one of my flights from August 2003. I used the temperature and pressure from both my flight and from the Standard Atmosphere to calculate the diameters of two balloons and developed the chart in Figure 5.

What strikes me the most about this chart is that the balloon volumes follow each other very closely until the balloon reaches 50,000 feet. Above that altitude, the standard atmosphere predicts the balloon will expand faster than my actual flight data indicates.

Why is this? Is the real balloon having difficulty expanding above 50,000 feet? The ascent rate for this flight is constant through the 50,000 foot transition, so the balloon can’t be experiencing difficulty in expanding in volume (if it did, the ascent rate would slow down). Besides, the air pressure changes smoothly throughout the flight, with no abrupt transitions. But there is one thing special about 50,000 feet: the stratosphere begins there (the stratosphere is lower in the winter, but this was a summer flight).

In the troposphere, the air temperature decreases with altitude. But in the stratosphere, the presence of ozone makes the air warmer. There’s more solar ultraviolet radiation higher in the stratosphere since it’s the ozone that is removing it. Helium doesn’t stop any ultraviolet that I know of, so I suspect it’s transparent to ultraviolet. Also, the balloon is white and its color may be reflective to the sun’s increased ultraviolet radiation. No doubt there are errors in my temperature and pressure sensors. Perhaps my temperature sensor is less accurate at low air pressure. Out of these factors, which prevails?

This calls for an experiment (I love it when missions generate more questions than they answer). In the future, I’ll measure the temperature and pressure inside the balloon and compare it to conditions outside the balloon. To further resolve this issue (or perhaps to muddy it further), I’ll also record images of the balloon as it ascends. I can then calculate the true volume of the balloon from the diameter of the balloon images.

There are two minor (I hope) errors
that will creep into this volume calculation of the balloon. The first is that the equator of the balloon will rise higher above the camera as the balloon expands. This means the diameter of the balloon will be slightly larger than is indicated in the photographs. The second is that balloon’s skin tension will compress the balloon into a smaller volume than air temperature and pressure would like to make it.

To close out this Martian exercise, I calculated what the balloon would see at 48,000 feet above the Martian surface. First, the horizon will be depressed by 3.8 degrees. In other words, the horizon will be 3.8 degrees lower than it is from the surface of Mars. So from one horizon, over the zenith, to the opposite horizon, the sky will span 187.6 degrees, rather than the 180 degrees that it does from the surface of Mars.

Second, from the balloon’s perspective, the distance to the horizon will be 132 miles away from the point beneath the balloon. On Earth, a balloon at 48,000 feet will see a horizon that is 268 miles away from the point beneath the balloon. The greater distance on Earth is due to Earth’s larger diameter and less strongly curved surface.

Balloons Over Titan

I couldn’t find an equation for the standard atmosphere for Titan. So in place of an equation, I took measurements from a chart of Titan temperature and pressure and wrote them into a spreadsheet. I then added a trend-
line to the resulting chart and had Excel determine a sufficiently accurate equation for the standard atmosphere of Titan (see Figures 6 and 7).

One thing you’ll notice about these charts is that the atmosphere on Titan becomes thinner more slowly with altitude than it does on Earth (check the sidebar for more information). This is due to Titan’s lower gravity, which is something like 16% of Earth’s gravity. The rate at which an atmosphere becomes less dense with increasing altitude is referred to as the atmosphere’s scale height.

The atmospheric pressure on the surface of Titan is 50% greater than on Earth, or 1,500 mb. The air temperature is 96 Kelvins, or right at the temperature that nitrogen liquefies. The composition of the Titan atmosphere is around 90% nitrogen and 10% trace gasses, like methane. But I’ll stick with a 100% nitrogen atmosphere to keep the calculations simple.

The mass of a mole of nitrogen (N₂) is 28 grams. So a mole of helium displaces 24 grams of atmospheric mass. At a surface temperature of 96 Kelvins and pressure of 1,500 mb, I calculate that 5.3 liters of helium gas will displace 24 grams of nitrogen. To lift the 10.6 pound payload (the mass of the balloon and near spacecraft) will require a balloon with a volume of 1,063 liters or 37.5 cubic feet. This implies that a 3,000 gram weather balloon can expand 1,079 times larger before bursting!

In the chart in Figure 8, you can see that to climb to an altitude of 100,000 feet above the surface of Titan, the balloon will only expand 4.5 times (compare this to 100 times on Earth). So the maximum volume of the balloon will only need to be 169 cubic feet. A balloon this small is lighter in weight than a 3,000 gram balloon and if we use the smaller balloon, less helium will be needed to begin with.

Indeed, we may find it difficult to prevent the balloon from rising too high in the Titanian atmosphere. Our balloon could easily spend the majority of its flight above the smoggy clouds enshrouding Titan. This would be great for an atmospheric sounding, but it would be a disaster for a mapping mission.

