<table>
<thead>
<tr>
<th>Model</th>
<th>ROM</th>
<th>RAM</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC-EX861</td>
<td>128M</td>
<td>8M</td>
<td>RS-232</td>
</tr>
<tr>
<td>VC-819D</td>
<td>128M</td>
<td>8M</td>
<td>RS-232</td>
</tr>
<tr>
<td>VC-805</td>
<td>128M</td>
<td>8M</td>
<td>RS-232</td>
</tr>
<tr>
<td>VC-805</td>
<td>128M</td>
<td>8M</td>
<td>RS-232</td>
</tr>
</tbody>
</table>

Digital Storage Oscilloscope Module

- Converts any PC with USB interface to a high performance digital storage oscilloscope. This is a sophisticated PC-based system designed to provide performance competitive to mid/high level stand-alone products costing much more!
- Comes with two probes.
- Details & Software Download at Web Site or Oscilloscopes/Outstanding Prices

Protek 2.9 & 2.9GHz Field Strength Analyzers

- Frequency Range: 100MHz - 2900MHz
- Breakthrough!
- Features NOT found on the competition!
- Details at Web Site or Oscilloscopes/Outstanding Prices

Outdoor Color Speed Dome Camera

- 1/3" SONY Exview CCD
- 300,000 effective pixels
- Horizontal Resolution: 480TV lines
- Max Line Scanning: 768(H) x 494(V)
- Effective Points: 768(H) x 494(V)
- Special Offer!
- Details at Web Site or Oscilloscopes/Outstanding Prices

CNC9000 Motion Control Machine

- Z, X, and Y Axes
- Motor Type: Steppers, Nema 23 size motor mounts on all axes. 277 Oz/in.
- Footprint: (overall size not involving motors) 34" x 34.75" x 21.75".
- Travel: X=22" Y=24" Z=4.5".
- NEMA 23 Brand Ball bearing and linear rails and trucks on all axes.
- 0.5mm per turn pitch lead screws.
- Direct drive motor coupling on all axes.
- Using 3 each CW230 Stepper Motor controllers and a 300-watt power supply at 36 Volts.
- Tested Tolerance on 6061 aluminum plate with 0.125 carbide insert. 0.001" (2x4x255) using a Porter-Cable ruler.
- Standard (Feed rate of 50 inches per minute with stepper motors)
- Made of 6061 Aluminum except rails, trucks, ball screws and fasteners. Steel and other materials.

Our Custom Designed and Manufactured CNC Machine comes complete with all Stepper Motors, Controllers and Power Supply.

Features NOT found on the competition!

Item! CN9000 $2995.00

Details at Web Site or Oscilloscopes/Outstanding Prices
Go Wireless
Go Rabbit®

Check out our new Wi-Fi and ZigBee® core modules — the latest additions to our pin-compatible family.

RCM4510W
ZigBee RabbitCore®
$72 (qty. 100)

RCM4400W
Wi-Fi RabbitCore
$99 (qty. 100)

Applications
- Industrial Control
- Remote Terminal Unit (RTU)
- Building Automation
- Data Acquisition

RCM4500W Family
- ZigBee/802.15.4
- 49 GPIO
- 6 Serial Ports

RCM4400W Family
- Wi-Fi/802.11
- 35 GPIO
- 6 Serial Ports

Order Your Kit Today
Development kits include everything to start your development, Dynamic C® software, wireless RabbitCore module, development board, programming cables and accessories.

www.wirelessrabbit.com

Wireless Development Kits
Only $199 (reg. $299)
COLUMNS

10 TECHKNOWLEDGEY 2007
Events, advances, and news from the electronics world.

16 GETTING STARTED WITH PICs
C language introduction.

22 Q&A
Russ Kincaid offers his own solutions to reader questions.

67 IN THE SPOTLIGHT
This month: SchmartBoard.

80 OPEN COMMUNICATION
Fiber optics.

84 THE DESIGN CYCLE
Working with peripherals.

Due to technical difficulties, PERSONAL ROBOTICS will return next month.

DEPARTMENTS

06 DEVELOPING PERSPECTIVES

08 READER FEEDBACK

26 NEW PRODUCTS

44 SHOWCASE

66 ELECTRO-NET

78 NV BOOKSTORE

92 CLASSIFIEDS

94 TECH FORUM

97 ADVERTISERS INDEX

PROJECTS and FEATURES

30 CONTROL YOUR WORLD
Home Automation — Part 5: Build a microcontroller-based weather station.
By Michael Simpson

38 THE MUX MUX LIGHT DISPLAY
See how to light a display one segment at a time.
By Richard Satterlee

46 PROBING CORES
Build an oscilloscope accessory that displays the B-H curves of inductor cores.
By Tom Napier

52 CREATE YOUR OWN SERIAL PORT
With a “bit” of luck, you can create a software serial port for your microcontroller.
By G.Y. Xu

60 SONIC REALISM
Part 2: Put the sound theory from last month into practice.
By Gerard Fonte

68 UNDERSTANDING DIGITAL BUFFER, GATE, AND LOGIC IC CIRCUITS
This month, learn about NAND gate and OR gate circuits.
By Ray Marston

72 CREATING AN EXERGAME WITH THE HYDRA GAME SYSTEM
Start your own dance revolution with the latest offering from Parallax.
By Bryan Bergeron

Nuts & Volts (ISSN 1528-9885/CDN Pub Agree#40702530) is published monthly for $24.95 per year by T & L Publications, Inc., 430 Princesland Court, Corona, CA 92879. PERIODICALS POSTAGE PAID AT CORONA, CA AND AT ADDITIONAL MAILING OFFICES. POSTMASTER: Send address changes to Nuts & Volts, P.O. Box 15277, North Hollywood, CA 91615 or Station A, P.O. Box 54, Windsor ON N9A 6J5. cpireturns@nutsvolts.com.
Digital Oscilloscopes

- 2 Channel Digital Oscilloscope
- **500 MSa/s** max single shot rate
- 1Mpts sample memory

- 250 MSa/S (Dual channel) 512 Kpts
- 500 MSa/S (Single channel) 1 Mpts
- Only 9 oz and 7” x 3.5” x 1.5”
- Portable and Battery powered
- USB 2.0
- FFT Spectrum Analyzer

<table>
<thead>
<tr>
<th>Model</th>
<th>Channels</th>
<th>Memory</th>
<th>Flash Memory</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSO-8202</td>
<td>200MSa, 128K</td>
<td>256Kpts</td>
<td>256K</td>
<td>$799</td>
</tr>
<tr>
<td>DSO-8502</td>
<td>500MSa, 1Mpts</td>
<td>512Kpts</td>
<td>512K</td>
<td>$950</td>
</tr>
</tbody>
</table>

Logic Analyzer & Pattern Generator

- 32 channels Logic Analyzer
- up to 32 channels Pattern Generator
- up to 400 MSa/s
- Variable Threshold
- 2 External Clocks
- SPI output and disassembly
- I2C output and disassembly
- up to 2Msamples/ch

<table>
<thead>
<tr>
<th>Model</th>
<th>Channels</th>
<th>Memory</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO-3208A</td>
<td>32</td>
<td>512Kpts</td>
<td>1Mpts</td>
</tr>
<tr>
<td>IO-3232A</td>
<td>32</td>
<td>512Kpts</td>
<td>1Mpts</td>
</tr>
<tr>
<td>IO-3232B</td>
<td>32</td>
<td>512Kpts</td>
<td>1Mpts</td>
</tr>
</tbody>
</table>

www.Link-instruments.com
(973) 808-8990
With the recent rise in global competition for technology and manufacturing jobs, professional associations, labor organizations, and political groups in the United States have begun to emphasize the need for innovation as a means of retaining and even expanding the domestic workforce. While many universities offer courses on innovation, it's not an ability that can be acquired by passively attending a lecture, reading a book, or surfing the Web. Furthermore, innovators aren't born. They develop their talents through active, directed, hands-on experience.

There is no one correct path to becoming an innovator. However, I've found experimenting with electronics, robotics, and microprocessors invaluable in developing the requisite skills, regardless of the areas in which innovation is eventually applied. Designing a QRP transmitter, building a PID controller for a robot drive mechanism, and creating a smart appliance with a BASIC Stamp all involve creative problem solving, adherence to the scientific method, as well as time and resource management. Not only is experimenting with electronics an enjoyable avocation, but the fundamentals learned at the workbench can provide you with the foundation for innovation at work, school, and in your other pursuits.

Consider, for example, that there's no escaping the scientific method in the process of correctly diagnosing a circuit. Working systematically, you make a hypothesis about the functionality of a component, run tests to prove or disprove the hypothesis, and then, if necessary, move on to the next component or circuit. Like every good scientist or researcher, you make notes about the process and your findings so that you'll be better able to recognize and address similar problems in the future. With experience, you'll become more proficient at diagnosis, and the process will become intuitive — integrated in your subconscious thinking.

By mastering experimental fundamentals, you'll be in a better position to innovate. In this regard, innovation is a combination of logic and creativity — left and right brain activities that are normally at odds with each other. Intentionally shifting the balance between the logic and creativity will enable you to develop new circuits and devices in a controlled manner. Although it's possible to stumble upon a valuable discovery through random trial and error, relying on serendipity is at best a frustrating, inefficient, and low-yield alternative to directed innovation.

In the following pages are contributions from innovators spanning the fields of amateur radio, robotics, circuit design, microcontrollers, and fundamental electronics. As you read through the articles, you'll invariably encounter projects that either address a problem that you're facing or that simply peak your interest. Some articles will be more appealing to you than others, but they all provide building blocks upon which you can develop and practice innovation.

Whether your immediate goal is to explore the application of an electronic component, build test equipment that you otherwise wouldn't be able to afford, learn to program a new microcontroller, or provide your family with the added safety and convenience of a home automation project, you can make the most of the information provided by our authors by actively improving on it. Don’t feel locked in to the description or applications, but consider improving on the designs by making a calculated substitution here or a modification there so that the end result better suits your needs. That is, innovate, don’t simply duplicate.

Now, turn to the article that most interests you, pick up your keyboard or soldering iron, and start innovating.
32-bit performance at an 8-bit price
Introducing the NetBurner Mod5213

for embedded applications

Complete Development Package – $99
Development Board and Mod5213
IDE with project manager
C/C++ Compiler
Graphical Debugger
Real-Time OS
Deployment Tools

Mod5213 – $39
Processor Freescale 32-bit MCF5213
Speed 66MHz, 62 MIPS
Flash Memory 256 KB
SRAM 32 KB
Size 2.25” x 0.7” 40-pin DIP
Peripherals Up to 33 GPIO
8-channel 12-bit Analog to Digital
Serial Interfaces
3 UARTs DMA capable
SPI
I2C
CAN 2.0
Timers
Four 32-bit timer channels with DMA capability
Four 16-bit timer channels with capture/compare/PWM
4-channel 16-bit/8-channel 8-bit PWM generator
Two periodic interrupt timers (PITs)
Special Features
Hardware accelerated Multiply, Accumulate and Divide
4-channel DMA controller
Watchdog Timer
Electrical Specs
Input Voltage 4 - 7 Volt
Processor Operating Current at 3.3V 4mA to 40mA
Stop mode Current 130µA
Temperature range -40 °C to +85 °C

NetBurner
Networking in 1 Day!
www.netburner.com • 1-800-695-6628

Freescale
semiconductor
LOW DOWN ON THE DOWNLOAD

I would like to build the Digi-Log clock that was in the Feb ’07 issue. However, the article does not tell me how to get the downloaded source code into the PIC. Please advise.

Norman Hockler

Response: Nuts & Volts, like many magazines that include software projects, does not list the code in the article for two basic reasons. The first is space. Some programs would require multiple pages to list. This is not cost-effective for the magazine. The second is speed and accuracy. Downloading a file is much simpler and more reliable that re-typing everything by hand. For these reasons I provide Nuts & Volts with the software and they provide it free of charge at their website, www.nutsvolts.com. The file in question can be located under the “FTP Index” associated with the issue and article. In this case, look at February 2007 and you’ll see the “Clock.asm” file and a short description of the article with the title and author. Just click on the file name and the download will begin.

Once you download the file, you have to program your PIC device. This requires significant software from Microchip, the manufacturer of the PIC microcomputer. The good news is that this sophisticated software suite is also free from their website at www.microchip.com. Again you will have to go to their website and locate the file associated with "MP-LAB."

Note: I provide the source code for all my projects. This is readable and can be easily changed. However, it needs to be compiled by the Microchip software before use (a simple command). Some others provide the object code. This does not need to be compiled but it still needs to be loaded into the Microchip software so that it can be copied into the PIC device. Object code is much harder to understand and/or change.

The last thing you will need is a programmer of some sort. This physically connects the PIC device to the MP-LAB software and it isn’t free. I recommend the PICSTART, but it’s a bit pricey now at about $199 (I think I got mine for about $50 originally). It interfaces with their software well and supports virtually all of their products. There are probably hundreds of various other third-party "download cables" available that can cost under $20. Most of these are fairly limited and not as easy to use. It may be possible to use one of Microchip’s inexpensive development kits as a
download cable. Check with a Microchip sales representative. This may seem like a lot of work. And for a single project, it certainly is. But few people use a microcomputer for only one project. Many users develop dozens or even hundreds of software ideas. Like any other endeavor, it takes some up-front investment in time and money to obtain the capability to use microcomputers. But once you do, there is a whole new world that opens up. I hope this helps.

Gerard Fonte

SEE MORE C8051F120 APPS

I am wondering if Mr. Best will be using the C8051F120 in a series of articles and what types of applications will be covered.

George Drouant

Response: Thanks for reading Design Cycle!
What you saw in the April and May Design Cycle columns will be taken a bit further one more time in this issue.
I will not cover any specific C8051F120 “applications.” However, I will provide some additional practical coding examples that are intended to show off the bulk of the C8051F120’s features while providing a leg-up to the prospective C8051F120 programmer. For instance, I’ll provide code that will demonstrate the use of the C8051F120’s Multiply and Accumulate module, as well as code to implement interrupt-driven RS-232 communications.

I hope you’ve enjoyed the C8051F120 stuff that has been offered up thus far. Again, thanks for taking time to read Nuts & Volts and the Design Cycle column.

Peter

CAN INVERTER(S) TAKE THE HEAT?

I enjoyed the article in the Dec ‘06 issue about furnace back-up. I plan to do this, but I need an explanation about inverters. I am confused about the specs mentioned. There seems to be quality issues with them. Maybe an article about inverters would be helpful.

My particular furnace has a 1/6 HP motor. The plate says seven amps input, 115V. (I calculate 805 watts.) I am looking at a Motor Trend brand sold through the Sportman’s Guide mail order catalog. It is a 3,000 continuous/6,000 peak optimum efficiency 80%. I was thinking of also running a battery charger off of this to keep the battery charged. Any ideas? Help with this would be greatly appreciated.

Marc Krol

Response: Thank you for your feedback! I am always appreciative of anyone who drops me a nice note about what they are doing.

Your power calculation is probably fine; 805 watts (or 805 VA), is near enough what your furnace requires to run. Actually, 1/6 HP is closer to 500 watts, but sometimes the current draw is based on a peak calculation, or perhaps your specification includes associated control

Continued on Page 45

READER FEEDBACK

March 2009

Extreme Robot Speed Control!

Sidewinder

$399

$29.99

Scorpion Mini

$79.99

$119.99

Scorpion HX

$79.99

$119.99

Scorpion XL

Introducing Dalf

H-bridges: Use with Dalf or with your Micro/Stamp

OSMC

$250

Simple-H

$79

OSMC

$250

Simple-H

$79

www.embeddedelectronics.net

www.robotpower.com

Phone: 253-843-2504 • sales@robotpower.com

SpringCircuits™

What if the schematic is the circuit?

http://www.rmd3.com

http://www.springcircuits.com

RMD3 presents...

June 2007
FUEL CELL POWERED AIRPLANE TO BE DEMONSTRATED

One of the most ambitious fuel cell projects out there is the Fuel Cell Demonstrator Airplane project, which actually began in 2003 at Boeing Research and Technology — Europe (BR&TE), a division of the Boeing Phantom Works (www.boeing.com/phantom). The project has now entered the demonstration phase. According to the company, “Given the efficiency and environmental benefits of emerging fuel cell technology, Boeing wants to be on the forefront of developing and applying it to aerospace products.”

The project involves fitting a modified Dimona glider, built by Austria’s Diamond Aircraft Industries (www.diamondair.com), with a Proton Exchange Membrane (PEM) fuel cell/lithium-ion battery hybrid system. The PEM runs an electric motor that provides all power for the cruise phase of flight. (The plane draws from only batteries during takeoffs and landings.) The airplane, with a wingspan of 53.5 ft (16.3 m), should cruise at about 62 mph (100 km/h). The flight tests, set to be conducted in Spain, are intended to demonstrate for the first time that a manned airplane can maintain a straight level flight with fuel cells as the only power source. Although BR&TE does not predict that fuel cell technology will ever be suitable for large commercial airplanes, it could be practical for small manned and unmanned air vehicles.

HARVESTING BACKGROUND ENERGY

One of the challenges in the development of practical nanoscale devices has been how to power the things. Batteries tend to be physically too large and, because they contain toxic substances, it is not always advisable to implant them in your body. But now researchers at Georgia Tech’s School of Materials Science and Engineering (www.mse.gatech.edu) have come up with a prototype nanometer-scale generator that can produce DC current by tapping into mechanical energy from such environmental sources as ultrasonic waves, mechanical vibration, and blood flow.

The device is based on an array of vertically aligned zinc oxide nanowires, located about 0.5 m apart on a substrate of gallium arsenide, sapphire, or flexible polymer. When vibrations strike the exterior, the wires move within a “zigzag” plate electrode to produce power, taking advantage of the coupled piezoelectric and semiconducting properties of zinc oxide nanostructures, which produce small electrical charges when they are flexed.

The power generated is only in the nanoampere range, but that should be enough to run a range of tiny devices, thus eliminating the need for batteries or external power. It is projected that an optimized version could produce up to 4 W/cc, which would be enough to make it useful in defense, environmental, and (because zinc oxide is nontoxic) biomedical nano devices, including biosensors, environmental monitors, and nanoscale robots.

COMPUTERS AND NETWORKING

EIGHT-CORE MAC INTRODUCED

So far, 2007 has not produced a cornucopia of computer hardware innovations, but Apple (www.apple.com) has upgraded its line of Mac Pro desktops to include an eight-core version. The top model includes dual quad-core Intel Xeon “Clovertown” processors running at 3.0 GHz, as opposed to the lesser ones that offer two dual-core “Woodcrest” chips running at 2.0, 2.66, or 3.0 GHz. The box has four hard drive bays providing up to 3 TB of internal storage, and you can install as much as 16 GB of main memory. The options are too numerous to mention,
The latest Mac Pro model features dual quad-core Xeon processors. PHOTO COURTESY OF APPLE, INC.

with up to 33 million possible configurations of the system. But the eight-core box is said to run up to twice as fast as the G5 quad, so if you need the extra crunching power, here it is. The new model will set you back at least $3,997, plus whatever extras you choose.