REFERENCES

- Geology of Mars
 www.lukew.com/marsgeo/eoelian.html

- Mars Atmosphere Model
 www.grc.nasa.gov/www/k-12/airplane/atmosmre.html

- Titan Meteorology
 www.astro.uni-bonn.de/~dwe/dweid/

- Pathfinder Weather Data
 mars.sgi.com/ops/asimet.html
CLASSIFIED ADVERTISING

$50.00 Per Inch — No extra charge for color.

Classified ads must be paid in full prior to the closing date or the ad will be placed in the following issue, at our discretion. Minimum charge is one inch with half-inch increments. No proofs will be sent. Ads to be typeset by Nuts & Volts must be received by the closing date. Supplied ads must be received by the artwork due date.

Call 951-371-8497 or email classad@nutsvolts.com for closing dates, available sizes, and special prepay discount offers.

COMPONENTS

RF PARTS CO.

Tubes, Transistors, Power Components.
Email: rfp@rfparts.com • Web: www.rfparts.com
800-737-2787 Fax 888-744-1943

IV KITS & CHIPS & CODE

FREE SAMPLE

POSTPAID (USA ONLY)

INDUSTRIAL VENTURES

POB 245
132 E. PROSPECT STREET
WALDWICK, NJ 07463-0245

ROBOTICS

ROBOTIC CONTROLLERS

Robot Bases, PIC, OOPic, Stamp
www.oricomtech.com

Beagle Board

World’s most flexible development board for electronics and robotics.

Large breadboard area, multiple modules:
• PICMicro, 28 and 40 pin
• Power supply, 5V, 1A
• LCD and 4-switch interface
• 8-bit logic probe
• RS232 (DCE or DTE) interface
• Pulse generator, 0.1Hz – 1MHz
• Step motor controller/driver
• DC motor controller/driver

BR Beagle Robotics, LLC
www.beaglerobotics.com

LCDs/DISPLAYS

1.5 Inch 128x64 Graphic OLED

* White on Blue background 120x120 LCD
* High contrast & wide viewing angles
* HD44780 controller built-in
* Add serial converter kit for $14.95 each.

Order online at: www.411leds4you.com

www.nutsvolts.com

EXPERIMENTERS SOURCE

Trans-Wire

* Mix & match colors, lengths
* 22 Awg stranded: $6/ft.
* Don’t pay $10-15 for 100’ rolls
* Trans-Wire price is $5.
* Cable ties & other goodies

www.transolve.com
john@apk.net

FREE 120 Pg CATALOG

Electronic components, kits, test equipment, tools, and supplies for hams, hobbyists, and businesses. Many hard-to-find items like variable capacitors, vernier dials, coil forms, magnet wire, and toroids.

Ocean State Electronics
www.osselectronics.com

ANTIQUE RADIO

AWA

Antique Wireless Association

The original and largest historical radio-collector group. Publishes AWA Journal covering history, restoration, broadcast equipment, ham radio, telegraph, radio news, and more.

www.awa.org

Check us out:
http://www.antiquewireless.org
or PO Box 106, Dept. 4
Stafford, NY 14143

MISC. ELECTRONICS FOR SALE

BANKRUPTCY

Thousands of speakers, speaker parts, glas, baskets, magnets, xovers, enclosures, transformers, coil winders, demagnetizers, X, Y, Z coordinate match, grid equipment, case scaler, foam packaging system, test equipment, induction heaters, MORE.

www.nutsvolts.com

DESIGN/ENGINEERING SERVICES

ONE PAS, INC. The Future of Prototyping

Surface Mount circuits made simple. Now you can work with the smallest PIC or Op Amp quickly and easily!

See our entire line of thru-hole and SMT / SMD boards designed for the total circuit approach to prototyping in ONE PASS. We also carry the most complete line of PCB drill bits in the world, for making your own boards. The future is here today, get it now at ONE PAS, INC.

www.onepasinc.com

INFOTECH CONTROLS

Complete Product Development from Concept to Completion

Consumer or Industrial Product Design

Update - Modify - Re-Engineer existing Equipment/Products

Submit Requirements
email: infotechcontrols@comcast.net

Call 724-317-8865
Mail to PO Box 2022
Lower Burrell, PA 15068

www.gsprelectronics.com

Circuit board layouts
Prototype assemblies

Do You Repair Electronics?

For only $9.95 a month, you’ll receive a wealth of information:

- Repair data for TV, VCR, monitor, audio, camcorder, & more.
- Over 100,000 constantly updated problem/solutions plus...
- TechsChat live chat room.
- Private user discussion forums.
- Automated email list server.
- UL/FCC number lookup.
- Hot tips bulletin board.
- Manufacturer information.

To access RepairWorld, direct your internet browser to http://www.repairworld.com

RepairWorld.com

Electronix Corp. 1 Herald Sq. Fairborn, OH 45324 (937) 978-9878
INTERCEPTING COMMANDS

I have been reading Jon William’s article on the Playstation Robot controller. I wanted to contribute my idea for intercepting PS2 commands. I have successfully used this method to intercept the command to put the controller into analog mode.