WIDGETS 4 AVAILABLE

If you haven’t already checked out the Widgets software available from Yahoo! (www.yahoo.com), it may be time. If you already have, be advised that Widgets 4 is now available. Formerly named Konfabulator, it is an application platform that engages various small applications such as a weather widget (displays weather information), a digital clock, a stock ticker, and so on. It includes the new Flickr Widget, which is an extension of the Flickr photo-sharing service. It helps users to display, upload, and tag images, and you can now do drag-and-drop operations on larger groups of photos and edit their tags and other information without using a browser. All in all, Yahoo! is offering more than 3,400 desktop Widgets developed and submitted by independent authors from around the world. Best of all, it’s free and runs on Mac OS X, Win 2000, Win XP, and Vista.

BE CAREFUL WHAT YOU GOOGLE

Back in 2003, New Jersey prosecutors charged Melanie McGuire with first degree murder, desecrating human remains, possession of a weapon for an unlawful purpose, and perjury after her husband, William McGuire, was found shot, dismembered, divided among three suitcases, and floating in the Chesapeake Bay. Although not all the evidence has been made public, data gleaned from several seized computers showed that Melanie did a Google search on “how to commit murder” 10 days before the crime. She also scanned the Web for such phrases as “undetectable poisons,” “fatal insulin doses,” “where to purchase guns illegally,” and “how to find chloroform.” She faces 30 years to life if convicted, and hopefully some extra time for computer illiteracy.

CIRCUITS AND DEVICES

BINOCULARS WITH DIGITAL CAMERA

Soon or later, every male of the species admires a female a moment beyond what is totally prudent, resulting in the dreaded, “Take a picture, buddy. It’ll last longer.” Well, now you can, and from a safe distance. Several manufacturers of binoculars are now combining them with a digital camera, so no matter what kind of a birdwatcher you may be, you can record noteworthy sightings for posterity and/or the Internet with total discretion. You can pick up a set at Wal-Mart for about $50, but be advised that this will get you resolution as poor as 0.3 megapixels, which isn’t exactly high-res. But if you are willing to shell out something closer to real money, you can get both quality optics and high digital resolution.

One example is the VistaPix 8 x 22 from Celestron, LLC (www.celestron.com). It starts out with a basic 8 x 22 system and adds a three megapixel camera with a 1.5-in flip-up color LCD screen for previewing images. The LCD offers a 6x digital zoom so you can look at details, and a removable 8x telephoto lens allows you to take close-up or high-magnification shots. In addition to still photos, you can do sound-enabled video captures, making movies of up to three minutes in length. And just for the heck of it, Celestron even threw in an FM radio with earphones. The list price of $251.95 seems pretty reasonable. Why didn’t someone think of this sooner?

NEW COLOR INSPECTION SYSTEM

Banner Engineering Corp. (www.bannerengineering.com) has introduced a pair of vision sensors that, although not particularly useful in the average home, could come in handy if you are involved in visible spectrum analysis on a commercial level in such fields as packaging, pharmaceuticals, and general...
quality control applications. Examples include inspection of candy and packages, blister packs, filled bottles, and so on.

The two-piece PresencePLUS Pro includes a separate DIN-mountable controller, whereas the P4 is a one-piece unit. Both are said to detect an infinite number of color variations accurately, and the sensor can combine shape and color data to detect even minute variations.

Both models come with the company’s universal software with three-step point-and-click setup; Ethernet, serial, and discrete I/O capabilities; live video display without the need of a PC; and a selection of lenses, light sources, mounting brackets, and accessories. The systems run off 10 to 30 VDC and are available with interfaces in nine different languages. Prices start at about $3,500.

LITHIUM BATTERIES PACK BIG CHARGE

Tadrian Batteries Ltd. (www.tadrianbat.com) now offers a line of lithium cells for applications requiring high power, long life, and extended storage, such as defibrillators and other portable medical devices, mil/aero systems, telemetry, and UAVs, and so forth. The newly introduced AA-size TLM 1550 provides 2 Wh of energy at 4.0V and the ability to handle pulses of up to 15A and continuous loads of 5A.

It is designed for long life in extreme environmental conditions (-40 to +85°C) and features a self-discharge rate of only three percent per year at room temperature. Because the cells are built with a glass-to-metal hermetic seal and nontoxic and nonpressurized solvents, they can be shipped as nonhazardous. The quantity price is said to be about $5 each, which is a bit more than the average Ray-O-Vac, but may be worth the money to keep your digital camera from fuzzing out in the middle of your next hike through the Grand Canyon.

INDUSTRY AND THE PROFESSION

100TH ANNIVERSARY

In case you haven’t kept up with such things, 2007 marks the 100th anniversary of the invention of the three-electrode version of the Audion vacuum tube that allowed amplification for radio reception. It was also called the De Forest valve until about 1919, since which time it has been better known as the triode. Perhaps more interesting is the inventor, Lee De Forest, who apparently was a colorful fellow. On the positive side, he earned a doctorate from Yale, held more than 300 patents, and was a charter member of the Institute of Radio Engineers (a predecessor of today’s IEEE). However, legend has it that he did not even understand how his own invention worked (and, in fact, his prototypes did not work), and another inventor, Edwin Armstrong, had to explain its operating principles to De Forest. He wrote an autobiography called Father of Radio, although most of the world did not recognize him as such. During his career, he presided over several companies that failed, was once indicted (and acquitted) for mail fraud, and was involved in several patent lawsuits that nearly bankrupted him. In 1913, he was forced to sell the triode patent to AT&T at a bargain basement price. De Forest went to that big vacuum tube in the sky in 1961.
Control Your Remote with Low-Cost 16-bit MCUs

Whether your design is a home theater remote or any other embedded application, the PIC24F delivers the peripherals, performance, development tools and software you need.

With 16 MIPS performance and an extensive peripheral set, Microchip’s PIC24F microcontrollers are highly cost-effective solutions.

GET STARTED IN 3 EASY STEPS!

1. Learn all about our 16-bit products in only 20 minutes! Our FREE 16-bit web seminars highlight our 16-bit architecture and comprehensive support suite that includes low-cost development tools, a variety of software libraries (many free), application notes, reference designs and more!

2. Take advantage of FREE resources for download! Our MPLAB® IDE Integrated Development Environment and a full-featured trial of the MPLAB C30 C Compiler from our web site gets you up and running fast!

3. Get hands-on technical training for as low as $25! Attend a 16-bit Embedded Control Solutions Seminar at a Microchip Regional Training Center to take your designs to the next level!

Visit our web site for more information about additional 16-bit devices with higher performance and added features like DSP and enter our 16-bit Embedded Design Contest today!

Microcontrollers • Digital Signal Controllers • Analog • Serial EEPROMs
Passive Air Band Aircraft Monitor

- Monitors the entire aircraft band without tuning!
- Passive design, can be used on aircraft, no local oscillator, generates and creates no interference!
- Great for air shows!
- Patented circuit and design!

For decades we have been known for our novel and creative product designs. Well, check this one out! An aircraft receiver that receives all nearby traffic without any tuning. It gets better... there is no local oscillator so it doesn't produce, and can't produce, any interfering signals associated with all other receivers with an LO. That means you can use it onboard aircraft as a passive device! And what will you hear? The closest and strongest traffic, mainly, the plane you're sitting in! How unique is this? We have a patent on it, and that says it all!

This broadband radio monitors transmissions over the entire aircraft band of 118-136 MHz. The way it works is simple. Strongest man wins! The strongest signal within the pass band of the radio will be heard. And unlike the FM capture effect, multiple aircraft signals will be heard simultaneously with the strongest one the loudest! And that means the aircraft closest to you, and the towers closest to you! All within any tuning or looking up frequencies! So, where would this come in handy?

1. At an air show! Just imagine listening to all the traffic as it happens
2. Onboard aircraft to listen to that aircraft and associated control towers
3. Private pilots to monitor ATIS and other field traffic during preflight activities (savies Hobbs time!)
4. Commercial pilots to monitor ATIS and other field traffic as needed at their convenience
5. General aircraft monitoring enthusiasts

Wait, you can't use a radio receiver onboard aircraft because they contain a local oscillator that could generate interfering signals!

We have covered on that one. The ABM1 has no local oscillator, it doesn't, can't, and won't generate any RF whatsoever. That's why our patent abstract is titled “Aircraft band radio receiver which does not radiate interfering signals”. It doesn't get any plainer than that!

Available as a through-hole hobby kit or a factory assembled & tested SMT version.

ABM1WT Passive Air Band Monitor Kit $89.95
ABM1 Passive Air Band Monitor Kit $159.95

Digital Tuned High Performance Aircraft Band Receiver

- Rock solid dual conversion PLL receiver!
- Airport runway lighting controller output!
- 4 user selectable scanner banks, 20 freq's each!
- Full band scanner with skip and skip/lember modes
- Internal front panel speaker
- External antenna input, speaker out, headphone out
- Stylish and shielded black metal enclosure
- Available as a hobby kit or factory assembled & tested

Professional features at a hobbyist price! To begin with, we designed it with the latest technology, utilizing a rock stable synthesized PLL dual conversion receiver. We gave it superb image and adjacent channel rejection to allow you to lock onto the signals you want and not to be bothered by those you don't!

Once we got the RF portion designed we took a close look at the features desired in such a receiver. We gave it a neat 2x8 line LCD display to show you all the functions. Control of modes and settings is obtained through the front panel controls and confirmed on the LCD display. On/off volume and Squelch controls are also provided on the front panel. We even gave it a front panel speaker in case you stack the lighting controller or something else on top of it! So far we've described the ultimate aircraft receiver that's not only the perfect field monitor for a hangar or airport manager's office, but for the serious enthusiast. Can it get any better than that? It sure can!

The top request we've had for a professional aircraft receiver was to embed automatic runway lighting control. Consider it done! The lighting controller follows the standard protocol for remote runway lighting. The pilot's "keys" his microphone on the local CAF frequency for the specified number of times. You all need to do is set the receiver for the lighting control mode, then make sure the squelch is closed and will open on a suitably different in audio level. Then the engineers redesigned their brand-new design using surface mount technology (SMT) for a very special factory assembled and tested FM35WT version, with 1W output for our export only market! Both are designed around an RF tight vinyl clad metal enclosure for noise free and interference free operation.

All settings can be changed without taking the cover off! Enter the setup mode from the front panel and step through the menu to make all of your adjustments. A two line LCD display shows you all the settings! In addition to the LCD display, a front panel LED indicates PLL lock so you know you are transmitting. Besides frequency selection, front panel control and display, you also get 256 steps of audio volume level (left and right combined) as well as RF output power. A separate balance setting compensates for left/right differences in audio level.

In addition to settings, the LCD display shows you "Quality of Signal" to help you set your levels for optimum sound quality. And of course, all settings are stored in non-volatile memory for future use! The stylish black metal case measures 5.55"W x 6.45"D x 1.5"H. Runs on 13.8-16VDC, plug-in110VAC power supply included.

Take a close look! On your left is a multi-function 3½ digit digital multimeter. Its large backlit LCD display can be seen from anywhere on your bench while you're working. The DMM also features built-in transistor, diode, and continuity testing, data hold, and audible alarm. Next up, the regulated lab DC power supply. Switch selectable voltage 7.5V, 9V, and 12V provide a continuous duty current of 1.5 amps with a 2 amp peak! Features both overload protection and overload indicators.

To the right we have a high quality temperature regulated soldering station. The 24V low voltage iron features an isolated ceramic 48 watt temperature controlled element. Front panel control allows you variable tip temperature control from 150°C to 450°C and LED indication of power-on and heating-on. Runs on 120VAC.
The Solution!

Visit www.ramseykits.com

Free Giveaways and ALL the information you ever needed!

Get The Catalog!

Get the brand new 2007 Ramsey Hobby Catalog! 96 value packed pages of the newest goodies around! Order yours on-line today or give us a call! Or download the PDF at www.ramseykits.com.

Did You Know...

✓ It’s impossible to give you full specs on these products in a 1/2 space.
✓ A lot of our kits are also available “factory assembled and tested”, if you don’t want to build them!
✓ We have over 300 products currently available, and all those don’t fit here!

We really did it this time! The UP24 is one of our most advanced kits to date, and an absolute MUST for anyone serious about the environment around us. But the applications only begin there!

The unique design allows unprecedented super high resolution measurements and display of absolute atmospheric air pressure. The UP24 senses ambient air pressure and critically calculates elevation with unheard of precision! Using a highly sensitive sensor and 24-bit A/D converter in a special noise-immune design, less than 1/3 of an inch of elevation resolution is achieved! YES, we said 1/3 of an inch!

This high accuracy and resolution opens the door to a host of sophisticated environmental air pressure monitoring applications.

Unlike your normal run-of-the-mill barometer, air pressure is sensed in Pascals or kPa’s. What are those you may ask? Pascals or KiloPascals. However, don’t be afraid, for your convenience, and to fit any application you may have, it is also displayed in milibars, bars, PSI, atmospheres, millimeters of mercury, inches of mercury, and feet of water! Take your pick. The range of the UP24 is 150kPa to 155kPa. And that also means:

- 15000 to 155000 Pascals
- 150 to 1550 Millibars
- 0.15 to 1.55 Bars
- 2.17566 to 22.48085 Pounds per square inch
- 0.1480385 to 1.529731 Atmospheres
- 112.5093 to 1162.596 Millimeters of mercury
- 4.294998 to 45.77148 Inches of mercury
- 4.82 to 5.2 inches of water

We’ve talked about air pressure, now let’s talk about elevation! The incredibly precise 24 bit A/D convertor in the UP24 looks at the air pressure and converts it to elevation above sea level. In both graph and text, the elevation is displayed to a resolution of a third of an inch!

The applications for the super accurate elevation meter are endless. From watching and recording elevations during hiking trips to measuring and recording the wave heights from your boat! Let your imagination take over from there!

What if you’re in the field and you want to save data captured in your UP24? The built-in FLASH storage provides 13,824 samples of storage. Then you can transfer your data to your PC with a standard USB interface.

While the UP24 is small enough to be kept in your coat pocket it boasts a large 2.78” x 1.53” 128x64 pixel LCD display screen making viewing easy. Display modes include both realtime pressure and elevation graphs as well as pressure and elevation statistics.

There are 12 user selectable sample rates from 1/10th of a second all the way to every 15 minutes. Includes a built-in NiMh battery pack for up to 4 days of continuous use. 110VAC charger is included. May also be charged from a 6-12VDC source.

Needless to say, you cannot put all the specs and all of the screen shots in the limited space of this ad! Just check out the Elevation and Air Pressure display below! For detailed information and specs visit our website at www.ramseykits.com.

If you’re looking for the finest air pressure and elevation sensor, check out the UP24, truly a marvel in the industry! Available in a ready-to-build kit or a factory assembled and tested version that you can start using right out of the box.

THE APPLICATIONS FOR THE SUPER ACCURATE ELEVATION SENSOR ARE ENDLESS. FROM WATCHING AND RECORDING ELEVATIONS DURING HIKING TRIPS TO MEASURING AND RECORDING THE WAVE HEIGHTS FROM YOUR BOAT! LET YOUR IMAGINATION TAKE OVER FROM THERE!
The response to the speed-test article was amazing. I got more emails from that article than any article prior. Several knowledgeable C language people pointed out my mistake. I also had a few people point out that Revolution Education’s PICAXE programming system could be “overclocked,” meaning it could be run with an 8 MHz or 16 MHz resonator in place of the 4 MHz resonator I used in the speed test. At 16 MHz, the PICAXE would run almost as fast as Basic Micro’s Basic Atom.

This was great feedback, since it indicates that readers of this column include programmers from various experience levels and are reading the details. In other words, they aren’t falling asleep reading my stuff. Now let me explain the error.

CODE ERROR EXPLAINED

If you missed the April column speed test, I just did a simple For-Next loop that continued for 255 iterations, and within the loop I processed a simple math equation to increment a variable. I toggled a pin outside the loop so I could measure the processing time on an oscilloscope, as shown in Figure 1. In the article, I made one mistake that several C programmers pointed out. In the section where I compared PICBasic Pro to the PICC-Lite compiler, I declared two “int” variables in the C compiler version of the speed-test code.

This was a huge mistake in a speed test program, since “int” creates a 16 bit variable in the C program — but in all the Basic versions of the code I declared byte variables. This greatly affected the speed results. You see, the PIC MCUs I used in the article were eight bit microcontrollers, meaning they have an eight bit wide data bus. To process a 16 bit variable, the program has to perform the math function in two steps: low byte then high byte. This takes twice as long. Therefore, it incorrectly showed the C compiler slower than PICBasic Pro.

To add to the confusion, I didn’t even realize until much later that I also sent the final version of the article with a typo in the C code embedded in the text. The C code in the published column included the For-Loop variable changing from 0 to less than 256; when in reality I ran it 0 to less than 255 because I knew a byte variable would always be less than 256. Changing from 256 to 255 should have tipped me off to the “int” variable error, but I completely missed it. You see, a byte variable will roll over to 0 after reaching 255 — since the 256 decimal is 100000000 binary. As this shows, it takes nine bits to store the 256 decimal and the lower eight bits (or byte) are zeros. So, I was thinking byte variable in my corrected code, but left the 16 bit “int” variable declaration in the code. If I wasn’t focusing on a speed test, it wouldn’t have been an issue.

I even admitted I was shocked by the results of the PICBasic Pro compiler being faster than C. I tested it on another processor, but got the same results since I made the same mistake. If an operating system supplier finds a bug, then they release an upgrade. This article is my upgrade! I’m correcting my mistake and clearly pointing out that the speed of the PICBasic Pro was fast, but not as fast as the corrected version of the C code compiled by the PICC-Lite compiler.

After a very nicely written email from Langue Rodriguez pointed out my mistake, I went back and declared the variable in the C program as an unsigned “char” variable (which made it an eight bit variable) and re-ran the speed test. The corrected code is shown in Listing 1. This re-test showed the PICC-Lite C program was faster than PICBasic Pro by 460 microseconds, with the setup running at 4 MHz. The PICBasic Pro program took
1.76 milliseconds and the corrected HIT-TECH PICC-Lite version only took 1.3 milliseconds.

This was a good lesson for me to have extra eyes review my code before releasing articles in the future, and I promise to do that. It also taught me something I never really thought of prior to this. Declaring the correct size variables can have a huge impact on the processing time of your code.

I remember many times when I wanted to create a variable that would contain values only slightly larger than 255. I would declare a 16 bit value or a word variable in PICBasic Pro. Now I see how this cost me significant processing time. To understand exactly how much it cost me, I ran the PICBasic Pro code with a 16 bit “word” variable declared. It was a lot slower than the C program with the “int” variable. PICBasic Pro took 2.6 milliseconds with a 20 MHz resonator and 13.1 milliseconds with a 4 MHz resonator. The PICC-Lite compiler took 720 microseconds at 20 MHz and 3.6 milliseconds at 4 MHz. It’s very clear by looking at this the PICC-Lite compiler handles 16 bit math much more efficiently than the PICBasic Pro.

All this speed comparing between these two fine compilers is relative, though, because — despite this 16 bit variable slowdown — PICBasic Pro with a 16 bit variable declared and running at 4 MHz was still faster than the PICBasic standard version — even with the variable still set as a byte (reference Table 1 from April). I’m often asked, “Why should someone spend a couple of hundred dollars for the PICBasic Pro compiler when they can program with a cheaper option?” This is clearly one of the reasons.

In many projects, high speeds won’t matter. But in cases where it does, it’s good to know the limits — especially if your program has lots of math equations. Those applications may be the time when you use a byte variable for the low byte, and then have a second byte variable for the high byte, followed by a check to see whether the low byte overflowed before updating the high byte. This would save processing time, since you are working with byte-sized variables.