The PS2 controller interface is a standard SPI interface. I configured an Atmel AVR microcontroller as a SPI slave leaving the I/O ports tri-stated. A short routine reads the SPI data into the SPI data register and transfers the data to the UART to hyper-terminal on my PC. Switching the AVR MISO input between the command and data lines allows the game console data and the controller’s response to be viewed. When the action you are trying to replicate occurs, the change in the Command/Data sentence is the command responsible for this action.

Brian Awalt

THIS MAY HERTZ ...

Regarding the answer to the Q&A question “Ghost of a MM5369 Clock” in the January 06 issue ...

In addition to the ELM440 IC replacement for the MM5369 60 Hz generator (NV Jan 06, pg. 14, Craig Kendrick Sellen), Microchip Technology, Inc., has an article published — DS40160A/4_008 — with the title An Enhanced MM5369 - 60 MHz Generator. The 60 MHz is obviously wrong and should be 60 Hz, but the article gives all the details to program a PIC12C508 for a 60 Hz and a 1 Hz output.

Duco W. Weytze

SPECIAL INTERESTS?

I am a retired engineer and have been reading or subscribing to your magazine for as long you have been publishing and I have to agree with Ruben Lara in your December issue Reader Feedback. It appears to me that the computer geeks and robotics geeks have taken over your magazine to the exclusion of us experimenters and project construction enthusiasts who like to build simple analog and digital circuits.

I do not know how to program Stamps and have no desire in the future really to learn. I also can see no practical value on how to build a electronically run Dremel tool as a milling machine.

One of the things that originally caused me to read your magazine was the circuit design information and drawings for various simple apparatus and fun gadgets to build. I especially like TI Byers’ Q & A and that is primarily why I keep taking your magazine. Don’t let the special interests ruin what was a terrific magazine.

Harry J. Kennedy
Tetsujin Just Got Better!

Servo's Iron Man competition returns! Servo, ComBots, and the Robotics Society of America have combined two great events to make an even better one (kind of like chocolate and peanut butter...)

Join us this June for Tetsujin at ROBOlympics 2006. Man and metal meet in this spectacular event. This year there are three Tetsujin challenges - Weightlifting, Dexterity, and the Walking Race. Show us your best stuff in the Servo sponsored event.

In addition to Tetsujin, ROBOlympics offers over 60 different competitions, including Fire-Fighting, Maze Solving, Biped Race, Robot Triathlon, Line Skalom, Ribbon Climber, Vex Open, Lego Challenge, Lego Open, Aibo Performer, Balancer Race, Walker Challenge, Best of Show, Robornagellan, IRRF Challenge, Bot Hockey (two classes), Soccer (eleven events), Art Bots (four classes), Sumo (five classes); Woots & Snarks, Handy Board Ball, BotsketBall, BEAM (three classes), Robo-One (six classes), and of course, Robot Combat (nine classes from 340 lbs to 150g and two autonomous classes.)

At the 2005 event, over 650 engineers from 13 different countries competed! Join us this year in the world’s largest all-events robot competition. No matter which events you compete in, you’ll meet hundreds of robot builders from around the world, see new robots you never knew existed, and learn more about robots than you imagined possible! Don’t miss out – register on-line before May 16th.

www.robolympics.net
San Francisco, California: Fri-Sun, June 16-18, 2006
I am plagued with trying to determine when my oil burner ignition transformers have died. These step-up transformers generate 9,300 VAC at about 25 mA (new style electronic types aren’t a problem: they die dead). In the old days, I used to test them by shorting a screwdriver across the secondary to see if the sparks came from the screwdriver blade or from broken down insulation on the secondary winding (been knocked off my bucket a few times, but not dead yet!) Then they drop to 6-7 kVAC output, and will not reliably ignite the oil burner (though will still ohm out correctly). Does anyone have a good circuit (read: simple and cheap) that can load these and give me a go/no-go reading on their efficacy?

#3061 Anonymous via Internet

I am currently interfacing my PIC project to several mains relays using an opto-isolated triac (with zero crossing). The current draw required by the mains relay is only 11 mA and the opto-isolated triac is rated at 100 mA. I am currently using the interface and it works perfectly with no heat from the ICs.

My question is: Do I need to use zero crossing for relay control? And, I keep hearing about a snubber circuit for inductive loads. Do I really need to use a snubber circuit for just a relay?

If so, what would be the simplest design?

In the meantime I will continue to use my interface as it works fine.

#3062 Paul Webley

I need cross references to standard part numbers for these RadioShack transistors. RadioShack’s website was a lost cause.

NPN, RS2010, Silicon, High Gain, 276-2010
PNP, RS2034, Silicon, General Purpose, 276-2034
NPN, RS2042, Silicon, Power, Darlington, 276-2042

#3063 James Tadlock Espanola, NM
mr_tadlock@hotmail.com

I have six six-volt batteries wired in series to achieve 36 volts. I have tapped the neg to the pos across two batteries and got 12 volts. Can I wire all three (sets of two) and get 12 volts with lots of amps and run a large inverter? That would be running series and parallel in one operation. I would have to be using both sources at
the same time. Maybe switches would work?

#1 To safely and efficiently use your 36 volt battery “pack” to run an inverter, you might consider a DC to DC converter. “Solar Converters, Inc.” (519-824-5272) www.solarconverters.com sells Model EQ 12/36-50 that puts out 12 volts regulated DC at 50 amps from a 36 volt DC input. Also check out www.jameco.com Catalog Part #217269CC which takes 19-36 volts DC input and puts out 12 volts @ 12.5 amps.

Bob Lindstrom, Broomfield, CO

#2 Yes, you can wire the six batteries in series-parallel to obtain 12 volts with lots of amps. You can either parallel three sets of two batteries (in series) each, or else connect in series two sets of three batteries (in parallel) each.

Yes, you can use some form of multipole switching to change from a 36V array (series) to a 12V one (series-parallel).

What you will not be able to do is to use the two voltages at the same time. The switch will be in either the “36V” position or in the “12V” one.

Also, to charge the batteries the switch should be in one of the two positions (according to the charger’s voltage and current). To prevent accidents, you will have to add one pole to your switch so that the charger won’t be connected if the batteries are in the “wrong” configuration.

And, of course, the switch should be rated for the system’s voltage and current. To open a DC circuit – even at moderate voltages like 36V – is no easy job.

If you want to run your 36V loads and an inverter simultaneously, you should get an inverter that runs on 36V. It will be not only easier to connect, but it will use thinner wires and be more efficient.

Ernesto Cerfoglio
Buenos Aires, Argentina

[#1063 - January 2006]
I have a digital caliper. I would like it to display measurements in a third way besides inches and millimeters. Are there digital calipers that have generic microcontrollers that could be reprogrammed or replaced with my own programming? If one of them has something like a generic PIC in it, then maybe ...

Many digital calipers have a data port hidden under a small cover. You can interface the caliper to a desktop computer using an appropriate cable (ex. Mitutoyo Connecting Cable #905409 www.mitutoyo.com) and a converter box (ex. Smart Cable #200-50R9F www.qualityonsale.com). This can be an expensive proposition given the cost of the cable is around $40.00 and the cost of the converter box is around $170.00. The good news is that the converter box information comes with a sample QBasic program that illustrates how to read the caliper value and display it on the screen. Good luck.

Bill Ryder
Victoria, MN

Correction
There was an error in the parts list of my answer (in the January issue) to the Aquarium pump turn off issue. The value of R1 should be 330K, not 3.3K.

The corrected parts list.
C1 1000 uF 25V
D1 1N4001
K1 Omron G6RN-1-DC12 (Mouser P/N 653-G6RN-1-DC12)
Q1 2N6427 NPN Darlington (Mouser P/N 512-2N6427)
R1 330K
R2 680K
S1 Push button momentary switch

Ed Schick
Harrison, NY

Around April or May, I noticed that the reception for the higher numbered UHF channels seemed to be getting worse. During Summer, this problem seemed to worsen.

Thinking about it carefully now, last Fall we got good to fair reception on channels 36 and 29 and excellent reception on channels 23, 19, and 17. Now it has changed to fair reception on channel 23 and passable on 17. All the others are basically unusable. Clearly, something has changed as the temperature and weather are similar now to when the antenna was installed.

VHF reception has not changed since installation and remains very good.

#1 You have a bad case of high frequency loss. It is important that you start methodically checking only one suspected part at a time. Here are possible trouble spots: You might have a bad “F” connector at the matching transformer, or the RTV rubber has developed a hairline crack around the coax connector or around the twin lead pigtail on the transformer, letting in water. Silicone does not stick very well to most plastics. Also, with binoculars, look at the connections at the antenna terminal block and the antenna element insulators. Is there any debris such as cobwebs, bird droppings, etc? How old is the coax? If you used the old stuff, dirt or corrosion at the “F”

[=1062 - January 2006]
I have searched for the Data Sheet on TI's TMS9916NL chip. Any help would be appreciated.

#1 The TMS9916 is from Texas Instruments, and it's part of their 9900 series (circa 1978). The 9916 is a Magnetic Bubble Memory controller.

The following link provides a brief discussion on the part and its use: www.decodesystems.com/tib0203.html

Briefly, Bubble memory was the first attempt to create RAM that would retain its data after power was removed, a sort of very early Flash memory.

Joe O'Brien
Ladera Ranch, CA

#2 I contacted TI tech support; they were very helpful and found this 25 year old data sheet, which I have posted at http://us.share.geocities.com/russik/tms9916.pdf

Russell Kincaid
Milford, NH

[#2061 - February 2006]
Last Fall, we put up a new RadioShack long range VHF/UHF VU-190 antenna and rotator.