OTHER COMPILER CHOICES

Another batch of comments came from people curious about other compilers, such as Crownhill Associates’ Proton Basic compiler. I’ve tried it in the past and remember it using a slightly different setup than Parallax’s BASIC Stamp PBASIC style, which the test program was based on. I decided to try Proton on this speed-test code. I downloaded the sample version of Proton to see if it supported the same chips I used. The sample version doesn’t support the PIC16F876A or PIC16F877A, but did support the PIC16F877. I dug around and found one of those older chips, so I was able to run it. I was pleasantly surprised to find the same speedtest.bas program compiled in Proton, but I got a few warnings.

Proton prefers you to use the DIM instead of VAR directive for creating variables, and it uses a different command than PAUSE for delays. The compiler did compile it, though, and

```
LISTING 1
#include <pic.h>  // Include HITECH CC header file
void Pause( unsigned int usvalue );  // Establish pause routine function
void msecbase( void );  // Establish millisecond base function

main()
{
    PORTB = 0;  // Clear PortC port
    TRISB = 0;  // All PortC I/O outputs
    while(1) // Loop forever
    {
        unsigned int z, y;
        RB0 = 1;  // Turn on RC0 LED
        for(z=0; z<255; z=z+1)
            y=y+1;
        RB0 = 0;  // Turn off RC0 LED
        Pause(10);  // Pause 10 msec
    }  // End while
    // End main
    // ******************************************************
    // pause - multiple millisecond delay routine
    // ******************************************************
    void Pause( unsigned int usvalue )
    {
        unsigned char x;
        for (x=0; x<usvalue; x++)  // Delay usvalue in milliseconds
            msecbase();  // Millisecond delay routine
    }
    // ******************************************************
    // msecbase - 1 msec delay routine
    // ******************************************************
    void msecbase(void)
    {
        OPTION = 0b00000001;  // Set prescaler to TMRO 1:4
        TMRO = 0xd;  // Preset TMRO to overflow on 250 counts
        while(!T0IF);  // Stay until TMRO overflow flag equals 1
        T0IF = 0;  // Clear the TMRO overflow flag
    }
```
just gave warnings. The warnings even stated the commands were recognized for backward compatibility, which is a nice feature. I only ran the test at 20 MHz on the PIC16F877. As it turned out, my test showed Proton ran exactly equal to PICBasic Pro, completing the loop in 350 microseconds @ 20 MHz.

Langue also sent me an email that he had tested a corrected version of the C file on the CCS C compiler, and included the results in his email. He reported a result of 1.794 ms at 4 MHz with the variable corrected to eight bits (int8). According to this result, CCS is slower than PICBasic Pro's 1.76 ms in eight bit mode, but I really wanted to confirm this, so I ran it myself.

I measured 1.792 ms when I tested Langue's code with the CCS PCM version and a PIC16F877A at 4 MHz. To get this accuracy, I used a much finer resolution on the scope. I went back and re-measured the PICBasic Pro code at this scope resolution, and found it to be 1.790 ms. Therefore, I concluded that the CCS and PICBasic Pro compilers ran at the same speed, and that my previous measurement had some resolution error. I ran the PICC-Lite at this finer resolution, but got the same 1.300 ms result as before. Langue's CCS code is shown in Listing 2 if you want to test it yourself.

C INTRODUCED

This seems like a good point to introduce some simple C coding to those who haven't worked with this language. The C language at first seems a lot different than Basic, but in reality, it's more format that anything. C code for PIC MCUs is different than trying to write C code for a PC application. In this respect, having the PIC MCU experience from programming in any other language is a bonus, because you understand the internal setup. For example, let's take the very simple program in Listing 3 written for the HI-TECH PICC-Lite compiler. (It just lights an LED on PORTB bit 0.) I use it because it shows the basic structure of C coding. The top of the file has the line

```c
#include <pic.h>
```

This includes all the necessary PICC-Lite compiler setup information in the program, and each C compiler will have its own version of this included file.

The next line establishes the configuration settings. I wrote this simple program in Microchip's MPLAB® integrated development environment (IDE) and set it up as a project. In the project setup, I selected the PIC16F876A. The #if to #endif block of code tests for this processor selection, and if any of those listed are selected in the MPLAB IDE, the compiler will include the configuration fuses to run in the external crystal mode (XT) with watchdog timer (WDT-DIS), brownout reset (BORDIS), and low voltage programming (LVPDIS) disabled. This will get transferred to the programmer automatically, through the final compiled and assembled .hex file.

The main body of the code is next. All C programs begin execution in a function named “main()”, which may be passed any arguments from an external source. Every function in C is bounded by a set of braces, and main() is no exception. The first thing we do in main() is to set up the PORTB and TRISB registers. We clear them both to make all of the PORTB pins set to outputs and cleared. This doesn't look much different than a Basic program.

The program then executes a continuous loop with the while() statement. The expression in the parenthesis is evaluated and, as long as it is true (a logical 1), the commands within the while statement's set of braces are executed. This is also not much different than the While command in many Basic compilers, except the commands are not contained within parenthesis. In this case, the formula is simply “1,”

LISTING 2

c-file follows:

```c
// Basic program to compare speed and code size
#include <16F876A.H>
#define *16
#if defined(_16F873A) || defined(_16F874A) || defined(_16F876A) || defined(_16F877A)
__CONFIG (XT & WDTDIS & BORDIS & LVPDIS);
#endif
main()
{
    PORTB = 0; //Clear PortC port
    TRISB = 0; //All PortC I/O outputs
    RB0 = 1;  // Turn on RC0 LED
    while(1)  //loop forever
    {
        RB0 = 1;
    }
    //End while

    while(1)  //loop forever
    {
        RB0 = 1;
    }
    //End main
}
```

LISTING 3

```
#include <pic.h> // Include HITECH CC header file

#define RB0 PIN_B0

void main()
{
    int8 z, y;
    while (true)
    {
        output_high(RB0);
        for (z=0;z<255;z++)
        {
            y++;
        }
        output_low(RB0);
        delay_ms(10);
    }
}
```

NUTS & VOLTS June 2007
which is a wonderfully useful expression mechanism in C — just about everything can be used as a boolean value (those things zero are FALSE, those non-zero are TRUE). Since the `while()` loop conditional will always return TRUE, it will loop forever. The commands within `while()` sets RB0 or PortB bit 0 to a one, which turns on the LED.

The program is completed by putting the closing braces for both the `main()` function and `while()` loop. It closes with an end command.

One thing to note with the structure of C is that all command lines — AKA statements — end with a semicolon. This is one of the biggest errors for beginners, as it is not required in assembly or Basic. Also, comment lines start with a double backslash — not a colon or semi-colon like assembly or Basic. If you can get past the braces and colons, the program doesn’t look much different than a PICBasic program. You can see some of the differences between the HI-TECH PICC-Lite and the CCS C compilers by comparing Listing 3 to Listing 2. I mainly wanted to introduce the basics of C code, and plan to help you learn more as this column progresses along.

CONCLUSION

I still feel that programming PIC MCUs in Basic is the best option for the beginner, but if you want to do any programming outside of the hobbyist arena, you should at least learn some C. I started with assembly and have used Basic for years, so those are like second nature to me. Adding C to my software skills made programming PIC MCUs even more fun, and I hope to pass on what I know to those that want to learn C, as well.

I’ve watched and helped many complete beginners get started programming by using the Basic Atom and PICBasic Pro. I also know others who learned with the various other options. There is no single correct choice. If Proton or PICC-Lite or PICAXE or BASIC Stamp or any other choice gets you started programming PIC MCUs, then go for it. When I started, the choices for the hobbyist or beginner were limited and finding help was next to impossible.

I often wished that I had someone teaching me or had books to read when I got started, but I couldn’t find many. Those books I did find were written for the professional and were often way over my head. I had to find all this out on my own. I hope you keep reading, and I’ll be more careful about the errors. Send me emails with your feedback, because as you can see, I listen. Send them to chuck@elproducts.com and stop by my website anytime at www.elproducts.com.

NOTE:

- PIC and MPLAB are registered trademarks of Microchip Technology, Inc., in the USA and other countries. All other trademarks mentioned herein are property of their respective companies.
New!

HC-2400A
$149.95

NEW!

INDOOR/OUTDOOR WEATHERPROOF!

2.4GHz Wireless, Infrared Color Camera with Audio, 380TVL Resolution and 4 Channel Receiver, 12 IR LEDs, 12VDC, Weather Resistant

New!

PRO-17LCD
$399.95

PRO-19LCD
$449.95

17” Professional Grade LCD Monitor with 2 Looping BNC Inputs, 1 Looping S-Video Input, 1 VGA Input, 3 Looping Audio Inputs,

EZ-380VF
$199.95

ADJUSTABLE ZOOM & FOCUS!

1/3” Ex-View CCD, Color Bullet Camera with 4-9mm Vari-Focal Lens, 0.03 Lux, 420TVL, 25 IR LEDs

Call the experts at PolarisUSA for all of your Video and Security needs!

800-308-6456

New!

DX-2400ORCH
$159.95

2.4GHz Indoor Infrared Wireless Color Camera with 4 Channel Receiver, 12VDC

COMPLETE 4 CAMERA SYSTEM!

SYS-17
$1699.97

SYSTEM INCLUDES:

1 x DSX-4169CD - 4 Channel DVR w/ CD-Burner 160GB HDD, TCP/IP, USB
1 x ZM-CR315NP-US - Dvier 15” COLOR Monitor
4 x EZ-380VF - 1/3” All-Weather IR Cams, 420TVL
4 x RG59TL-100 - 100’ RG-59 Siamese Cable
4 x PS-62A - 12V DC PS 500mA

Prices subject to change without notice! Actual images may vary!
Q&A

WHAT’S UP:
Join us as we delve into the basics of electronics as applied to every day problems, like:

- **Variable Timer.**
- **Solar Cells.**
- **PCB Layout Programs.**

WITH RUSSELL KINCAID

In this column, I answer questions about all aspects of electronics, including computer hardware, software, circuits, electronic theory, troubleshooting, and anything else of interest to the hobbyist. Feel free to participate with your questions, comments, or suggestions.

Send all questions and comments to:

Q&A@nutsvolts.com

VARIABLE TIMER

Q I need a timer to charge small rechargeable batteries. I need outputs of 1, 2, 4, 8, and 16 hours. I have a 1, Pole 5, throw switch for time selection. I can do all the peripheral work such as relays and LEDs, etc. I just need the outputs. I already have the power supply and transistors for charging and discharging the outputs at about one amp. I have 4060s, 4040s, 555s, other ICs, and the resistors and capacitors.

— William D. McMurray

A I don’t know why you want a timer because a battery can be left permanently connected to a good charger.
without a problem. But, since I don’t know your application, here is my solution:

I can see you put some thought into this. Having the times in binary increments makes it easy to use a binary counter. The 4060 has a built-in oscillator and we want an output in one hour (3,600 seconds). The 14th stage of the 4060 divides by \(2^{14} = 16384\). If we divide 3600/16384 = .2197, that is the input period needed to give a one hour output period. But there is a problem: The output starts at zero; after a half hour, the output goes high and stays high for a half hour. I want to feed the output back to the reset pin — which is active high — in order for the counter to cycle every hour. So, I need to double the input period to .439. The data sheet gives the equation for period as: \(T = 2.2 \times Rx \times Cx\). Choose \(Rx = 1\) megohm, then \(Cx = .439/2.2 \mu F = .2 \mu F\). Since 0.2 \(\mu F\) is hard to find, use 0.1 \(\mu F\), then \(Rx = 2\) megohms. The resistor, \(Rs\), just has to be large; use 4.7 meg. See the schematic in Figure 1.

In the feedback loop, I used a 10K and .01 \(\mu F\) cap to provide some delay; otherwise, the reset pulse will be so narrow that you can hardly see it on a 100 MHz scope.

I chose a 4013 set-up as a set-reset flip-flop to start and stop the charge. The two flip-flops in the 4013 are connected in parallel in order to give more output drive. A momentary push button is used to start the charge; the five position switch selects the time to reset the flip-flop and stop the charge. The reset pulse is fed to a 4040 counter to produce the longer times. The first output (Q1) will be two hours; the next output (Q2) will be four hours, etc. I had to introduce some OR gates in order to reset the counters at the same time that the start flip-flop is set.

The charging circuit uses an LM317T. It has a current limit of 1.5 amps; if that is enough current, you can eliminate Q2 and R6. The 2N5883 is rated 25 amps maximum but cannot supply that much current in this circuit. Here is why: It takes one-half amp through R6 to start turning Q2 on; that leaves one amp base current for Q2 when the LM317T is at current limit. Referring to Figure 2, Hfe versus collector current, note that the gain is down to 20 at 20 amps, so with only one amp base current available, that would be the maximum current output. But the base-emitter voltage increases with base current, further reducing the possible output. Referring to Figure 3, the line labeled Vbe=Vce=4V is pertinent. Note that Vbe at 20 amps collector current is 1.6 volts. With one ohm and 1.5 amps, we can’t get there, so 20 amps output is not possible. Let’s see if we can get 10 amps. At 10 amps, the gain from Figure 1 is still

Questions & Answers

June 2007

2 is 40. Vbe, from Figure 3, is 1.1 volts, leaving 0.4 amps for base current. 40 x 0.4 = 16 amps, so 10 amps at least is possible.

I put a 47 ohm, one watt resistor across Q2 to provide a trickle charge to the battery when the charger is off. When the battery is fully charged (about 14 volts), the peak voltage across R10 will be four volts, giving a peak trickle current of 85 mA.

The size of the fuse in the transformer primary can be determined as follows: The transformer ratio is 10:1 so, the primary current is one amp when the load is 10 amps. Use a two amp fuse so it only blows under conditions of transformer or regulator failure.

SOLAR CELLS

I am a novice when it comes to solar cells. I recently bought six cells and started playing with them. I noticed that even though they are all from the same company and the same make, they produce different outputs. Is this normal? Also, when I paralleled two cells, if I did not put a diode in series with each, I would get a lower value than the average cell voltage. I was not expecting these results.

Could you please shed some light on this? Do you always need to use a diode in parallel with each cell when trying to build up the amperage? I guess it goes without saying that you only need one diode in series with two cells in series for greater voltages.

Background: If you test the cells by themselves (open circuit), four of these solar cells are producing 15 to 17 VDC, with two only producing eight volts. The short circuit current is 100 to 140 mA.

Also, could you explain how to choose a solar cell for a project? I understand if I am running four 12 volt fans at 100 mA, I would add up the total amps: 400 mA for the project. But from what I am seeing on my meter, my voltage drop is a lot lower than what I would expect for a parallel circuit. Do I need to add a capacitor or something?

— DW

Most solar cells are made from silicon and have an output voltage of 0.5 volts. What you have is a series array of about 30 cells, giving an output of nominal 15 volts. There are several ways to make a solar cell, but they all act like diodes. You can connect them in parallel and the output will be that of the highest cell. I don’t know what is causing the effects that you see. Perhaps you bought some production rejects. You should not need a diode between units; the units themselves are a diode. The power output of the solar array must meet or exceed the power required by the load. If you need 400 mA at 12 volts (4.8 watts), the solar array must exceed that because the sun is not at maximum most of the time. You can get good information from this URL: www.solarserver.de/wissen/photovoltaik-e.html#from.

(The July issue of Nuts & Volts will have extra “green power” coverage, so stay tuned!)

PCB LAYOUT PROGRAM

I would like to download a PCB artwork program. Do you know of any?

— Anonymous

I assume you mean a free PCB layout program. A Google search turned up these possibilities: www.ExpressPCB.com, www.PCB123.com, www.FreePCB.com, and www.cadsoft.de. The first two are produced by companies that hope you will use their facility to make the PC boards. My reading of reviews indicates that these are full featured. FreePCB is open source freeware and the one review I saw indicated that it was good. I included Cadsoft because I am using their Eagle program. The free version is limited in board size and parts count but should be adequate for your use. There is a good manual and online help is excellent. NV
SuperH Flash Microcontroller Reaches Speeds up to 160MHz
Superscalar performance, high-speed on-chip flash memory access, and much more

Renesas Technology
No. 1* supplier of microcontrollers in the world

proudly introduces the SuperH family of superscalar flash devices. With 160MHz superscalar performance, high-speed access to on-chip flash memory and up to 200MHz CPU operation from SH-2A devices, the SuperH family allows you to incorporate all of your brilliant ideas into super high performance applications. The SuperH RISC engine and the SH-2A core are establishing new performance standards in the industry. The SH-2A core is geared towards systems that demand real-time, high-precision control and require a combination of high performance CPU and high-speed flash.

SuperH MCU Roadmap

HOT Products

SH7211F

SH-2A PIPELINE

IF ID EX MA WB

Decoder 1

Decoder 2

Bus

Branch Unit

Memory Access

Cache Units

DF IF ID EX MA WB

Bus

Instruction Queue

TOP Reasons to Select SuperH

480 Dhystone MIPS at
200MHz

• Superscalar Performance
 - Two instructions are executed per cycle at 160MHz
 - World’s fastest embedded FLASH with 12.5ns read access time.

• Fast Real-Time Control
 - Register-banks enable 37.5ns (6 cycles) interrupt latency time.

• High Integration
 - Large on-chip flash and on-chip RAM
 - Advanced 16-bit PWM timers to drive two motors simultaneously
 - 1.25μs 12-bit A/D conversion with 3 sample & hold circuits

*Source: Gartner Dataquest (April 2008) "2005 Worldwide Microcontroller Vendor Revenue" G003333

Get Started Today -
Register to qualify for a SuperH MCU Kit

www.america.renesas.com/ReachSH/e

Renesas Technology Corp.

www.renesas.com
THE ULTIMATE CORD ORGANIZER CLIP

Delta 9 Products (DNP) introduces the Ultimate Cord Organizer Clip. Rick Nelson, DNP Product Manager explains, “Our product provides an innovative way for the professional to organize and track cables, cords, and wires between electronic devices.” “Each slot in the Ultimate Cord Organizer Clip has a letter assigned to it and retains the cables and cords when open. The Ultimate Cord Organizer sorts by size and type, but also allows you to channel, isolate, and track cords, cables, and wires. The organizer is available in four standard colors: black, gray, neon orange, and neon green. Custom colors are available. The organizer is sold in five packs ($9.95), 10 packs ($18.90), 20 packs ($35.90), and 60-pack ($102.35) quantities.

USB AC MONITOR

JWorks is now shipping model JSB-370 which monitors an AC line and reports the on/off status of the line over the standard USB (Universal Serial Bus). The user may select that an on-board relay turns on and off based on the status of the AC line. The user communicates with the module from any programming or test language that supports USB communications. This small form factor module

Simple LAN

Microcontroller based web server

Features:
- 10-Baset Ethernet connection
- Easy to use interface
- Serve up to 31 Kbytes of files
- Receive data from HTML form
- 1200 bytes for web variables
- Send email with and without Login Authentication
- Send and receive UDP messages

For more information, contact:
Delta 9 Products
Tel: 530-333-2014
Web: www.ultimatecordorganizer.com

Order a 9XTend Development Kit Today!

- ISM 900 MHz operating frequency
- 1 mW - 1 Watt power output (up to 40 mile range)
- 256-bit AES Encryption
- Advanced networking topologies

Order on the Web. Credit Cards Accepted.
replaces internal PC-based plug-in cards in various test, control, monitor, and measurement applications. Complete product specifications are available at the J-Works website. Single unit price for the Model JSB370 starts at $75. Delivery is from stock.