March 2006 NUTS 'N VOLTS 101
connector could act like a sponge for moisture. Inspect the full length of the coax for anyplace the insulation could have been cracked or rubbed off from wind motion. One tiny pinhole could be the culprit. Are there any new kinks in the cable? Any new splices? High numbered channels don’t like sharp bends. Bad or leaking splices can act as RF filters. Check the lightning arrestor. Unscrew the coax and temporarily screw in an “F”splicer in its place to see if the arrestor is not partially shorting out. You might temporarily hook up your old antenna (on the ground) and see if the high channels are getting through the distribution amplifier. Lastly, your new antenna could have become defective. I have serviced many antenna systems and these suggestions cover places where I have found trouble.

Merv Fulton
Tulare, CA

#2 This problem is similar to my experience with a popular consumer level 10 element FM broadcast receive antenna. My antenna also worked fine for about three months and then the signal level began to fade. After 10 months, the antenna couldn’t reliably receive a distant FM station that it was intended to receive. When taken off of the tower and inspected, I found that corrosion had set in resulting in over 30K ohm between the first driven element and the third driven element and over 1M ohm between the first driven element and the fifth driven element. The cause of the problem was steel rivets which attach the driven elements to insulators on the boom of the antenna and alsoattach to aluminum jumpers connecting each driven element to the next. This resulted in a series of nine corroded connections between the feed point and the last driven element on each side of the antenna. I had to replace this antenna for my employer with a professional model, but I was able to salvage the corroded antenna for use at my home. I used aluminum wire from a local hardware store in a wrap to bond the driven elements to the aluminum jumpers that connect between each. Take your antenna down and use an ohmmeter to determine if there is any resistance between active elements. The aluminum wire fix is a good one. Small gauge aluminum wire is the best to use and it doesn’t hurt to brush the elements with emery cloth before wrapping the wire on it.

Mike Heilman
Monmouth County, NJ

#3 I looked up the VU 190 antenna, it looked identical to the Channel Master that I recently bought. I took mine out of the box and checked the fastenings; they are steel. I guarantee that the problem is corrosion. My antenna is covered with grease, so the manufacturer knew it was subject to corrosion and did not want it to show before I got it installed. I don’t think I will even put this antenna up. It is not going to last 17 years like the last one.

Russ Kincaid
Milford, NH

#4 I would strongly suspect that the balun transformer and/or coax has gradually absorbed water, causing an attenuation of the signal. This would affect high frequency signals more than lower frequencies, and would get worse as more water is absorbed. The outer braid of coax will act like a wick, so a small break in the insulation (or at the connector) can cause a large amount of water to be sucked into the cable. My guess is that when the antenna was replaced, the appropriate steps were not taken to seal the connection between the balun transformer and the coax. Alternatively, the balun could be defective and water may have seeped into it. The coax would be my first choice. Gradually, as a greater and greater amount of water seeps in, the performance of the cable is degrading. RG-6 is not much more than
RG-59, and offers noticeably better resolution on analog video signals. Therefore, replacing the cable would be beneficial in any case. If I were you, I'd replace the coax. I'd pick up a spare balun too, and if the new coax does not immediately solve the problem, replace the balun as well.

You will then want to carefully seal the connection between the coax and the balun transformer. The best method is to use a product called “coax seal.” This is a rubbery material that is putty-like. It sticks to itself to form a continuous layer of protection a short time after installation. You’ll want to start at the coax and make sure at least 1/2” of cable is covered. Proceed with an overlapping spiral wrap up to the balun, with the coax seal at least covering the threads on the connector of the balun, and preferably overlapping onto the body of the balun. This offers much better protection against water than the rubber boot often provided with new baluns.

Alternatively, you can tightly rap the coax and balun with multiple overlapping layers of black electrical tape. Start at the coax and wrap at least an inch of the coax and with tight overlapping wraps cover all the way up onto the body of the balun. Next do a second layer starting at the balun and wrapping in the opposite direction. This layer should begin and extend further than the first wrap. Do a third layer using the same technique.

I’d also advise that you arrange the coax and balun so that water drips away from them. Typically, this means making a “drip loop” so that the low point is a loop of coax. This will serve to draw water away from the connector and act as an additional preventative measure to prevent your new coax from being ruined. When arranging your drip loop, do not use wire ties to hold the cable in place as ultraviolet light will cause them to fail after a few years. Better to use speaker wire or something similar (solid copper wire is perfect for this, but use insulated wire to prevent eventual damage to the coax from chafing).

Best of luck. There is nothing like getting crystal clear free reception by installing a good antenna system.

Rolf Taylor
Cleveland Hts, OH

I have a 30 mm mechanical watch that has become magnetized. Will the Velleman mag/demag work to remove the magnetism? Also, is the slot large enough to fit a 30 mm watch?

The Velleman unit is 50x50 outside, so it is not likely to accommodate a 30 mm watch. However, you can make your own demagnetizer. Wind some insulated wire around a peanut butter jar (or any jar that the watch will fit in). Connect a 100 watt lamp in series with the coil of wire. Tape all connections so you don’t get shocked. Plug into 120 VAC, put the watch in the jar, and slowly remove it to three or four feet before unplugging the power. If all the magnetism is not removed, you need more turns, but I think 20 turns would be sufficient.

Russ Kincaid
Milford, NH

[2063 - February 2006]
Thousands of active electronics hobbyists, experimenters, and engineers are just a mouse click away from your website. Now you can get both a print ad and Internet link for one low price. We’ll place your ad on the Electronics Links page of our website with a hotlink directly to your website — Plus run your ad in the Electro-Net section of Nuts & Volts. All for one low monthly price. Call for pricing today!

(951) 371-8497

www.futurlec.com

Save up to 60% on electronic components and microcontrollers

Try It!
AMATEUR RADIO AND TV
PolarisUSA Video, Inc.17
Ramsey Electronics, Inc.18-19
Surplus Sales of Nebraska64

BATTERIES/CHARGERS
Cunard Associates32
Ocean Server Technology, Inc.95

BUSINESS OPPORTUNITIES
EZ PCB ..89

BUYING ELECTRONIC SURPLUS
GreenChip ...32
Jaycar Electronics71

CCD CAMERAS/VIDEO
Circuit Specialists, Inc.106-107
Cosmo ..70
Matco, Inc. ..32
PolarisUSA Video, Inc.17
Ramsey Electronics, Inc.18-19

CIRCUIT BOARDS
Blink Manufacturing32
Cunard Associates32
ExpressPCB ..24
EZ PCB ...89
Manufacturing Consortium, Int’l35
Maxstream ...16
Micromint ...62
PCB Cart ..64
PCB Pool ..82
Pulsar, Inc. ..32
R4Systems, Inc.61
Saelig Company, Inc.55

COMPONENTS
Electronix Express75
Front Panel Express LLC103
Jameco ..25
Lemos International Co., Inc.15
Linx Technologies37
Maxstream ...16
Micromint ...62
Pulsar, Inc. ..32

COMPUTER Hardware
ActiveWire, Inc.32
COMFILE Technology32
Hagstrom Electronics32
Halsted Specialties Co.60
National Control Devices, LLC43
Surplus Sales of Nebraska64

Microcontrollers / I/O Boards
Abacom Technologies89
COMFILE Technology32
Conitec DataSystems35
EMAC, Inc.65
HW Technologies32
microEngineering Labs102
Micromint ...62
microElektronka63
National Control Devices, LLC43

Net Media ..2
Parallax, Inc.Back Cover
R4Systems, Inc.61
Scott Edwards Electronics, Inc.16
Texas Instruments7
Trace Systems, Inc.36
World Educational Services89
XGameStation32

DESIGN/ENGINEERING/REPAIR SERVICES
Blink Manufacturing32
ExpressPCB ..24
EZ PCB ...89
Front Panel Express LLC103
GME Technology32
Manufacturing Consortium, Int’l35
PCB Cart ..64
PCB Pool ..82
Pulsar, Inc. ..32
R4Systems, Inc.61
Trace Systems, Inc.36

EDUCATION
Atlantic Intl Institute, Inc.61
Command Productions51
Cook’s Institute54
EMAC, Inc.65
Hobby Engineering82
XGameStation32

ENCLOSURES
Integrated Ideas & Technologies, Inc.54

EVENTS
ROBO Business 200666

KITS & PLANS
C & S Sales, Inc.33
DesignNotes.com, Inc.88
EMAC, Inc.65
Hobby Engineering82
Information Unlimited88
Jameco ..25
Jameco ..25
LabJack ...61
Lemos International Co., Inc.15
Lynxmotion, Inc.65
Net Media ..2
Ocean Server Technology, Inc.95
ROBO Business 200666
Robot Power32
Test N Tools87

SATELLITE
Lemos International Co., Inc.15

SECURITY
Cosmos ..70
Information Unlimited88
Linx Technologies37
Matco, Inc.32
PolarisUSA Video, Inc.17

TEST EQUIPMENT
C & S Sales, Inc.33
Circuit Specialists, Inc.106-107
Conitec DataSystems35
DesignNotes.com, Inc.88
Electronic Design Specialists36
GME Technology32
Jaycar Electronics71
LabJack ...61
Link Instruments5
Pico Technology Ltd. UK86
Saelig Company, Inc.55
Test N Tools87
Trace Systems, Inc.36

TOOLS
C & S Sales, Inc.33
GME Technology32
Test N Tools87

WIRE, CABLE AND CONNECTORS
DesignNotes.com, Inc.88
Jameco ..25

WIRELESS PRODUCTS
Conitec DataSystems35

Net Media ..2
Parallax, Inc.Back Cover
R4Systems, Inc.61
Scott Edwards Electronics, Inc.16
Texas Instruments7
Trace Systems, Inc.36
World Educational Services89
XGameStation32