For more information, contact:
J-Works, Inc.
11024 Balboa Blvd. Ste. 402
Granada Hills, CA 91344
Web: www.j-works.com

$99 DEVELOPMENT TOOL

Enabling designers to quickly develop ultra low power medical, industrial, and consumer embedded systems using either a highly integrated signal chain on chip (SoC) MSP430FG4618 or small 14-pin F2013 microcontroller, Texas Instruments announces the availability of the MSP430 Experimenter's Board (part number MSP EXP430FG4618). Along with the two 16-bit MSP430 devices, the board includes a TI (Chipcon) radio frequency (RF) module connector for developing low power wireless networks. The board also features a number of input and output options such as a microphone, buzzer, liquid crystal display (LCD), capacitive touch-pad, push buttons, and pin board prototyping space, among others.

Multiple Design Options with Two MSP430 devices

With two MSP430 MCUs, designers can easily develop a variety of low power and battery-operated products including cost and space sensitive sensing applications like motion detectors, all the way to highly integrated applications like high precision portable medical and industrial sensing.

The F2013 is a small 4 mm x 4 mm, 14-pin device that features a fully programmable clock system that provides wake-up from an industry leading 500 nano-amp standby to full-speed operation in less than one microsecond. The F2013 device also includes a 16-bit sigma-delta analog-to-digital (ADC) for high-precision sensing systems, 2KB of Flash and 128KB of RAM memory, and a basic serial communication interface (USI) which makes SPI and I2C implementations easy.

The FG4618 MCU includes 116KB of Flash memory and incorporates the MSP430X core architecture with an extended 1MB memory model. The extended memory access is ideal for larger system requirements and allows for the development of very sophisticated real-time applications, completely in modular C libraries. Up to three operational amplifiers —
to handle high precision instrumentation — coupled with the on-board 200ksps 12-bit ADC, one microsecond code-to-code settling time 12-bit digital-to-analog converter (DAC), and direct memory access controller (DMA) complete a SCoC solution that reduces overall system cost and eliminates the need for external components.

Multiple Board Input and Output Options Allow For Fast System Development

Combined with the two devices is a host of interfaces and input/output options that allow a designer to quickly evaluate the suitability of either MSP430 MCU. JTAG headers on the board make both devices accessible for programming and debugging, as well as communication between the two MSP430s or to other external devices. A variety of input options include a microphone, capacitive touch-pad, and push buttons. Output peripherals include a buzzer, LCD, RS-232 communication interface, and 3.5 mm headphone jack for analog output.

To accelerate the development of low power wireless RF systems, the Experimenter's Board includes connectors for various Chipcon evaluation modules, which cover the <1 GHz and 2.4 GHz frequency bands (including IEEE 802.15.4/ZigBee™ standards). Supported modules are the CC11x0, CC25x0, and the CC2420 evaluation kits, which are available separately.

The MSP430 Experimenter's Board is available for $99 and requires a Flash emulation tool, such as the MSP-FET430UIF, available separately starting at $99. Chipcon evaluation boards are available at www.ti.com/estore.

VERSATILE MILLOHMMETER FOR PRECISION RESISTANCE MEASUREMENT APPLICATIONS

The Cropico DO4A from Clare Instruments US, Inc., is a highly versatile, digital ohmmeter used for low resistance measurement across a diverse range of production, safety, and design engineering applications.

Of particular relevance is the instrument’s role in the precision resistance measurement of electronic components and switches, as well as electrical connectors, crimp joints, fuses, and similar products.

The DO4A uses True 4 Wire measurement to eliminate lead resistance errors across a push button selectable range from 40 mW to 4 kW with respec-
tive resolutions between 10 mW and 1W.

Contained in an aluminum case with a tilted carrying handle, the robust unit is a highly practical instrument that can be used in the workshop, by field or maintenance engineers, or as part of more comprehensive electrical test facilities. Input protection is provided up to 415 volts rms.

For ease of operation, the control functions have been kept to a minimum and a four digit LCD gives direct readings of the resistance measured, with over range and low battery indicators also provided.

Other special features include an auto zero facility where thermal EMF may cause a large measuring error and warning LEDs to indicate an open circuit lead condition.

Rechargeable batteries provide full portability with over 14 hours of continuous working on the lowest ranges and 28 hours of operation on others.

The Cropico DO4A is supplied ready for immediate use and comes complete with battery, mains cord, and measuring leads. In addition, a wide range of optional accessories including duplex handspikes, other specialist clips, long length leads, and wire clamps further extend the instrument’s versatility.

THE NEW SCHMARTMODULE

S
chmartBoard, the developer of a new technology that has significantly simplified the creation of electronic circuits for hobbyists, education, and industry, announces the release of a new product — the Power SchmartModule.

A few benefits to the new module include: they allow virtually anyone to hand solder; users can surface mount components easily, quickly, and flawlessly; and dexterity to hand solder surface mount components with small pitches is not required.

Additionally, SchmartModules offer pre-designed common circuits that allow designers to quickly and easily add common functionality without having to “re-invent the wheel.”

The Power SchmartModule allows users to power up circuits with one of seven voltages, which include: -9, -12, +2.5, +3.3, +5, +9, and +12 volts. The product comes as a bare board with a bill of materials, schematic, and simple instructions. Users solder the components onto the board themselves. The board uses SchmartBoard’s patent pending “ez” technology to make soldering fast and easy. Because the product has variable power options, one can reuse the product on many different circuits if they choose. The suggested retail price of the board is $15.

For more information, contact: SchmartBoard
Web: www.schmartboard.com

$51 For 3
FREE Layout Software! FREE Schematic Software!

01 DOWNLOAD our free CAD software
02 DESIGN your two or four layer PC board
03 SEND us your design with just a click
04 RECEIVE top quality boards in just days

expresspcb.com

June 2007 NUTSVolts 29
In the first couple of installments of this series, we used a PC to take measurements and display the results from our 1-Wire sensors. The major drawback for building a PC-based weather station is that the PC has to be on all the time. While the programs can run in the background, you do tie up any serial port you have connected to your PC. In this article, I am going to show you how to build a complete microcontroller-based weather station complete with color display.

Let’s take a look at some of the benefits of a microcontroller-based weather station:

- Multiple 1-Wire networks for reliability.
- Full color display.
- Does not tie up the PC.
- Calculates Dew Point, Wind Chill, and Heat Index.
- Displays one minute wind speed average, as well as gusts.
- Displays real-time wind direction updated several times a second.
- Real-time status indicator for each sensor.
- Plots last 24 hour readings for temperature, humidity, and wind speed.
- Tracks and plots last 24 hour barometer readings.
- Displays 12 hour barometer forecast.
- Large portion of the display area is available for other sensors such as lighting, or moisture gauges.

Display System

For our display system, we will be using the ezLCD001 from Earth Computer Technologies, Inc.; www.EarthLCD.com (Figure 1).

The ezLCD001 has a 240x160 TFT color display. It has a built-in, software controlled backlight and several interface options:

- RS-232 level serial interface
- TTL level serial interface
- USB interface
- I²C interface
- SPI interface
- Eight-bit parallel interface
we are going to be using the I2C interface with our weather station. To power the display, anything from 3V to 6.6V will work. I am going to use a DiosPro microcontroller because of its low cost and the fact that it already has a complete set of built-in ezLCD001 and 1-Wire libraries. We will be using the DiosWorkboard Basic as the carrier for both the DiosPro and ezLCD001.

Initial Construction

We need to add a couple of headers so that we can plug the ezLCD001 into the Workboard. Schematic 1 shows the display hookup. Note that we have connected the display to ports 10, 11, and 12. You may use other ports as well, but keep in mind you will need to change the ezLCDiniti2c parameters if you do.

Before you continue, you need to think about how you are going to mount the Workboard and the external modules/connectors. I mounted mine to a 5" x 7" piece of compressed PVC. I used a narrow RJ11 jack for my outdoor network, as shown in Figure 2. This can be attached by screws or double-stick foam tape.

The Workboard is attached using 1/4" standoffs but could have been attached without them.

STEP 1: Build the Dios Workboard Basic as per the instructions included with the kit available from Kronos Robotics (see Web Links). The only modification that you need to make is to add a TO-220 heatsink to the onboard 5V regulator. This is done by gently bending the regulator so that it is standing up. Once this is done, you can slip the heatsink over the regulator as shown at the top of Figure 3.

Why do we need a heatsink anyway? We need to supply 14V to the Hobby Boards barometer. In order to do this, we need to supply at least 16V to the DiosPro coax. This will yield approximately 14V to the input of the 5V regulator. With the added load of the display, as well as the outdoor 1-Wire network, the onboard regulator starts to get warm. The heatsink will keep the temperatures within the operating range.

After building the board, plug in the DiosPro and test the board as per the included instructions.

STEP 2: To mount the LCD, we need to add a couple of headers and run a few wires.

Take a six-pin header and attach it to the pads marked RC2-RH2, as shown in Figure 4.

Next, take a 13-pin header and attach it to the pads marked XC4-XO4, as shown in Figure 5.

Now, take a second 13-pin header and attach it to the pads marked YC1-YO1, as shown in Figure 5.
STEP 3: Take a small jumper and connect the pad marked RE1 and attach it to the pad marked, as shown in Figure 6. Note this is the small green jumper. Attach a jumper between RH1 and one of the VDD pads, as shown in Figure 5. This is the white wire.

STEP 4: Attach two 1K resistors to the pads shown and XH2 (see Figure 7) and solder in place. The two resistors hold the ezLCD001 SDA and SCL ports high until pulled low by the DiosPro. Since the interface to the ezLCD is 3V, they are pulled high to a 3V reference provided by the display itself.

STEP 5: Connect the ezLCD001 I2C SDA port to Dios port 11. The pad marked XH1 is the I2C SDA port. Solder in place, as shown in Figure 8. Now connect the ezLCD001 I2C SCL port to Dios port 10. The pad marked XI1 is the I2C SCL port, as shown in Figure 8.

STEP 6: Connect a wire from YI2 to port 12. This is the reset port on the ezLCD001. The software will bring this port low each time the software starts in order to reset the display.

Connect a 14-pin header to the port pads, as shown in Figure 9. Note this is the header on the left side of the board. The header will give you access to I/O ports 0-12, as well as Vss.

Connect a 15-pin header to the port pads, as shown in Figure 9. This is the header on the right side of the board and gives you access to I/O ports 13-25, as well as Vss and Vdd.

STEP 7: Let’s perform a simple display test.

Without the ezLCD display plugged into the Workboard, apply power to the DiosWorkboard via the coax connector. This should be between 15V and 17V. If you are not going to use the Hobby Boards barometer module, you may use anything within the range of 7-16V.

Load Program 1 into the DiosPro. The file called LCDtest.txt is included in the download files.

Power down the Workboard and plug the display into the six-pin and 13-pin connectors and apply power to the DiosWorkboard. The words “Hello World” should print onto the display in blue. If it does not, go back and check all your connections very carefully.

Network Connector Construction

For detailed information on 1-Wire and connection techniques, check out the March installment of the series called “Environmental Sensors.” We will be running two 1-Wire networks off of the DiosPro.
The first will be our outdoor network. This network will run to our weather pole where all our outside sensors are located. The second network will run to a Hobby Boards barometer module which will form our indoor network.

Schematic 2 shows the connections of the two networks. Note that I added R3, a 100 ohm resistor in series with my outdoor network. I have 200-300’ Cat3 cable run which is the worst case scenario and the resistor helps to reduce errors. I actually placed the resistor inside the modular box so it could be removed when I upgraded the cable to Cat5.

I am also using I/O port 15 to supply 5V to the pullup resistor R1. You could have tied the resistor to VDD, but this makes it easier to connect the resistor to the removable header.

Let’s start by adding a connection to a modular jack so that you can easily connect your outdoor sensors to the weather station.

STEP 1: Take a snapable female header and cut off a three-pin section and place it on the WorkBoard header labeled VSS, VDD, and P13. Solder a 1K resistor between the VDD and P13 leads, as shown in Figure 10.

STEP 2: Attach a 4” piece of black telephone wire to the lead labeled VSS, then attach a yellow wire to the lead marked P13, as shown in Figure 11.

STEP 3: Attach a modular jack to the base you are using for the project. Most modular jacks come with foam tape for this. I used small #4 machine screws to mount mine.

Attach the black wire (connected to VSS) to the green wire on the connector. Attach the yellow wire (connected to P13) to the red wire on the connector, as shown in Figure 12.

STEP 4: The connection to the indoor network is similar to the outdoor network. Start by cutting off a two-pin section from a female header and slip it over ports 14 and 15. Solder a 1K resistor between the two leads on this header then attach a 4” yellow wire to the lead connected to port 14, as shown in Figure 13.

STEP 5: Snap off a two-pin section
from a female header and slip it over the PWR header pins marked VIN and VSS. Next attach a 5” red wire to the VIN lead and a 5” green wire to the VSS lead, as shown in Figure 14.

STEP 6: Attach the Hobby Boards barometer to your project base. Next attach the three red, yellow, and green wires to the board, as shown in Figure 15.

STEP 7: With construction complete, you need to remove the ezLCD display if it is attached and power-up the Workboard.

Load the file named Networktest.txt that is included in the download files and program it into the DiosPro. The program will display the status of the two networks.

When you plug your outdoor network into the modular jack, it should report a good network.

Weather Station Software

Okay, all the hard work is done. The hardware construction is complete and tested. Now comes the most rewarding portion of the project. I am going to take you through adding the code for each sensor one at a time so that you can customize the software for your configuration. As we add each software component, you will see your weather station come to life.

The ezLCD display screen was difficult to photograph because the glass bezel on the display added a moiré pattern. In order to show you what the different gauges should look like, I created some drawings that actually came very close to the actual display.

You will need the registration numbers from all the devices on your network so that you can paste them into the appropriate routines. If you don’t already have these numbers, load and run the DiosPro file called Networksearch.txt. This program will display the registration numbers on each of the networks in the debug window, as shown in Figure 16.

Outside Temperature Sensor

Load up the file called LCDweather1.txt. Take a look at the file and you will notice three sections in the program. Each of the programs that we are going to load have these three sections.

- **Basic Setup** — This is where the 1-Wire ports are defined, the timers are started, and the LCD is initialized. This part is the same for each of the programs we are going to load in this section.

- **Draw Gauges** — Each of the gauges has to be drawn before they can be used. This is where we make a call to the function that handles the particular sensor we are adding to the weather station. In the case of the Outside Temperature Sensor, the function is called readthermometer. Also notice that we pass 0 as a parameter. This tells the function that we simply want to initialize and draw the gauge.

- **Main Processing Loop** — Here we make the same call to the processing function with a parameter of 1, which tells the function to take a reading and display the results.

Include Files

At the end of the program, there are a series of include files. These files contain functions that make up the weather station. The first include file is called LCDtmp.lib. This points to the file that actually contains all the routines that take the temperature readings and display the results. We will adding additional LCD include files as our weather station progresses.

The second include file contains the functions that set up the timers we need for our weather station. There are six timers that we used for this weather station. The timers run in the background and each one increments a global variable once every 10 milliseconds. We use these timers with various modules to help us create plots and averages for the individual sensors.

The last include file is the ezLCD library.
The Dios editor has a feature that if you double click on an include file name, it will load that file into an editor form so that you can make modifications to the file. Go ahead and double click the LCDtemp.lib name. This will open up the file containing definitions for the outside thermometer functions. Looking at the LCDtemp.lib file, you will notice a table entry called AAGTempROM: This defines the device registration number. You will need to change this number to match one of the DS1820 thermometers on your outdoor network. The registration number will need to be changed in each include file to match those on your network.

Once the registration is changed, save and close the include file. Then program the LCDweather1.txt program into the DiosPro. You should see a thermometer on your display like the one shown in Figure 17.

Figure 17 actually shows three thermometers. The first is what the thermometer looks like when it displays a normal temperature. If the conditions are present to create a Wind Chill, it will be displayed as a thin cyan bar like the one shown on the second thermometer. If the conditions are present to create a Heat Index, it will be displayed as a dark red bar like the one shown in the third thermometer. Since we don’t have a humidity or wind sensor module loaded yet, you won’t see either of these two indicators, nor will you see the Dew Point calculation.

Wind Speed Sensor

Load up the file called LCDweather2.txt. If you look at the file, you will see that it is identical to LCDweather1.txt. The only difference is that we added a call to the readspeed function to both the Draw Gauges and Main Processing Loop sections. There is also a new include file added called LCDspeed.lib. Go ahead and open this file and edit the table entry in the readspeed function, then program the DiosPro with the file.

The wind speed gauge cluster has three sections shown in Figure 18. The main gauge has a small hand that points to the indicated speed. The number above this gauge is the actual speed with a .1 mph resolution. These readings are actually averaged over the last 30 seconds. The number in the small circle in the upper left hand of the display cluster is the gust indicator. If a gust is detected and the value is higher than the number that is already displayed, it will replace that number and reset an internal gust timer. The timer also gets reset if the gust is the same as the one displayed. If no new gust is received that is greater or equal to the one displayed over a five minute period, the indicator will be cleared.

Wind Direction Sensor

Load up the file called LCDweather3.txt. A new function called readspeed has been added. Edit the LCDdir.lib file and make the registration changes to the table entry. The AAG wind direction uses the DS2450 Quad A-to-D device.

The wind direction gauge shown in Figure 19 takes a reading a couple of times each second and displays the direction the wind is blowing from.

Outdoor Humidity Sensor

Load up the file called LCDweather4.txt. Here we added the function called readhumidity. The humidity sensor uses a DS2438 device.

You may have noticed small green pips that were displayed near the center of the screen, as shown in Figure 20. These are sensor status indicators. When green, the sensor is working properly; red indicates they failed on the last reading. It is normal to get an occasional error.

The pips represent the following sensors:

- Pip 1 — Wind Speed
- Pip 2 — Wind Direction
- Pip 3 — Temperature
- Pip 4 — Humidity
- Pip 5 — Barometer

Barometric Sensor

Load up the file called LCDweather5.txt. Here we added the function called readbar. The barometer sensor uses a DS2438 device and is on the indoor network. In addition to the table entry, you need to set the slope and intercept constants, as well. These are what you used when you calibrated your barometer.

Figure 21 shows the barometer gauge. The red plot line is a history of the last 24 hours. The blue plot line is a prediction for the next 12 hours. It is based on the rate of change for the last four hours. The blue number and weather prediction is based on the 12 hour point on the plot.

The sensor is read once per minute and the red bar number is updated. The plot lines and prediction are only updated once per hour. The last 24...
History
All the sensors have been added. Now let’s add a bit more processing.

Final Thoughts
We covered quite a bit of material in this article. I understand that many of you will want to build a custom weather station and may not be using the exact sensors that I have used here. I will be glad to answer any of your questions to help you make your modifications. Please use our Weather Center and Home automation forum at www.kronosrobotics.com/forums/viewforum.php?f=25.

There is plenty of unused space on the ezLCD display. In the future, I will be adding a rain gauge, as well as moisture and various other sensors.

I have been experimenting with the SCP1000 available from Spark Fun Electronics shown in Figure 23. This is one accurate pressure sensor and can track barometric pressure to three decimal points. It’s faster and more accurate than the 1-Wire sensors. It also has an onboard temperature sensor. This particular model uses a two-wire I²C interface and a complete Dios library is available. If you decide you want to use one of these, check out the application note on the Kronos robotics website at www.kronosrobotics.com/Projects/SCP1000.shtml.

What’s Next
Next month, I am going to look at adding a couple remote Zigbee units to the sensors on our weather pole. This will make our weather station truly portable.

All the source code is available for download at www.kronosrobotics.com/Projects/weathermicro.shtml. NV

WEB LINKS
- Hobby Boards
 www.hobby-boards.com
- Spark Fun Electronics
 www.sparkfun.com
- Kronos Robotics
- EarthLCD
 www.EarthLCD.com

PARTS LIST

<table>
<thead>
<tr>
<th>Hobby Boards</th>
<th>EarthLCD</th>
<th>Spark Fun Electronics</th>
<th>Kronos Robotics</th>
<th>Other</th>
</tr>
</thead>
</table>
Every week, Jameco is giving extra discounts on major brands like these:

- AlcoSwitch
- AMP/Tyco
- Dallas Semiconductor
- Intersil
- Maxim
- Microchip
- Molex
- Panasonic
- AVX
- Fairchild Semiconductor
 - Tyco
 - Aromat
 - Aavid Thermalloy
 - Atmel
 - ST Micro

Every week, Jameco is giving extra discounts on major brands like these:

- AlcoSwitch
- AMP/Tyco
- Dallas Semiconductor
- Intersil
- Maxim
- Microchip
- Molex
- Panasonic
- AVX
- Fairchild Semiconductor
 - Tyco
 - Aromat
 - Aavid Thermalloy
 - Atmel
 - ST Micro

And that's in addition to the industry-best pricing you already get at Jameco every day!

You already know about Jameco’s best-in-the-business low pricing...

Now we’re out to get a new message across: Major Brands—at Jameco pricing!

To dramatize the point, we're giving you an additional 15% discount on two different major brands each week. From now through the end of May!

And that's on top of our everyday discounted pricing!

We wanted to make this so good a deal that you just couldn’t pass it up.

So... Want to know which two major brands you can save extra-big on this week? Just head to the website...

www.Jameco.com/NVS
Seven-segment LEDs still have some advantages over the LCD displays that are very popular now. They are self lighting, large, and easy to read (like from across the room.) They are inexpensive, don’t require complicated voltage converters for fussy backlit displays and tolerate wide temperature ranges (LCDs don’t work too well below freezing while LEDs are quite happy operating there.)

Many of the seven-segment designs that I’ve seen drive all eight of the segments (seven plus the decimal point) of a digit at the same time. The problem is that there can be quite a bit of current sourced through the common connection of the digit.

One thing I noticed in existing PIC designs were four PNP transistors tied to the anodes of a typical four digit display. This is to manage the worst case current draw. For example, the display that I use typically draws about 5 mA per segment. Multiply that by 8 and you have 40 mA of current being sourced to each digit. A PIC can only source or sink a maximum of 25 mA through any single output pin. So the PNP transistors are used as current amplifiers.

But if we only drive part of the digit at a time, we can cut down the total current requirement! I wondered if I could wire the display so the PIC sources and sinks only a single segment each pass. Would the duty cycle for each segment be too low, causing the display to be dim? I did a little bit of math and came up with the following:

\[
\frac{1}{4 \text{ digits} \times 8 \text{ segments/digit}} \times 60\text{Hz (a good refresh rate)} = \text{about 500 microseconds}
\]

That’s no problem for a PIC running the internal oscillator, especially since the only other thing that it’s doing is reading characters from the serial input. Still, that’s only about a three percent duty cycle. Would that be enough?

Let’s see what we have to do. For an LED, we have a diode (light emitting diode, remember?) A diode only conducts current when the anode is positive and the cathode is negative. Further, the anode voltage...
all digits in the display are lit at once. Persistence of vision makes it seem that digit is lit. By doing this rather quickly, current in a different anode, another cathodes (segments), a single digit can and sinking current in one or more sourcing current in one chosen anode of the other digit’s segments. So by sourcing current in a different anode, another digit is lit. By doing this rather quickly, persistence of vision makes it seem that all digits in the display are lit at once.

If either the anode voltage is low and/or the cathode voltage is high, then there is no current flow, and no light from the segment. So if the circuit drives one of the anodes high, then optionally walks a zero though each one of the cathodes, we can have the display turn off and on each individual segment. If we turn on only the desired segments in rapid enough succession, then we can have the display show four unique digits at minimum current draw.

Furthermore, if we limit the current to what each PIC pin can tolerate, we can get rid of the PNP transistors all together. We will still need a current limiting resistor though. The forward current specification of an LED is for continuous (DC) levels, but if we have a duty cycle, we can increase the amount of current through the device.

Since we are trying a 3% duty cycle, we can pass close to the maximum current from a PIC output through the LED. We just have to be a little careful when debugging the code and not leave a segment stuck in the on position for too long.

So now we have the verbal description of the problem. Oh wait, there’s something else (isn’t there always?). I want a small form factor for the circuit without a lot of space taken up around the display itself. But I still want to use through hole design, not surface mount. It might be good to have an optional power supply on the board, too as you never know what type of power we will have around.

Now we have all of the requirements for the design. I’ve got a collection of four digit common anode, seven-segment displays that I bought from RSR Electronics. In quantity 10, they are $1.25 each, which is not too bad. The digits are about a half inch high and have a right hand decimal point after each digit. They didn’t come with any specs, but a low voltage power supply and a series resistor showed what the pinouts of the display are (Figure 2).

Now, what if you have trouble finding common anode displays (see the Finding an LED Display sidebar)? There are common cathode displays out there with segments and digits...
going to the same pins. The only problem is that the direction of the LEDs are reversed, but that's just a code change for the PIC. We just reverse the level on the outputs on the same pin. If you want a segment to light, you still just apply a positive to the anode (which is on the same pin as a cathode for the common anode design) and a negative to the cathode (which is on the same pin as an anode on the common anode design). I know it sounds a bit strange, but look at Figure 2 and reverse the direction of the diodes. Then pick a segment and a digit and apply the logic levels. I've allowed for either in the code (more on that later).

I have a collection of 16F648A PIC microcontrollers. I bought these at a quantity 25 price break and they are my little "go to" microcontrollers. The design could also use the 16F627 and 16F628 parts. The -A models just have twice as much program Flash memory and they only cost a couple of pennies more than the lower capacity parts, so I typically use these. But if you have some of the other parts, by all means, change the configuration word and the processor type in the source code and use those.

For little designs like this, I often do the printed circuit board design first and then do the schematic. It's a little backwards, but allows for some much simpler layouts. I first lock out the special pins of the PIC (like MCLR, the RS-232 pins, RB4, power, and ground). Then with the pins left over, I connect to the display. To keep the small form factor for the board, I mounted the display on the solder side of the board and the rest of the components on the other side. This means that I could put the PIC inside the footprint of the display. With a little bit of thought, I got a single-sided board without a jumper.

I know it sounds a bit strange, but look at Figure 2 and reverse the direction of the diodes. Then pick a segment and a digit and apply the logic levels. I've allowed for either in the code (more on that later).

I have a collection of 16F648A PIC microcontrollers. I bought these at a quantity 25 price break and they are my little "go to" microcontrollers. The design could also use the 16F627 and 16F628 parts. The -A models just have twice as much program Flash memory and they only cost a couple of pennies more than the lower capacity parts, so I typically use these. But if you have some of the other parts, by all means, change the configuration word and the processor type in the source code and use those.

For little designs like this, I often do the printed circuit board design first and then do the schematic. It's a little backwards, but allows for some much simpler layouts. I first lock out the special pins of the PIC (like MCLR, the RS-232 pins, RB4, power, and ground). Then with the pins left over, I connect to the display. To keep the small form factor for the board, I mounted the display on the solder side of the board and the rest of the components on the other side. This means that I could put the PIC inside the footprint of the display. With a little bit of thought, I got a single-sided board without a jumper.

After doing the layout, I generated the schematic (see Schematic 1). There are four current-limiting resistors for each of the anodes, the microcontroller, and a simple inverter made from a 2N2222 or other general-purpose NPN transistor. This is required for the PIC's serial input. The signal must be inverted (have a low true signal for the start bit). Note that this inverter circuit is not within RS-232 specs, however I have used this circuit with many different serial interfaces without a problem. The power supply is just a full bridge linear regulator design, and without it, there is only the PIC, one transistor, the display, and seven resistors. That's a pretty low parts count!

After the schematic was done, I...
could then do the register map for the PIC program and I could start writing code. I’ve done several PIC projects, so I have snippets of code that I have used to initialize Timer0 and the USART. I’ve specified 9600 baud for the serial input but you can modify the code to support the baud rate of your choosing. The code uses Timer0 for the time between display changes; I choose around 500 µs for a flicker free display. The register map is:

```
PORT A & B I/O definitions for 16F648A version

BIT 7 6  5  4  3  2  1  0
PORTA DP c MCLR NC f a e d
PORTB g CA4 CA3 CA2 CA1 NC RS232 b
```

where DP is the decimal point, a-g are the segments, and CA1-CA4 are the digits. Note that my configuration has the leftmost digit as CA4 while most documentation has it as the rightmost. I do it this way in case I have three digit displays. NC stands for no connection.

There is an assembler define statement that selects either common anode or common cathode displays. If you have a common cathode display, comment out the #define COMMON_ANODE statement and reassemble.

All the real work of the code is done in the interrupt service routines. When Timer0 generates an interrupt, the code goes to the next segment to light or not light, as required. Let’s look at a portion of the code to see how we multiplex the display. We will use the common anode design. The code is listed in the LED Segment Selection sidebar.

The segments are stored in an array in general-purpose registers from seg7digit to seg7digit+3 where each byte represents a digit. There is a pointer (modulo 4) named this_digit, which rolls from 0, 1, 2, 3, 0, 1... and selects which digit we will display. The pointer plus the offset address to the base of seg7buffer is added together and put in the field select register (FSR). The contents of the register pointed to by the address in the FSR is read from memory using the INDR (indirect register) and placed in the W register. Then this value is held in the register, decoded_digit. This has all eight segments for the current digit we are displaying.

There is also a bit mask register named this_segment. This has the “bit selector” for the or operation to isolate the bit, by shifting a zero through a field of ones. The result of the logical-or operation is mostly ones. For the selected bit, and the decoded digit, if both bits are low, then the output of that bit will be low, driving the cathode for that segment low and the ones in the other bits will leave the other cathodes high (hence, no current will flow). So, we will have, at most, only one segment lit at any one time.

For the common cathode design, the voltage levels are reversed, so we have to perform a logical-and function in a field of ones with a mask of mostly zeros. The result of the and operation is mostly zeros. For the selected bit and the
decoded digit, if both bits are high, then the output of that bit will also be high, driving the anode on for that segment.

After setting the cathodes in both output ports, the turn_on_anode subroutine is called. This routine then turns on one and only one of the anodes based upon the digit number. This routine is found at the start of program memory as it uses a computed goto for its operation. The PIC is program-page sensitive when doing computed gotos, so I usually stick them at the beginning of memory to avoid page faulting.

If we are using a common cathode, the turn_on_cathode subroutine is called. This routine turns the cathode zero rather than the turn_on_anode, so it is now sinking current.

If the zero from this segment is rolled into the carry bit, we know we have finished all eight segments of this digit. We reset the mask and put the next digit value into decoded_digit. For the common cathode, it’s a one in a field of zeros, so if we rotate a one into the carry, we are finished with this digit.

The process continues each time we have a Timer0 interrupt.

The code also consists of an interrupt service routine for a character being received from the USART. Refer to the source code for all of the details but it’s pretty standard in design: when the USART interrupts with a character received, the interrupt service routine first checks to see if there has been an error in transmission, in which case, the character is ignored. The character is then checked for either a period, blank, or a minus ASCII value. If it is a period, then the decimal point of the last digit (rightmost) is cleared, which will turn the decimal point on, and no shifting of the buffer is done. If the character is a blank, then the code will put all ones into a register named charin. Similarly, if the character is a minus, then the code will put a value with the “g” segment lit into the register charin.

If neither a period, minus, or blank, then we range check the character for an ASCII value of 0 through 9. If outside this range, then the code ignores the character. If it is in range, the code converts the ASCII character into a BCD value then calls the subroutine bcd_2_7seg again found in the beginning of program memory. This computed goto routine converts the BCD value into its corresponding seven segment value. The code will hold this value in charin.

Finally, the seg7buffer is shifted left one digit and the decoded value held in charin is put into the rightmost digit buffer. (The entire program may be downloaded from the Nuts & Volts website at www.nutsvolts.com)

Code in hand, I thought I’d best check out the idea on a prototype board. I used one of those push-in types and you can see the results of this rats nest in Figure 3. Not pretty, and might be prone to open circuits, but should test the theory of operation without having to go through a lot of fabrication for nothing. In fact, I left off the serial input inverter and just loaded up the seg7digit buffer with all zeros. This will turn ON all the cathodes and have the display show all 8s with their decimal points set.

This showed that the display was indeed bright enough and that the 180Ω resistors were an adequate choice. Well, not quite. I found a green common cathode display and it was not very bright. Throwing a little more current through each segment with 120Ω proved to be much better.

Construction of the printed circuit hardware is straightforward. If you have a DC supply, there’s no need to have the bridge rectifier and filter cap. If you have a 5V DC power supply, there is no need for the 78L05 voltage regulator, so you can leave that out, too.

When assembling the board, I suggest that you use a cut up machine pin socket for the display. Cut this socket and remove any supporting holders for the rows to have two six-pin single inline sockets. Put these in the display and put the whole assembly in the board. Raise the assembly with a couple of toothpicks (Figure 4) and you should be able to solder to the pads.

After the single inline sockets have been soldered, remove the display from the sockets and continue with the assembly. No need for a regulated supply for me, so the component view (Figure 5) does not have it populated.

After programming, the PIC needs to be inserted into the board and power applied. Nothing should happen, so don’t panic. That’s what it’s supposed to do!

After the smoke test, you can connect up a serial output port for continued testing. You can use Hyperterminal under Windows or Minicom under Linux. Both use the
serial port of a PC as a terminal emulator. Configure the terminal program for 9600 baud, 8N1. (Note that after configuring the baud rate in the terminal program you may have to exit the program and restart it for the baud rate to go into effect.)

Because I haven’t mentioned which pins on the serial cable to connect to the board, some cables have their transmit and receive data lines crossed. For a DB9 type connector, tie pin 5 to the ground of our board. Jumper pin 2 of the DB9 to the base resistor of the inverter transistor. With a logic probe on the collector of the transistor, hit a couple of keys on the keyboard. If the logic probe shows that the collector pulses low, then you have the right pin. Otherwise, try the process again with pin 3 of the DB9. One or the other should work. If not, connect pins 2 and 3 together and type on the keyboard. You should see characters on the screen. If not, there is something wrong with the terminal program. Otherwise, a bit of troubleshooting is required on the board around the inverter.

If you have figured out which DB9 pin to use, then you should be able to type in any of the following keys and see the results show up on the display. If characters 0 through 9 are typed, you should see them one at a time left shifted one digit each time a key is pressed. If you type a blank (space bar) after you have typed a digit, you should see a blank digit in the rightmost position and the visible digit shifted left one position.

If you type a period, the display does not shift left by one, but the decimal point for the rightmost digit will be lit. The lit decimal point will follow that digit to the left as additional characters are typed in.

Finally, you can type a minus sign and it will show up in the rightmost digit position. That’s about it for the operation.

The software on your PC, single board computer, or dedicated microcontroller can now send numerical data to this remote display in another part of your house or office letting you keep an eye on important information!

PARTS LIST

<table>
<thead>
<tr>
<th>REF</th>
<th>QTY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>470 μF electrolytic (optional)</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0.01 μF 25V (optional)</td>
</tr>
<tr>
<td>C3</td>
<td>1</td>
<td>0.01 μF 25V</td>
</tr>
<tr>
<td>D1-D4</td>
<td>4</td>
<td>1N4148 diode (optional)</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>2N2222 or general-purpose NPN</td>
</tr>
<tr>
<td>R1,R3</td>
<td>2</td>
<td>10K Ω 1/4W carbon resistor</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>4.7K Ω 1/4W carbon resistor</td>
</tr>
<tr>
<td>R4-R7</td>
<td>4</td>
<td>120Ω 1/4W carbon resistor</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>PIC (select one): 16F627(A), 16F628(A), 16F648AV</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>78L05 +5V regulator (optional)</td>
</tr>
</tbody>
</table>

Common anode or common cathode
four digit, seven-segment display
QUALITY PRODUCT
FAST DELIVERY
COMPETITIVE PRICING
9901 W. Pacific Ave.
Franklin Park, IL 60131
Phone 847.233.0012
Fax 847.233.0013
www.pulsar-inc.com • sales@pulsar-inc.com

PRINTED CIRCUIT BOARDS

QUALITY PRODUCT
FAST DELIVERY
COMPETITIVE PRICING
- Aluminum Backed PCB
- Single & Double sided
- SMD/RF/HS
- LPI mask
- Through hole or SMT
- Nickel & Gold Plating
- Routing or scoring
- Electrical Testing
- Artwork or CAD data
- Fast quotes
- Flex Circuits

We will beat any competitor’s prices!!!

www.pulsar-inc.com • sales@pulsar-inc.com

USB Oscilloscope for $169.50
8+8 digital + 2 analog channels
Oscilloscope - Generator - Logic Analyzer
with UART, SPI, I2C and 1-Wire interfaces
Great for PIC and AVR projects!

OceanServer provides tiny, low-cost digital compass products for uses in precision heading or attitude sensing applications. Compasses are tilt-compensated in three axes, incorporating highly accurate MEMs two-axis accelerometers. Serial or USB interconnect options simplify system integration. Compasses provide reliable heading, roll, pitch, and optionally depth reading when connected to standard pressure transducers.

OceanServer Technology, Inc.
(508) 678-0550
www.ocean-server.com

 Evaluation Kits $299.00

ActiveWire® USB Simple USB Interface!

QKITS.COM
USB OSCILLOSCOPE
- inputs: 2 channels,
- I external trigger input
- Input impedance: 1 MΩ/30pF
- Bandwidth: DC to 60 MHz, ±3dB
- 10 bit parallel Inputs/Outputs
- Real time sampling frequency: 1.25 kHz to 50 MHz
- Sampling frequency for repetitive signals: 1 Hz
- 2 x 60 MHz scope probe & USB cable included.

$329.95
- Super low start
- 1-800-60 KITS

GREAT PRICES, GREAT SHIPPING RATES
electronics. The inverter you mentioned in your email most likely has plenty of power to start and run your furnace. Some considerations about inverters are:

1. Zero or no-load power consumption. In other words, how much power does this inverter draw from a battery when it is simply "on" and not carrying a load. Less expensive inverters will draw anywhere from one-half to one amp of standby current, so if you leave it permanently connected to a battery, it will eventually draw the battery down to nothing unless you are charging it with a charger capable of supplying more than that current. Of course, you can simply disconnect the inverter from the battery when it is not in use to eliminate this problem.

2. Sine wave or modified square wave output. Less expensive inverters employ a digitally-generated approximation of a sine wave at the output. Most AC fan motors are inductive motors and may be particular about the "quality" of the power they receive, especially when starting up. My general experience is that inverters made today are good enough to start even the most picky inductive motors, provided you have enough headroom in the power rating of the inverter you choose. A general rule-of-thumb is if you choose an inverter rated for 200% or more of the motor's power rating, it will probably start reliably. Fan motors have a fairly limited load on them (usually a squirrel cage fan) and are easier to start than say, a refrigerator or air-conditioner motor.