Abacom Technologies89
ActiveWire, Inc.32
All Electronics Corp.83
Anchor Optical31
Atlantic Intl Institute, Inc.61
Blink Manufacturing32
Budget Robotics103
C & S Sales, Inc.33
Circuit Specialists, Inc.106-107
COMFILE Technology3
Command Productions31
Conitec DataSystems35
Cook’s Institute54
Cosmo ...70
CrustCrawler59
Cunard Associates32
DesignNotes.com, Inc.88
Electronic Design Specialists36
Electronic Express75
EMAC, Inc.65
ExpressPCB ..24
EZ PCB ...89
Front Panel Express LLC103
GME Technology32
GreenChip ...32
Hagstrom Electronics32
Halsted Specialties Co.60
High Voltage Press88
Hobby Engineering82
HW Technologies32
Information Unlimited88
Integrated Ideas & Tech.54
Jameco ..25
Jaycar Electronics71
LabJack ...61
Lemos International Co., Inc.15
Lynxmotion, Inc.65
Matco, Inc.32
Maxstream ...16
MCM ...87
microEngineering Labs102
Micromint ...62
microElektronka63
Mouser Electronics54
National Control Devices, LLC43
Net Media ..2
Ocean Server Technology, Inc.95
Parallax, Inc.Back Cover
PCB Cart ..64
PCB Pool ..82
Pico Technology Ltd. UK86
PolarisUSA Video, Inc.17
Pulsar, Inc. ..32
QKITS ...32
R4Systems, Inc.61
RABBIT Semiconductor11
Ramsey Electronics, Inc.18-19
ROBO Business 2006106
Robot Power32
Saelig Company, Inc.155
Surplus Sales of Nebraska64
Test N Tools87
Texas Instruments 7
Trace Systems, Inc.36
World Educational Services89
XGameStation32

March 2006 NUTS & VOLTS 105

■ LOOK FOR ■ SEARCH FOR ■ FIND
Find your favorite advertisers here!
PowerSupply1 Switching Power Supplies

New to CircuitSpecialists.com are these Highly Reliable, Universal AC input/full range single output power supplies. Choose between various 40, 60, 100 & 150 Watt versions. They have the approval of UL and cUL and come 100% full load burn-in tested and are protected with overload/over and voltage/short circuit. Also included is a 2 year warranty.

<table>
<thead>
<tr>
<th>PowerSupply1</th>
<th>Qty 1</th>
<th>Qty 10</th>
<th>Qty 25</th>
<th>Qty 100</th>
<th>Qty 500</th>
<th>Qty 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>40W Series Available in 5,12,15,24,48V</td>
<td>$28.99</td>
<td>$26.09a</td>
<td>$24.53a</td>
<td>$21.95a</td>
<td>$15.98a</td>
<td>$13.79a</td>
</tr>
<tr>
<td>60W Series Available in 5,12,15,24,48V</td>
<td>$32.99</td>
<td>$29.69a</td>
<td>$27.91a</td>
<td>$25.95a</td>
<td>$17.69a</td>
<td>$15.49a</td>
</tr>
<tr>
<td>100W Series Available in 3.3,5,7,5,12,15,24,48V</td>
<td>$38.50</td>
<td>$34.65a</td>
<td>$32.57a</td>
<td>$29.99a</td>
<td>$21.18a</td>
<td>$18.49a</td>
</tr>
<tr>
<td>150W Series Available in 5,7,5,12,24,28,36V</td>
<td>$48.99</td>
<td>$44.09a</td>
<td>$39.00a</td>
<td>$37.50a</td>
<td>$26.93a</td>
<td>$23.49a</td>
</tr>
</tbody>
</table>

Circuit Specialists Soldering Station w/Ceramic Element & Separate Solder Stand

• Ceramic heating element for more accurate temp control
• Temp control knob in F(392° to 896°) & C(200° to 489°)
• 3-prong grounded power cord/static safe tip
• Separate heavy duty iron stand
• Replaceable iron/easy disconnect
• Extra tips etc. shown at web site

Item

| CSI-STATION1A | $34.95! |

Soldering Equipment & Supplies > Soldering Stations

Heavy Duty Regulated Linear Bench Power Supplies

• Multi-loop high precision voltage regulation
• Automatic voltage & current stabilizing conversion
• Automatic radiant cooling system
• Over-heating protection

CSI15030S: 0-50V/0-30amp $95.00

CSI12000S: 0-120V/0-5amp $595.00

CSI12000S: 0-200V/0-2amp $595.00

Details at Web Site > Test Equipment > Power Supplies

Dual Output DC Bench Power Supplies

High stability digital read-out bench power supplies featuring constant voltage and current outputs. Short-circuit and current limiting protection is provided. SMT PC boards and a built-in cooling fan help ensure reliable performance and long life.