3. Battery life. You want your battery to be available and up-to-snuff when you eventually need it. This requires putting a quality charger on it — one with a fully automatic cutoff — and you will need to occasionally check on it to make sure everything is working properly and the water levels are correct, etc.

So, in the end, you should yourself a decent battery charger, deep-cycle battery, and inverter, and with the breakout box I described in the article, you should be able to switch over to battery power on your furnace in less than 10 minutes. I would not recommend leaving the furnace on the inverter as a permanent installation, as this may be hard on your battery, inverter, and possibly your furnace fan motor(s). I will consider a separate article on inverters for the future — thanks for the suggestion!

Kenton Chun KE4IEF
Some time ago, I built a handy self-contained inductance meter (What the L is it?, Nuts & Volts, August '05). It works well, but it registered nothing when I tested some inductors I’d picked up at a hamfest. I set up my old standby — a parallel capacitor, a signal generator, and an oscilloscope — and found these inductors were extremely lossy. As their cores were wound from metal tape, I wondered if they were designed to have square-loop characteristics.

I put together a device to display their behavior. Here it is.

PROBING CORES

Build an Oscilloscope Accessory That Displays the B-H Curves of Inductor Cores

Why Use Cores?

The field induced in a ferro-magnetic core by an applied current can be thousands of times higher than that generated in air by the same winding. Inductors with iron-dust or ferrite cores are much smaller than air-cored ones as they store more magnetic energy in the same space. They need fewer turns of wire so their resistive losses are lower, leading to a higher Q.

Such cores have three disadvantages. One is that if the core material conducts, it behaves like a resistive secondary winding and absorbs input power. Most cores are made either from high resistivity magnetic solids such as a ferrite or from very fine iron dust in a non-conducting matrix. Cores intended to reduce high frequency interference and oscillation are lossy and are unsuitable for tuned filter or DC-DC converter applications.

With a core, inductance depends on the current flowing. It’s high for small currents but falls enormously when some threshold — the saturation current — is reached. Some cores remain magnetized after the current drops to zero. This effect is known as hysteresis. Early computers used tiny two-state cores to store data bits. At one time DC-DC converters used hysteresis to control their oscillation frequency. My unknown cores might have been intended for that use.

B-H Curves

Saturation and hysteresis can be explored by displaying a core’s B-H curve on an oscilloscope. This curve plots the relationship between the magnetic intensity (H) applied to the core and the resulting magnetic flux (B) in the core. It can be displayed on an oscilloscope switched to its X-Y display mode. In a toroid, H equals NI/L. N is the number of turns, I is the current, and L is the mean circumference of the toroid. Here, N and L don’t change so H is proportional to the current.

In this tester, the inductor current is swept linearly above and below zero. This current also drives the oscilloscope’s X input. The Y input is made proportional to the magnetic flux. This, as I’ll explain, is not measured directly.

In air B = H and the B-H curve...
is a straight line with unit slope. The ratio B/H is the relative permeability of the core. It may be as low as five in some dust cores and as much as 5,000 in ferrite cores. The curve is now much steeper; the oscilloscope’s Y gain must be readjusted to create a reasonable display.

Typical core materials show a straight line which curves towards the horizontal at both ends (see Figure 1). The curved tips show the core’s permeability falling at high currents.

Using the Curves

In many DC-DC converters, a constant voltage is applied to an inductor. Initially, the current increases linearly with time, storing energy in the inductor. When the current reaches the saturation level, the inductance falls and the rate of current increase rises. This increased current stores little additional energy in the inductor but may damage the switching transistor. In DC-DC converters, inductors nearly always operate below their saturation level so this level is essential design information.

Low-loss core materials have a B-H curve in which the positive-and negative-going curves almost match. A loop with a gap between the two traces, as in Figure 2, reveals both core losses and residual magnetization. I’d wound this inductor on a large ring used as an interference suppressor in an old keyboard.

The B-H Instrument

For clarity, I’ve split the tester schematic into the ramp current generator (Figure 3) and the core analyzer (Figure 4). The part numbers are sequential across both figures.

The current ramp drives the inductor under test with equal positive and negative peak currents. These are adjustable up to 0.5 amps with switch SW1. A one ohm resistor (R18) in series with the inductor measures the actual current flowing and supplies the horizontal (X) sweep signal for the oscilloscope.

It isn’t practical to directly sense the flux in the core so it’s calculated from the coil voltage. Since the rate of current change is constant, this voltage is proportional to the coil’s inductance. With a pure inductor, it would be a square wave with positive and negative values proportional to the inductance times the rate of change of the current. If the permeability changes, then so does the inductance and the voltage changes accordingly.

For the oscilloscope’s vertical (Y) input, we want a voltage that rises...
linearly to match the increasing current. This is achieved by feeding the inductor voltage to an integrator. This cancels the differentiation of the input current by the inductor. The result is a curve whose slope represents the permeability.

In an integrator, any input offset causes the output to grow without limit. As there should be no net DC voltage across the inductor, the mean Y voltage must be zero. This is emulated by placing a 1 megohm resistor (R24) across the integrating capacitor. This doesn’t materially alter the displayed curve but any net DC Y output should be ignored.

Real Inductors

Any real winding has some resistance so the voltage across an inductor has a term proportional to the drive current. Since the X voltage is a linear function of the current, we can subtract a little of it from the coil voltage to correct for the winding resistance. VR2 lets you make this adjustment for windings up to 2.5 ohms. Switch SW1 has a calibration setting which applies a current square wave to the inductor under test.

With the oscilloscope in its normal mode, the resulting Y output should also be a square wave. Any tilt in its horizontal sections reveals a resistive imbalance that should be trimmed out. In practice, I found I could adjust VR2 to give a plausible B-H display in the normal test mode. Loops whose tips cross themselves show misadjustment.

Design Details

This tester arose from my interest in inductors for small DC-DC converters. Thus, the test range is 10 to 1,000 µH and the maximum test current is 500 mA. The latter limit let me power the tester from a conventional wall-transformer and to use rather skimpy heatsinking.

The time taken to sweep the current from -500 mA to +500 mA depends on the voltage one wants across the maximum inductance. I chose the peak-to-peak voltage for a 1 mH inductor to be 2V.

A voltage (V) across an inductor (L) causes the current through it to increase at V/L amps per second. One volt across 1 mH causes a 1 A/ms current change. The opposite also applies; a 1 A/ms rate of current change induces 1V across a 1 mH inductor.

The maximum test current ramps from -0.5A to +0.5A in 1 ms. This induces a +1V signal across the reference inductor. As the current ramps down from plus full scale to minus full scale, the inductor voltage becomes -1V, giving the desired 2V peak-to-peak signal. As the test signal ramps up for 1 ms and down for 1 ms, the repetition rate is 500 Hz.

Making a Ramp

I avoided a lot of board clutter by using an ICL8038 signal generator chip (U3) to create the ramp waveform. This chip contains the necessary switched current sources, comparators, and buffer amplifiers to generate a ramp having equal positive and negative peaks. It also has sine and square wave outputs. The latter supplies the test signal for setting VR2.

The ramp length is controlled by two equal resistors and a capacitor. The capacitor (C5) is 0.047 µF and should be plastic foil, not ceramic. The resistors (R1 and R2) should be 1% types and, ideally, should be matched. The six-way switch (SW1) selects one of four output peak amplitudes: 50 mA, 100 mA, 200 mA, and 500 mA. It also selects the square wave and zero.

Driving Current

An ordinary op-amp can’t supply a bipolar current output. Here, I used an old trick. An op-amp drives a load resistor and its power pins supply positive and negative drive currents to a push-pull output stage. The op-amp used should have an output stage with matching NPN and PNP transistors. The TL081 would be ideal, but I only had TL082 (dual) and TL084 (quad) amplifiers in stock. I used both halves of a TL082 and gave each half its own 200 ohm load resistor.

The current driver runs open-loop. I tried feedback from the current-sensing resistor but it was unstable when driving a test inductor. This
version assumes that the op-amp’s output and supply currents change in step and that the driver stage has a well-defined gain. It uses modified PNP and NPN current mirrors.

Each power transistor (Q2 and Q4) has a large emitter resistor that drops over a volt at the current peaks. These transistors are driven by opposite polarity emitter followers so the base-emitter voltages of each pair roughly cancel. The drivers’ bases are connected to the amplifier’s power pins and to the power rails via 51 ohm resistors (R12 and R13).

The current gain of this combination is 23. Apart from about 3 mA of static current, the amplifier’s power currents equal the current flowing through its combined 100 ohm load. That is, a 100 mV amplifier input generates 23 mA at the driver output. SW1 selects a suitable drive voltage for each current range. C6 reduces noise and stray feedback and makes the current ramp much cleaner.

The op-amp’s static current causes the output transistors to pass nearly 100 mA when the output current is zero. I tried reducing this, but only introduced cross-over distortion. We must just live with about 1.6 wasted watts. The regulators’ and transistors’ peak dissipation is around 5W, but no heroic heatsinking is required.

The output transistors’ base currents are adjusted to balance out offsets. Short the inductor terminals and set the switch to its grounded input position. Measure the voltage across R18 with a multimeter on its 200 mV scale and adjust VR1 until the meter reads zero. The specified output transistors have current gains exceeding 150 at 500 mA. Many popular power transistors have lower gains and won’t work unless R14, R15, and VR1 are reduced to supply more base current.

Why Eight Volts?

The current driver doesn’t need more than about ±2V of output compliance, so bipolar 5V power rails might have sufficed. However, at a current peak the input to the current mirror is 1.3V less than the positive or negative power rail. If the main power were ±5V, the net supply to the op-amp would be about 8.5V. Since the TLO82 is rated for ±10V minimum, I boosted the power rails to ±8V to avoid risking odd non-linearities. This means hunting down 7808 and 7908 three-terminal regulators. By the way, I used 2,200 µF reservoir capacitors for space reasons, 4,700 µF ones would be better.

I/V Sensing

One end of the inductor under test is grounded. This makes measuring the voltage across it easy, but you need a floating current-sensing resistor (R18). A differential amplifier (U5a) drives the scope’s X input with a scale factor of 5V per amp. The inductor voltage goes to the integrating amplifier (U5b) whose output drives the scope’s Y input. As mentioned above, an adjustable amount of the X voltage is fed to the integrator input to compensate for the inductor’s winding resistance.

The control switch has an off position that shuts off the ramp generator. Ideally, it should be put in this position before removing the inductor under test. The output voltage swings from one power rail to the other if you don’t.

Construction

I built this project on a piece of perforated board (see Figure 5), intending to put it into a plastic or metal box at a later date. I’d already cut a 2.5” by 4.6” board, so I juggled things to fit. To simplify making changes, I used wire-wrap sockets for all the small components. This adds considerably to the board height and you might be more comfortable using PC sockets and sleeved bus wire.

The back edge of the board is fitted with a length of 0.5” by 0.75” aluminum angle. This supports the power input socket and the two BNC sockets that connect the unit to the oscilloscope. It also acts as a heatsink for the power regulators and the two output transistors. If you put the board in a case, this angle fits flush against one wall so use a metal box.

Power comes from a 9 VAC wall transformer. Mine is an old RadioShack one rated at 780 mA. These ratings are about the minimum acceptable for this application. If you use a 12 VAC or higher voltage transformer, you’ll need a bigger heatsink.
PARTS LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>+8 V regulator, 7808, JRC</td>
</tr>
<tr>
<td>U2</td>
<td>-8 V regulator, 7908, JRC</td>
</tr>
<tr>
<td>U3</td>
<td>Function generator, ICL8038, Harris</td>
</tr>
<tr>
<td>U4</td>
<td>Dual op-amp, TL082, TI</td>
</tr>
<tr>
<td>U5</td>
<td>Dual op-amp, TL082, TI</td>
</tr>
<tr>
<td>Q1</td>
<td>PNP transistor, 2N3906</td>
</tr>
<tr>
<td>Q2</td>
<td>NPN power transistor, MJE200, ON Semiconductor</td>
</tr>
<tr>
<td>Q3</td>
<td>NPN transistor, 2N3904</td>
</tr>
<tr>
<td>Q4</td>
<td>PNP power transistor, MJE210, ON Semiconductor</td>
</tr>
<tr>
<td>D1</td>
<td>1A rectifier, 1N4001</td>
</tr>
<tr>
<td>D2</td>
<td>1A rectifier, 1N4001</td>
</tr>
<tr>
<td>C1</td>
<td>Electrolytic capacitor, 2,200 µF 16V</td>
</tr>
<tr>
<td>C2</td>
<td>Electrolytic capacitor, 2,200 µF 16V</td>
</tr>
<tr>
<td>C3</td>
<td>Electrolytic capacitor, 470 µF 10V</td>
</tr>
<tr>
<td>C4</td>
<td>Electrolytic capacitor, 470 µF 10V</td>
</tr>
<tr>
<td>C5</td>
<td>Plastic capacitor, 0.047 µF 50 V</td>
</tr>
<tr>
<td>C6</td>
<td>Ceramic capacitor, 1,000 pF 50 V</td>
</tr>
<tr>
<td>C7</td>
<td>Ceramic capacitor, 0.1 µF 50 V</td>
</tr>
<tr>
<td>C8</td>
<td>Ceramic capacitor, 0.1 µF 50 V</td>
</tr>
<tr>
<td>C9</td>
<td>Plastic capacitor, 0.047 µF 50V</td>
</tr>
<tr>
<td>R1</td>
<td>1% resistor, 13.0K</td>
</tr>
<tr>
<td>R2</td>
<td>1% resistor, 13.0K</td>
</tr>
<tr>
<td>R3</td>
<td>1% resistor, 3.01K</td>
</tr>
<tr>
<td>R4</td>
<td>1% resistor, 3.01K</td>
</tr>
<tr>
<td>VR1</td>
<td>Trimmer, 2K</td>
</tr>
<tr>
<td>VR2</td>
<td>Variable resistor, 5K</td>
</tr>
<tr>
<td>L</td>
<td>Inductor under test</td>
</tr>
<tr>
<td>SW1</td>
<td>Six-way switch</td>
</tr>
<tr>
<td>J1</td>
<td>Coax connector to PSU</td>
</tr>
<tr>
<td>J2</td>
<td>BNC connector (X output)</td>
</tr>
<tr>
<td>J3</td>
<td>BNC connector (Y output)</td>
</tr>
<tr>
<td>J4</td>
<td>9 VAC 800 mA wall-transformer</td>
</tr>
</tbody>
</table>

The inductor under test can be connected with banana-pin screw terminals. You can get away with a foot or so of test lead between the tester and the inductor; we’re not talking RF here.

Applications

This tester can be used to analyze a core material or to evaluate a finished inductor. In the former case, as many or as few turns as one needs may be put on the core. Use the highest test current to avoid windind more turns than necessary. The loop’s Y voltage depends on the inductance so you may run out of scope gain if you try to test very small inductors. The results you get tell you what type the core is. As Figure 6 shows, my unknown cores were definitely square-loop devices.

When testing a pre-wound inductor, the parameter of interest is its saturation current. The test currents let you focus in on the most interesting part of the curve. Some inductors may not saturate even at the highest test current. This design could be adapted to considerably higher currents, but I’ll leave that development to the more intrepid readers. **NV**
50MHz Frequency Meter MKII Kit
KC-5440 $40.75 + post & packing
This compact, low cost 50MHz Frequency Meter is invaluable for servicing and diagnostics. This upgraded version, has a prescaler switch which changes the units from MHz to kHz, Hz to MHz and Hz to kHz, and has 10kHz rounding to enable RC modellers to measure more accurately. Kit includes PCB with overlay, enclosure, LCD and all electronic components. Other features include:
- 8 digit reading (ILCD)
- Prescaler switch
- Autoranging Hz, kHz or MHz
- 3 resolution modes including 10kHz rounding, 0.1Hz up to 150Hz, 1Hz up to 16MHz and 10Hz up to 16MHz

Post and Packing Charges:
- $25 - $49.99 $7.50
- $50 - $99.99 $20
- $100 - $199.99 $40
- Max weight 12lb (5kg). Heavier parcels POA. Minimum order $25.

Note: Products are dispatched from Australia, local customs duty and taxes may apply.
The answer is not to abandon it, nor avoid using it. But rather, to create a software serial port for it. This is not as daunting a task as you might think. It only takes some time to learn and try. You will find the results are very interesting and rewarding.

I will present two practical examples to show — from simple to complex — how easy (or how difficult) it is to do so. First, let’s review the serial port.

Serial Port Basics: 9600 bps, 8N1

We’re all familiar with a PC serial port. Compared to a parallel port, the main difference is it transmits data one bit at a time. (That can save a bunch of wires!) So, there are only two wires needed: TX (transmit) and RX (receive) for data transmission. Actually, a common ground (GND) wire is needed, as well.

The CPU of a microprocessor does not handle data one bit at a time (it’s too inefficient!), so the task of serial data transmission is relegated to a special hardware part called a UART (Universal Asynchronous Receiver/Transmitter).

The UART is the heart of a serial port, where a mechanism is provided to convert a byte into a series of bits for transmission, and vice versa for reception. To make this happen, first and foremost, the UART must have an accurate bit rate (baud rate) generator. The serial port speed is defined in bits per second (bps) and is governed by the baud rate generator.

Of course, the UART also has other hardware to check for transmission status and errors, flow control, etc. But the essential parts are the above-mentioned three in order to get it up and running.

Each byte of data is transmitted in this sequence: Bit 0 or the least significant bit (LSB) first, then bit 1 through bit 6, then finally bit 7 or the most significant bit (MSB) last. In order to signify the beginning and end of each byte transmission, the RS-232 protocol adds a start bit before the LSB, and a stop bit after the MSB. The start bit is a logic low (0); the stop bit is logic high (1). Figure 1 shows how an ASCII “X” (0x58 hex or binary 01011000) character is transmitted; notice the sequence is reversed to 00011010.

In its simplest and most popular use, the serial port is configured as 9600 bps, 8N1. That means the baud
rate is 9600 bits per second, data is eight bits in one transaction, there is no error checking, and one start bit and one stop bit are attached to each transaction. So, it actually transmits 10 bits instead of eight bits for a byte of data.

A Simple Hardware and Software Implementation

The Atmel ATtiny11 is an inexpensive MCU (only 52 cents each or $38/100). It’s an eight pin chip, without a built-in serial port. However, using the circuit shown in Figure 2 and the simple assembly language program in Listing 1, we will show that a working serial port had been created for it.

This circuit is simple enough to build on a breadboard. The LED is not required; it only serves as a reminder if you forget to plug in the power supply and the circuit is not working. Furthermore, you can even dispense with the 1 MHz crystal (XTAL) and use the chip’s internal 1 MHz RC-oscillator instead. Either way, the demo still works.

Refer to both Figure 2 and Listing 1 and notice that ATtiny11 pin 7 (PB2) is configured as RX, and pin 6 (PB1) is TX. The Dallas Semiconductor’s DS275 is a voltage level shifter which shifts the TTL level to an RS-232 level, and vice versa. J1 is a female DB-9 connector. Only three wires are necessary to connect to the PC serial port and match its DB-9 male connector. You can use three longer wires starting from the breadboard and directly plug each end of wire into the female connector’s corresponding pin holes. This facilitates the connection between the DB-9 and breadboard.