• Source Opt: 5x10^-3 – 2mV
• Load Opt: 5x10^-3 – 2mV
• Ripple Coefficient: <250V
• Stepped Current: 0mA +/- 1mA

Details at Web Site > Test Equipment > Power Supplies

Programmable DC Power Supplies

The CSI 3600 Series Programmable DC Power Supplies are equipped with a back-lit LCD display, number keypad and a rotary code switch for ease of use & quick programming. Voltage, Current & Power can all be displayed on the LCD or computer screen (with optional RS-232 interface module). It can be operated at constant current mode, constant voltage mode & constant power mode. It also can be set with maximum limits for current & power output. Ideal instruments for scientific research, educational labs or any application requiring a sophisticated DC-power source.

<table>
<thead>
<tr>
<th>Model</th>
<th>DC Voltage</th>
<th>DC Current</th>
<th>Power (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1364A</td>
<td>0-18V</td>
<td>0-36V</td>
<td>0-72V</td>
</tr>
<tr>
<td>CS1364A</td>
<td>5A</td>
<td>3A</td>
<td>1.5A</td>
</tr>
<tr>
<td>CS1364A</td>
<td>90W</td>
<td>108W</td>
<td>108W</td>
</tr>
</tbody>
</table>

Programmable DC Electronic Loads

The CSI 3700 series electronic loads are single input programmable DC electronic loads that provide a convenient way to test batteries and DC power supplies. It offers constant current mode, constant resistance mode and constant power mode. The backlight LCD, numerical keypad and rotary knob make it easier to use. Up to 10 steps of program can be stored.

<table>
<thead>
<tr>
<th>Model</th>
<th>CS13710A</th>
<th>CS13711A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>0-360V DC</td>
<td>0-360V DC</td>
</tr>
<tr>
<td>Input Current</td>
<td>0-30A DC</td>
<td>0-30A DC</td>
</tr>
<tr>
<td>Input Power</td>
<td>0-150W</td>
<td>0-300W</td>
</tr>
</tbody>
</table>

Bullet Style B/W Camera

- Weather Proof
- Signal System: EIA
- Image Sensor: 1/3” CCD
- Effective Pixels: 510 x 492
- Horizontal Resolution: 420TV lines
- Min. Illumination: 1Lux/F1.2

High Capacity Nickel Metal Hydride Rechargeable Batteries

- Rechargeable Batteries
- “AA” cell 2500mAh $1.99
- “AAA” cell 850mAh $0.99
- “C” cell 3500mAh $2.99
- “D” cell 1100mAh $6.95
- “9V” cell 220mAh $3.69

Triple Output Bench Power Supplies

Output: 0-30VDC x 2 @ 3 or 5 Amps & 1ea. fixed output @ 5VDC@3A
Source: 5x10^-3 – 2mV
Load: 5x10^-3 – 2mV
Ripple Coefficient: <250V
Stepped Current: 0mA +/- 1mA
Input Voltage: 110/220VAC

Details at Web Site > Test Equipment > Power Supplies

Circuit Specialists, Inc. 220 S. Country Club Dr., Mesa, AZ 85210

800-528-1417 / 480-464-2485 / FAX: 480-464-5824
Announcing the BasicX - BX24-P
The fastest Basic programmable microcontroller...
Just Got BETTER for the same price $49.95
Microprocessor controlled design that produces
incredible speed and precise temperature and
Figures, featuring microprocessor with
low power consumption, gives
the best possible power supply that provides
1-3V and 2A of power. Hot air soldering and adjust-
ment of temperature are controlled by a
sensor thus giving tremendous accuracy and reliability.

29% Faster
83,000 Basic Instructions/Sec

Features:
The BasicX-P has a vast set of features, including a
16-bit EEP floating math library, CMOS ports, DAC, SPI bus, multi-
tasking and networking, making it ideal for industrial control, robotics,
automated testing equipment and home automation. BX24-P is able to monitor
and control all your switches, timers, motors, sensors, relays, and more.

Regulated Supply Input 3.5Vdc
Operation Range -40°C to 85°C
Industrial Grade Part

Unregulated Supply Input 6-24Vdc

Announcing SitePlayer Telnet™ Serial to Ethernet Data Converter
Enable your serial devices to communicate across Ethernet
The Serial to Ethernet module gives OEM's and product designers the
ability to quickly and cost-effectively bring their products to market.

SPT1 - SitePlayer Telnet™ OEM module
ONLY $29.95

SPT - SitePlayer Telnet™ System, now available directly from
NetMedia at an Introductory price of $79.95

Visit our website for a complete listing of our offers. We have over 5,000 electronic items on line at
CircuitSpecialists.com. PC based data acquisition, industrial computers, hard drives, networking, cables, I/O, transducers, sensors, power controls, process control, cameras, panel meters, chemicals for electronics, do it yourself printed circuit boards for PCB fabrication, educational Kit, kits, cooling fan, heat sink, cable & a lot more. Our telephone number is 1-800-543-0245 or customer service is available Monday through Friday 8am to 5pm.

www.basicelectric.com
416-957-0100

CoverInside.qxd 2/8/2006 10:28 AM Page 2