Now let’s look at the software program in Listing 1. It contains four sections. The first section starting at RESET is the main program. The remaining sections are three subroutines; their detailed executions will be analyzed later, but note that each subroutine corresponds to an essential part of the UART: bit rate generation, transmission, and reception. So, we have a software UART here.

To program the ATtiny11, you first assemble the source code using Atmel’s free assembler:

```
AVRASM -I UARTAVR.ASM
UARTAVR.LST UARTAVR.HEX
```

Then you use an ATtiny11 programmer (such as the one published in the February ‘06 issue of Nuts & Volts). You can download all UARTAVR files from the Nuts & Volts website www.nutsvolts.com. Notice that the size of this demo program is quite small — it only takes 94 bytes of program memory.

By the way, if you don’t have an ATtiny11 or its programmer, but you have an AT90S1200 (which is a 20-pin Flash MCU and doesn’t have a built-in serial port), you can still use the same program source code. The only change you need to make is in Figure 2; change component U2 to AT90S1200 and the corresponding pin numbers.

Any Windows PC has a terminal emulation program called HyperTerminal, which is the one we will use to interact with the demo circuit. From the Windows Start button, go ahead to HyperTerminal and configure it as connected to: COM1 (or COM2), 9600 bps, 8N1. When the HyperTerminal window along with a “-” cursor appears, it’s ready to go.

Power-up the demo circuit. You’ll see an “X” appear on the screen. Typing any character from the keyboard will be echoed on the screen (that’s what the program is expected to do). At this point, the software serial port is functioning okay.

Timing is Everything

First and foremost, the UART program must have a way to generate bit rates. This is done by calling the DLY49us routine, which delays 49 microseconds (μs).

Why go with a 1 MHz crystal? Because at a 1 MHz frequency, one clock cycle = 1 μs, and for all AVR MCUs, most of their instructions take just one clock cycle (or 1 μs) to execute. This makes the timing
calculation much easier.

Now take a closer look at DLY49us. This routine uses only four instructions. From the AVR datasheet, you can find out how many clock cycles each instruction takes. (The calculation is listed there.) The total delay time is exactly 49 µs.

This routine is used to “waste” 49 µs when it is needed by the UART. For a baud rate of 9600 bps, a bit is 1/9600 = 104 µs. We always want to sample the incoming bit in its middle (to minimize any jitter error), so we need to delay one half of this value, or 52 µs. This is named the half_bitime.

Notice that 49 µs is not equal to, but a little less than half_bitime; we may call it “almost half_bitime.” The reason for keeping a difference between 49 µs and 52 µs will be explained in the next section.

How Bit-Banging is Done

Let’s look at the XMT_CHR routine which transmits a byte of data loaded in register R18 or XMTREG to the outside world, one bit at a time. Read the code line by line; it’s pretty straightforward.

At the beginning, it pulls the TX line low and delays two 49 µs periods to signify a start bit. After that, register R18 is shifted right one bit, with the LSB going into the carry flag. Depending on whether the carry flag is now set or clear, the TX pin will be set or cleared accordingly. Then we delay two for 49 µs periods (one bit time). This effectively transmits a high or low bit out.

The above shifting process is repeated eight times until count equals zero, handling the entire byte. The TX line is then set high for two 49 µs periods to signify a stop bit — the end of transmission.

Because there are several instructions executed between bits transmitted, each instruction takes 1 or 2 µs in this routine, and the bit output logic is not fixed (due to different bit values at different times). In order to keep the baud rate of 9600 bps or a bitime of 104 µs, the delay routine must account
for these instructions execution time. That’s why we created DLY49us.

Similarly, the RCV_CHR routine receives a byte of data from the outside world and stores it in register R17 or RCVREG. The receiver keeps sampling its RX line until a logic low is detected; that is the beginning of start bit.

To find out the value of LSB, the routine pauses for three DLY49us. By doing so, it samples the middle of the LSB. This is the best position for correct sampling. The incoming bit value is read and the carry bit is set or cleared accordingly.

The instruction ROR RCVREG rotates that bit into register RCVREG bit7 each time, until all eight bits are transmitted and count equals zero, so RCVREG has converted the bits into a byte.

The technique of converting a byte into a series of bits for transmission, or converting a series of bits into a byte for reception, is known as “bit-banging.”

A Full-fledged Application: WWLSEEP-1 Programmer

You might think that even though the above demo program works in simple cases, it may not work in more complex ones. I had the same concern. I have not seen any other product that’s built using a software serial port; all I’ve seen are just simple demo circuits. I was determined to give it a try, however, I decided to make an I2C EEPROM programmer.

Atmel has two very similar MCUs: the AT90S1200 and the AT90S2313. Both are 20-pin chips; the differences are the 2313 has 2K Flash memory and a built-in serial port; the 1200 only has 1K Flash memory and no serial port.

My strategy was two steps: First, build an I2C EEPROM programmer using the 2313, then try to migrate it to the 1200 using my software serial port. It took a few days to complete the first step, however, the migration took much longer than expected. Originally, the 1200’s RX and TX pins were not assigned the same pin numbers as the 2313’s RX (pin2) and TX (pin3). In experimenting I learned these pins could only get the EEPROM written correctly; reading was incorrect.

I still don’t know why it can’t read correctly, but I finally discovered that if the 1200 pin assignment was the same as the 2313 (RX to pin2, TX to pin3), then both reading and writing are correct. The 1200-based programmer completely works this way. The programmer schematic is shown in Figure 3.

Notice this serial EEPROM programmer is wall-wart-less, meaning the power supply is taken from the PC serial port itself. This is convenient to the user. It’s possible because the circuit contains only three small chips; the total current consumption is much less than 10 mA.

To program the 24CXX I2C EEPROM, only two pins are needed: the serial clock pin SCL and the serial data pin SDA, which is bidirectional. The programming command or data is

![FIGURE 3. Schematic of Wall-wart-less Serial EEPROM Programmer.](image-url)
applied to SDA from the 1200, and the SDA also outputs data to the 1200 when requested. A clock signal generated by the 1200 is applied to synchronize I/O operation.

The complete programmer development project includes writing a Windows XP program to communicate with the programmer, and coding the 1200 firmware. Of course, in addition to creating the software serial port and communicating with a PC, the firmware must perform all read/write programming functions through SCL and SDA. The firmware is 854 bytes total, including the software serial port overhead.

Photo 1 shows the WWWLSEEP-1 programmer. Notice that all the signals and power supply are provided through the DB-9 connector; there is no separate power supply.

Also note that if the PC is not running the programmer software but running the HyperTerminal program instead, it will show the character echo effect as in the first example.

Summing Up

We’ve seen two examples where a software serial port is useful. It can save you money and it can (nearly) do the same job as a hardware serial port. You’ll need some memory space, but the overhead is less than 100 bytes. For the 1K byte 1200, there is still a lot of program space left.

The timing requirement for the asynchronous communication is very forgiving at the 9600 bps speed. Examine to see what will happen if you change the DLY49us to 50 µs by adding an NOP (that’s equivalent to 1 µs) to the beginning of the routine. You’ll see it is still okay.

Of course, there are limitations. The 1 MHz frequency is too low if you want to get a higher baud rate. At higher speeds the half_bitime is reduced and it will be hard to keep sampling in the middle of each bit.

We may not be chip makers, but we can create a software serial port for any MCU when we need it. I have created a website containing the software serial port program source code for different MCUs — just go to www.geocities.com/microappnotes.
SERVO Magazine
2006 CD-Rom Now Available!
Now you can have the 3rd published year of SERVO on CD-Rom. Stored as PDFs, you can print, search, and easily store your copies on digital magazine.

To order, go to:
www.servomagazine.com

or call
1.800.783.4624

Front Panels?
Download the free Front Panel Designer to design your front panels in minutes

Order your front panels online and receive them just in time

www.frontpanelexpress.com

PCB-POOL®
SERVING YOUR PCB PROTOTYPE NEEDS

Price Example: 16 Sq-Inches
(double sided ptth)
2 Days: $ 90.00
8 Days: $ 22.50

Standard PCB-Pool Service
SIMPLY SEND YOUR FILES AND ORDER ONLINE!

New Service: WATCH “or” PCB
Save vital time on design errors in advance of receiving your Prototype. View high resolution photographic images of your PCB during each production stage. Be one step ahead, use our realtime PCB monitoring service.

WWW.PCB-POOL.COM

June 2007 NUTS & VOLTS 57
Seetron Serial LCDs

Interface a sharp LCD display to your BASIC Stamp® or other micro-controller project with ease. No-solder wiring harnesses and easy mounting kits available too. See www.seetron.com today.

- 3.2 x 1.4 in. supertwist LCD
- 2400/9600 baud serial
- Low (=2mA) current draw
- Great with BASIC Stamps®

- 3.2 x 2 in. backlit LCD
- 1200-9600 baud serial
- Advanced protocol, 4 switch inputs
- EEPROM for configuration settings
- Favorite for OEM applications

- 3.2 x 1.4 in. graphics LCD
- 2400/9600 baud serial
- Font and 15 screens in EEPROM
- Easily draw points, lines, screens

- 3 x 2 in. supertwist LCD
- 1200-9600 baud serial
- ESD-protected, 4x4 keypad input
- Store up to 95 screens in EEPROM

$45 BF1216N

Other Models:

SGX-120L
TRM-425L
BPI-216N

ILM-216L

Scott Edwards Electronics, Inc.
1939 S. Frontage Rd. #F, Sierra Vista, AZ 85635
phone 520-459-4802 • fax 520-459-0623
www.seetron.com • sales@seetron.com

More displays available, including bright VFDs. See www.seetron.com

TINI® GIANT
Internet Appliance Engine

SOM-400EM

- 333MHz 400 Processor
- IP66 Fast Ethernet
- 3 Serial Ports & SPI
- SODIMM Bus Expansion
- Uses a bash shell subset
- 1 MB Flash & 2 MB RAM
- CAN 2.0B & 1-Wire® Ports
- Programmable in Java™ or C
- Telnet, FTP, and HTTP Servers
- Typical Power Consumption of 1 Watt
- Real Time Clock & Nonvolatile Memory
- Robust, Free Java™ Development Tools
- Small, 144 pin SODIMM form factor (2.66” x 1.5”)
- Carrier/Socket Board & Optional Power Supply Available

The SOM-400EM is a System on a Module, based on the Dallas Tiny InterNet Interface (TINI) Processor. This 333MHz code-compatible processor makes it extremely easy to create a smart network / internet capable device. Comes complete with Embedded Java OS and File System. Write sophisticated network applications in days instead of months. Single unit pricing starts at $105. For additional information visit – http://www.emacinc.com/som/

Since 1985
22
YEARS OF SINGLE BOARD SOLUTIONS

EMAC, Inc.
EQUIPMENT MONITOR AND CONTROL
Phone: (618) 529-4525 • Fax: (618) 457-0110 • Web: www.emacinc.com

Metal Fabrication

1-2 Day Lead Times Available

Both of these parts were ordered on Wednesday and shipped FedEx on Thursday.

Materials from 0.001” to 6.000” in thickness.
Parts from practically any material.

Quick
Affordable
Precise
No Minimums

Complete Fabrication Center
Integrated Ideas & Technologies, Inc.
Precision Laser, Waterjet, Plasma, Machining, Forming, and Welding Capabilities

3896 N. Schreiber Way • Coeur d’Alene, ID • 83815-8362 • USA
Ph (208) 665-2166 • Fax (208) 665-5906 • www.iitmetalfab.com

58 NUTS & VOLTS June 2007
FREE PIC MICRO BOARD!

Purchase Proton+ and receive a free board!

See www.r4systems.com for Complete Details and Schematics.

PIC Programming Made Easy!

Proton+ PICBASIC Development Suite

Next Generation IDE

Proton IDE is a professional and powerful visual Integrated Development Environment (IDE) which has been designed specifically for the Proton Plus compiler. Proton IDE accelerates product development in a comfortable user environment without compromising performance, flexibility or control.

- Code Explorer
- Compiler Results
- Programmer Integration
- Integrated Bootloader
- Serial Communicator
- Online Updating
- Plugin Architecture
- Real Time Simulation Support

Visit www.r4systems.com to see our latest Proton+ projects

PROTEUS

The Complete Electronics Design System

EASY TO USE

CAD TOOLS AT FANTASTIC PRICES!

- Powerful and flexible schematic capture.
- Auto-component placement.
- Rip-up and Retry PCB routing.
- Polygonal gridless ground plane.
- Library of over 8000 schematic and 1000 PCB foot prints.
- Bill of materials, DRC reports and more.

Mixed Mode SPICE Circuit Simulation

- Berkeley SPICE3FS simulator with custom extensions for true mixed mode and interactive simulation.
- Six virtual instruments and 14 graph based analysis types.
- 6,000 models including TTL, CMOS and PLD digital parts.
- Fully compatible with manufacturers' SPICE models.

Proteus VSM - Co-simulation & debugging for popular Micro-Controllers

- Supports PIC16 & PIC12, AVR, 8051, HC11 and ARM micro-controllers.
- Latest version includes 40 new PIC18's.
- Co-simulate target firmware with your hardware design.
- Includes interactive peripheral models for LED and LCD displays, switches, keypads, virtual terminal and much, much more.
- Provides source level debugging for popular compilers and assemblers from HiTech PICC, Crownhill, IAR, Keil and others.

PCB AutoRouting

- Proteus PCB design includes an interface to the gridless autorouter.

FREE DOWNLOADABLE DEMO!

Save Time. Save Money.

Proteus Starter Kit - $279

Complete Systems from $549

"This is clearly superior in every respect."

R4 SYSTEMS INC.

Tel: 905.898.9880 Toll Free: 905.899.8184

www.r4systems.com info@r4systems.com
Previously, it was noted that phase distortion is an aspect to sound that is not generally addressed. This occurs when a sound containing many frequencies is broken up and sent to two (or more) different drivers in a speaker system. This results in two different physical sources for the sound: one for high frequencies and another for low frequencies. This is clearly different from the original instrument or voice which came from a single source (and can usually be treated as a point source).

The major problem with multiple drivers is that sonic reflections from the ceiling, floor, and other large objects in the listening area destroy the phase information. This occurs because of different path lengths for the high frequency and low frequency sound reflections. These sonic reflections can be nearly as loud as the direct signal but do not contain the same phase relationships between the high and low frequencies.

It was also previously noted that the human sense of hearing is a very complicated system that is extremely sensitive to phase. Both binaural phase (ear-to-ear time difference) and monaural phase (open space sound) variations have been shown to be detectible with as little as 15 microseconds of change. Therefore, is seems reasonable to suppose that a speaker system that could better maintain the phase information regardless of room reflections, would provide a much more realistic acoustical setting.

Basic Problem

Fundamentally, in order to reproduce the 10 octave range of human hearing (20 Hz to 20,000 Hz), multiple drivers are necessary. Woofers are hopeless when reproducing high frequencies and tweeters simply cannot push enough air to create good bass response. This is especially true when high power levels are employed. (Earphones are not considered because the issue is free-space sound reproduction.)

The technique used is to acousti-
Any speaker system with multiple and separate drivers is physically incapable of providing proper phase relationships from reflections. Quite simply, if there are two separate sources of sound, phase distortion must occur in any sonic reflection.

cally recombine the sounds from the multiple drivers before it leaves the speaker enclosure. In this way, the high frequency and low frequency sounds emanate from a single opening. Thus, sonic reflections from the ceiling will still have the same harmonic phase relationships as the direct line. Note that this provides phase consistency rather than phase accuracy. Phase accuracy is defined as reproducing sounds with the precise phase relationships as they were when they were recorded. Phase consistency is defined as maintaining the proper phase relationships regardless of sonic reflections. The Phase Coherent speakers mentioned above strive for phase accuracy rather than phase consistency. The speakers that are presented here strive for phase consistency rather than accuracy. (As a first step in research, it is reasonable to choose one aspect to determine its relative importance. Designing a phase consistent and phase accurate speaker system is not a simple task.)

The Buried Tweeter Design

The basic design is shown in Photo 1 (note that the wide-angle lens distorts the true shape somewhat). There are two isolated — but identical — rectangular enclosures that each hold a woofer. One woofer is pointed up and can be seen. The second is pointing down and cannot be easily seen. These enclosures are separated with a 9.5 inch gap that is open on three sides (the back is closed). Centered in this gap is a horn tweeter. Photo 2 shows the details of the tweeter assembly as it is partially removed from the speaker enclosure. The cross-over network (2 kHz, four-pole) can be seen attached to the left mounting piece. The black circle to the upper right is the terminal connector. (The hole behind the tweeter was used when testing a longer tweeter.)

The general physical dimensions are 17.25" wide, 15 inches deep, and 51.5 inches tall (excluding feet) with a weight of over 80 pounds. Continuous RMS power at any frequency is 400 watts. However, the woofers are rated at 350 watts each, so the low end is robust. The frequency response characteristics cannot be measured because I have no facilities to do so. I can only state that the performance is certainly acceptable and (to my ears) comparable to other hi-fi speakers I have heard.

Construction details and design rational are provided in the sidebar. There are certainly second-order details that are not directly addressed (off-axis sound versus phase), however, as a first approximation, this design appears to provide the proper physical characteristic that all the different frequencies come out of a single opening.

Performance

The speakers were placed about seven feet to the right and left of the listener. The initial results were not significantly different from conventional speakers. However, there was a subtle difference in some instruments. The placement of these seemed to localize inside the head, like headphones. This effect was not conspicuous.
However, it was realized that the individual instruments were localized on a line between the two speakers. It was also noted that it was easy to hear both speakers even when standing close to one of them. So while there were some sonic differences from the conventional approach, they were not significant.

Upon further consideration, it was realized that a third speaker placed in front of the listener might be useful. The idea was that since the human hearing system uses both phase and amplitude for localization, a center channel could provide additional amplitude cues. A “center” signal was one that had an equal amplitude in both stereo channels. Adding the channel signals together meant that the center channel would provide twice the amplitude (+6 dB) as either channel alone. This should be enough to significantly assist in localization, which should also enhance the reality of the sound.

So, a third speaker was built. However, because of a number of issues (including parts availability) the third, center-channel speaker was much more modest. It is shown in Photos 3 and 4, and consists of a three-way automotive speaker with coaxial drivers. The enclosure is a simple box and is also described in more detail in the sidebar. This center speaker design is much easier, smaller, and much less expensive than the buried tweeter design. It probably would be adequate for the left and right channels, but this has not been tested.

This speaker was driven by a separate amplifier that was just the sum of the left and right channels. (The left and right earphone outputs of the main amplifier were connected together and used as the input for the center channel amplifier.) This speaker was placed about seven feet directly in front of the listener. Note that all the speakers had a direct “line of sight” to the listener. (A rear channel using an out-of-phase left and right mixture has been considered, but not tested.)

The results of this addition were stunning. Excellent sound localization through 180 degrees occurred. When listening to orchestral or choral music, each individual instrument or voice had a precise and separate location. There was also a depth that placed different instruments in front and behind others. Curiously, all three speakers acoustically disappear. Note that the program material is ordinary stereo CDs and FM broadcasts. (Although some recordings are better than others. This is discussed in more detail below.)

An A/B switch was incorporated to disable the center channel. This provided some interesting information. It appears that it sometimes takes a fraction of a second for the localization to appear and disappear. (Unlike turning a speaker on and off, where the sound is immediately heard or not.) This delay suggests that there is significant mental processing that occurs. This is precisely what was expected and suggested in the previous article: The brain has an auto-correlation function (or its equivalent) that is used for phase analysis.

Speech reproduction is the most important aspect of sonic reality. There are several reasons for this. First, speech is a fundamental aspect of human nature. It is important to us. Speech is also extremely common. We all spend a lot of time each day talking and listening. Finally, unlike most music, speech is mostly heard live. Even at “live” events, microphones and amplifiers are often used. Again, multiple drivers destroy the phase information. Thus, “live” events are actually electronically reproduced stage events. True “live” events are fairly limited. Professional orchestras and amateur/school bands and choirs are the most common. Even jazz is being augmented with electronic amplification. In short, we all know when speech sounds real, but music is a different matter.

It is not surprising that the most dramatic results occur when reproducing voices. When a chorus is reproduced, each voice is distinct and has a precise location. There is also a quality of realism that cannot be
described. It simply sounds as if the choir is in front of the listener. (It is also useful to close your eyes because your brain knows where the sound is coming from. By closing your eyes, there is no conflict between what your eyes and ears are telling you.)

It is unfortunate that there does not seem to be an objective manner in which to measure this effect. However, there are two subtle and unconscious physiological effects that have been noticed when I listening to solo singing voices that do not occur with conventional speaker systems. The first is the listener’s breathing tends to match the singer’s. The second is that the listener tends to mouth the words to the song. Like tapping a foot in time with the music, these effects are variable, but the fact that they do not occur with ordinary speaker systems seems significant.

The last piece of evidence is somewhat more objective. My wife entered the room while I was working at my computer with the stereo on to discuss an unrelated matter. She was not aware of the details of the speakers. A song then started with the words, “Hi. How are you?” She whirled around, clearly startled and said “What ...?” This spontaneous reflexive response is telling. It is, in

BUILDING THE SPEAKERS

Cost and performance were the major issues that were considered when designing the buried tweeter speakers. A closed/sealed box (rather than ported) was required to ensure that all the sounds came from one opening. This required speakers suitable for such an enclosure. The determination of the Thiele/Small parameters necessary for the enclosure were determined with the aid of a modeling program included in the book Great Sound Stereo Speaker Manual (2nd ed.) by Weems and Koonce (McGraw-Hill, 2000). This is a very useful book for anyone building speaker systems.

After considerable effort, Sony 12 inch Xplod (XS-L121P6) automotive tweeters were selected. These had the proper Thiele/Small parameters and were very attractively priced at a local electronics superstore as close-out items (suggested retail about $199 each; sale price of $35 each). These are rated at 350 watts RMS and 1,200 watts peak. The voice coils are only four ohms each, but using two in series provides the standard eight ohm impedance.

The tweeter chosen was a piezo horn driver (Motorola/CTS KSN1142A) attached to a standard diffraction horn. This driver can handle 400 watts RMS and only cost about $12. Note that horn tweeters generally have much smoother frequency response characteristics than the “Bullet” type circular tweeters. Round dome tweeters have a smoother frequency response than the horn type but cannot handle the power. It is difficult to find these KSN1142A tweeters now. High power tweeters are not common.

The reason for the use of high-power speakers is the concern about distortion at high output levels. Most home speaker systems are rated at 50-100 watts RMS. However, their distortion increases significantly at half-power or less. Often this is not enough power to provide realistic volume levels. Driving them at half-power makes the music sound “loud” similar to a person’s voice when shouting. There is a sonic difference/distortion. With high-power speakers, the music gets louder but doesn’t sound as if the speakers are shouting.

The crossover network is technically not required because the piezo tweeter has a high impedance at low frequencies. However, it was desired to keep as little sound of the same frequencies as possible from exiting from both the woofer and tweeter. For this reason a sharp-cutoff, four-pole, 2 kHz crossover network was employed. This is shown in Figure 1.

The enclosure was built with 3/4 inch thick, maple, cabinet-grade plywood. The standard method of screws and glue was employed. All corners used an internal corner framing member and the screws were driven from the inside (see Photo 4 for an example of the standard internal construction methods). No fasteners are visible from the outside. The top and bottom are mitered to the sides. This involves a three-way miter at each corner. Such a detail cannot be accomplished without the careful use of a table saw. Other simpler methods can be employed but minor changes to the enclosure will be required. The absolute dimensions of the enclosure are not critical and can be varied somewhat. (Enclosure building techniques are presented in the Weems & Koonce book.)

No experience in woodworking is suggested before attempting to build these, or any, speaker enclosures. Sound quality is directly related to construction quality.

The speaker panel was not glued in place so that access was possible to the internal blind screws. However, this panel vibrated at high drive levels. This problem was corrected by placing a piece of weather-seal foam tape between the panel and the mounting members.

FIGURE 1. The basic crossover network for the buried tweeter speaker system is a four-pole, 2,000 Hz low-pass filter. The piezo tweeter series capacitor reduces the output by about 4 dB for better balance.
fact, the clearest example that, under certain circumstances, sonic reality can be achieved. It should be pointed out that the entire room was visible as she entered, so it was impossible for someone not to be seen. Additionally, the room was on the second floor and she turned to look towards the outside wall. There was no speaker there.

Recording Hints

Not all recordings provide the same realism. It seems that the simpler recording techniques, the better. Voices generally sound best if they are natural and free from electronic enhancement. Keeping the microphone about two feet away from the singer helps to create a more natural mix of high and low frequencies (less obvious pops and hisses). If possible, record individual instruments and voices with a single microphone or channel. For multiple people and instruments, use two closely spaced but directional microphones; one for the left and the other for the right channel. Multiple microphone mixing doesn’t seem to work too well.

There are several current commercial recording concepts that generally produce good results. These are “Binaural” recordings that use a facsimile of a human head with microphones buried in the ears. The other is the “QsoundTM” from Archer Communications. There may be additional techniques, as well. However, it is difficult to find recordings grouped by the engineering technique.

CENTER CHANNEL SPEAKER PARTS LIST

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8” speaker three-way Pyle PLG8.3 (no Thiele/Small parameters available) from MCM (#51-1157) about $46/pair, 200 watts RMS</td>
</tr>
</tbody>
</table>

All panels are 3/4” maple plywood, measurements are outside dimensions, Top, bottom, and side panels have 45 degree miter cuts on two sides (see Photo 4).

- 2 Front/back panels: 10” x 14.5” (front panel has speaker cutout as required)
- 2 Side panels: 16” x 8”
- 2 Top/bottom panels: 8” x 11.5”

Internal corner members

- 4 6.5” long 2” x 2” (nominal) pine (1.5” actual)
- 4 1.5” x 11.5” x 3/4” plywood
- 4 1.5” x 7” x 3/4” plywood
- 50 1.25” drywall screws (approx.)
- 25 2” drywall screws (approx.)
- 4 Speaker mounting screws
- 1 Wood glue
- 4 Rubber feet
- 1 Speaker terminal

BURIED TWEETER SPEAKER PARTS LIST

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Side mounting arms: 9” x 4.5”</td>
</tr>
</tbody>
</table>

All internal corner members are made from 2” x 2” (nominal) pine (1.5” actual).

- 8 Front/back members: 14.25”
- 8 Side members: 10.5”
- 1 Speaker terminal
- 100 2” drywall screws (approx.)
- 30 1.25” drywall screws (approx.)
- 20 Speaker mounting screws (approx.)
- 1 Wood glue 8 oz. (approx.)
- 10 ft. “Frost King” vinyl foam weather-seal self-stick tape 3/8” wide, 3/16” thick (approx.) (see text)
- 1 Grill cloth: 9.25” x 60” (approx.) (optional)
- 4 Mounting feet

BURIED TWEETER SPEAKER PARTS LIST

<table>
<thead>
<tr>
<th>Qty.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Side mounting arms: 9” x 4.5”</td>
</tr>
</tbody>
</table>

All internal corner members are made from 2” x 2” (nominal) pine (1.5” actual).

- 8 Front/back members: 14.25”
- 8 Side members: 10.5”
- 1 Speaker terminal
- 100 2” drywall screws (approx.)
- 30 1.25” drywall screws (approx.)
- 20 Speaker mounting screws (approx.)
- 1 Wood glue 8 oz. (approx.)
- 10 ft. “Frost King” vinyl foam weather-seal self-stick tape 3/8” wide, 3/16” thick (approx.) (see text)
- 1 Grill cloth: 9.25” x 60” (approx.) (optional)
- 4 Mounting feet

Materials/Parts Center Channel Speaker

The center channel speaker is a more conventional box design (11.5” x 16” x 8”). It is much easier to build and costs much less. The speaker selection was more arbitrary than for the buried tweeter design. Photos 3 and 4 show the basic design and construction method. A table saw is not required but it is helpful. Actual dimensions can be varied to some degree. Because the speaker has a four ohm impedance, a four-ohm resistor was added in series to increase the impedance to eight ohms. If your center channel amplifier can drive four ohms, then this resistor is not needed.
Some recordings provide good separation and others provide good realism. Generally, orchestral recordings exhibit good realism. This is especially true for choral works. Studio recordings generally provide better separation (obviously it is easier for them to control the crosstalk between channels). Often times, the music from a movie will provide excellent results. The CD, “I Am Sam” is such an example (V2 Records/New Line Cinema).

Conclusion

Sonic realism is possible, but there are three factors that must be addressed. The first is that consistent phase is a critical factor. There is also the requirement of a center channel. Lastly, the recording techniques can provide a significant variation to the quality of the realism. One does not need to pay attention to the sonic details. NV

The Standard for checking Capacitors in-circuit

Good enough to be the choice of Panasonic, Pioneer, NBC, ABC, Ford, JVC, NASA and thousands of independent service technicians.

Inexpensive enough to pay for itself in just one day’s repairs. At $209, it’s affordable.

And with a 60 day trial period, satisfaction guaranteed or money-back policy, the only thing you can lose is all the time you’re currently spending on trying to repair all those dogs you’ve given up on.

CapAnalyzer 88A

Available at your distributor, or call 561-487-6103

Electronic Design Specialists

www.eds-inc.com

Locate shorted or leaky components or conditions to the exact spot in-circuit

Still cutting up the pcb, and unsoldering every part trying to guess at where the short is?

$209

Your DVM shows the same shorted reading all along the pcb trace. LeakSeeker 82B has the resolution to find the defective component. Touch pads along the trace, and LeakSeeker beeps highest in pitch at the defect’s pad. Now you can locate a shorted part only a quarter of an inch away from a good part. Short can be from 0 to 150 ohms

LeakSeeker 82B

Available at your distributor, or call 561-487-6103

Electronic Design Specialists

www.eds-inc.com

No Compromise Oscilloscope

Other oscilloscopes in this price range force you to compromise on one of the key specifications: sampling rate, memory depth or bandwidth.

The PicoScope 5000 series is a no compromise PC oscilloscope at a price every engineer can afford.

1GS/s sampling rate
250MHz bandwidth
128M sample buffer memory
125MS/s 12 bit AWG built in

PicoScope 5203
32M buffer $ 2270
PicoScope 5204
128M buffer $ 3410

www.picotech.com/pco391
1-800-591-2796
Plug in the Power of 9S12!
Adapt9S12C
www.technologicalarts.com

Standard Features:
• CAN, SPI, SCI
• RS232
• 10-bit A-to-D
• 12K or 128K Flash
• PWM
• Input Captures
• Output Compares
• 3V/5V Operation

OBD2CABLES.COM
Thousands of OBD cables and connectors in stock
• Custom cable design and manufacturing
• Lowest prices
Order Online: http://www.obd2cables.com

Link Instruments
PC-Based Test Equipment
Digital Oscilloscopes
Logic Analyzers
www.Linkins2.com
973-808-8990

USB
Add USB to your next project—
it’s easier than you might think!
• USB-FIFO • USB-UART • USB/Microcontroller boards
• RFID Reader/Writer • ZigBee Ready Transceivers
www.dlpdesign.com
Absolutely NO driver software development required!

ZigBee™/802.15.4 Kit
For low-cost and
low-power wireless
control networks.
$299
www.rabbit4wireless.com
req $399 limited offer

RobotShop
www.robotshop.ca
Domestic Robots and Home Automation
Robot Toys • Robot Kits • Robot Parts

Pololu
Robotics & Electronics
6800 S. Eastern Ave. 120, Las Vegas, NV 89119
www.POLOLU.com 1-877-7-POLolu
Motor & servo control
Robot controllers
Gearboxes & wheels
Robot kits
Custom laser cutting
Solder paste stencils

66 NUTSVOLTS June 2007
This month’s spotlight is on Schmartboard™, a California organization located in the city of Fremont, situated north of San Jose. The principal product of the company is a cleverly designed prototyping board. Although electronic components made a great leap forward in the 21st century, prototype technology lagged far behind. Hence, the creation and marketing of the Schmartboard.

Two friends joined forces to produce this new concept. Andrew Yang, co-founder, President and CEO, began by founding Intellect Lab, an electronic engineering service firm and, prior to that, Shark Multimedia Inc. He holds a BS in Electrical Engineering from San Jose State University and an MS from Santa Clara University.

Schmartboard was spun off in 2005 from Intellect Lab where the concept of this high-tech prototyping board was invented in 2003. This privately owned corporation has five full-time employees in a manufacturing facility that they have outgrown. A search is underway for a bigger building to house better serve their growth plans.

Andrew’s partner at Schmartboard is Neal Greenberg. Neal also cofounded the company and serves now as Vice-President of Sales and Marketing. He is a graduate of William Rainey Harper College having obtained an AA degree in Applied Science. Additionally, he has a BS in Marketing from California Coast University.

In an interview with Neal, he responded to our questions about the present and future plans for the company.

Marvin: Neal, what are your most popular products and when were they introduced?

Neal: The SchmartBoard|ez™ family of products was released in September 2005 at the DemoFall show. Demo is a show in which the most innovative products are launched. Previous products launched at Demo include Java 1.0, Tivo, and Palm. The SchmartBoard|ez is innovative because for the first time, anyone can hand solder SMT (Surface Mount Technology) parts. Whether it is a part with a tiny pitch such as 0.4 mm or has 200 legs, SchmartBoard|ez has made it possible for people to easily, quickly, and flawlessly hand solder the parts.

Marvin: What gave rise to the creation of this line of products?

Neal: With increasing time-to-market issues and cost concerns in our fast moving world, we knew that there had to be a better way. We also realized that in the past, a prototyping board could save the engineer valuable time and money by allowing changes to be made quickly and inexpensively. But prototyping boards had not kept up with technology. Prototyping boards have existed for a long time, but as surface mount components have become smaller and smaller, these boards have not kept up with the technology and have not remained a practical tool for most applications.

Marvin: Is there a newly developed product ready for release?

Neal: We have a new product called the Power SchmartModule that was released in mid-April. SchmartModules are functional circuits (such as RS-232) that one can add to a SchmartBoard circuit so that they don’t have to “reinvent the wheel.” The Power SchmartModule will allow one to add power in one of seven voltage options to a circuit. The suggested retail is $15.

Equally exciting is a contest to be announced on June 1st. The Second Annual Schmartie Awards is a contest to create schematics with bills of material that include SchmartBoards. The first prize will be $1,000. In addition, the winning circuit will be turned into an SchmartModule and the winner will receive a commission on every unit sold worldwide. Nuts & Volts and SERVO Magazine are our Media Sponsors.

M: Finally, what are the principal advantages of working with the Schmartboards?

N: As more and more components have gone from through hole to surface mount, great advances have been made in the ability to make smaller and more advanced electronic devices. The problem though is while circuit assembly of these parts for robots is easy, it has made hand soldering for prototypes and projects almost impossible. The SchmartBoard|ez has changed this. We can put a soldering iron in the hands of a 10 year old who has never even heard of a soldering iron ... in less than a minute the 10 year old will hand solder a 0.5 mm QFP (Quad Flat Pack) device as good as an experienced technician. SchmartBoard|ez has made it possible for everyone from a rocket scientist to the weekend hobbyist to hand solder SMT parts.

Nuts & Volts readers can request a free sample of SchmartBoard|ez technology at our website at www.schmartboard.com.
PART 3: NAND Gate and OR Gate Circuits

Ray describes practical digital NAND gate and OR gate logic ICs in this third installment of this five-part mini series.

<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4011B</td>
<td>CMOS</td>
<td>Quad 2-input NAND gate</td>
</tr>
<tr>
<td>4033B</td>
<td>CMOS</td>
<td>Quad 2-input Schmitt NAND gate</td>
</tr>
<tr>
<td>74LS00</td>
<td>LS TTL</td>
<td>Quad 2-input NAND gate</td>
</tr>
<tr>
<td>74HC00</td>
<td>CMOS</td>
<td>Quad 2-input NAND gate</td>
</tr>
<tr>
<td>74LS132</td>
<td>LS TTL</td>
<td>Quad 2-input Schmitt NAND gate</td>
</tr>
<tr>
<td>74HC132</td>
<td>CMOS</td>
<td>Quad 2-input Schmitt NAND gate</td>
</tr>
<tr>
<td>74LS10</td>
<td>LS TTL</td>
<td>Triple 3-input NAND gate</td>
</tr>
<tr>
<td>4023B</td>
<td>CMOS</td>
<td>Triple 3-input NAND gate</td>
</tr>
<tr>
<td>74LS20</td>
<td>LS TTL</td>
<td>Dual 4-input NAND gate</td>
</tr>
<tr>
<td>4012B</td>
<td>CMOS</td>
<td>Dual 4-input NAND gate</td>
</tr>
<tr>
<td>74LS30</td>
<td>LS TTL</td>
<td>8-input NAND gate</td>
</tr>
<tr>
<td>4068B</td>
<td>CMOS</td>
<td>8-input NAND gate</td>
</tr>
<tr>
<td>74HC133</td>
<td>CMOS</td>
<td>13-input NAND gate</td>
</tr>
</tbody>
</table>

The output of a digital NAND gate goes low when all of its inputs (A and B, etc.) are high. Figure 1 lists basic details of 13 popular NAND-gate ICs; of these, the 74LS00, 74HC00, and 4011B (see Figures 2 and 3) are standard quad two-input types, and the 4093B, 74LS132, and 74HC132 (see Figures 4 and 5) are Schmitt quad two-input types. The 74LS10 and 4023B (see Figures 6 and 7) are triple three-input standard types; the 74LS20 and 4012B (see Figures 8 and 9) are dual four-input standard types; the 74LS30 and 4068B (see Figures 10 and 11) are eight-input standard types; and the 74HC133 is a 13-input standard type.

When using NAND gate ICs, each unwanted gate should be disabled by shorting all inputs together.

Practical NAND-Gate Digital IC Circuits

The first two parts in this series explained modern TTL and CMOS logic gate basics and gave practical descriptions of some of the most popular digital buffer, inverter, and AND gate logic ICs that are available. This month, we’ll expand on this basic theme and describes a variety of popular NAND gate and OR gate ICs that are available from either your local supplier or from specialist dealers.
and tying them to one of the IC’s supply lines. In CMOS ICs, the shorted inputs can be wired directly to either supply line, but in TTL ICs the inputs must (to give minimum quiescent current consumption with good stability) be tied directly to the 0V rail, as shown in Figure 12.

Sometimes, when using NAND gate ICs, you may not want to use all of a gate’s input terminals. In this case, the unwanted inputs can be disabled by either tying them high (directly in CMOS gates, or via a 1K resistor in TTL types) or by simply shorting them directly to a used input. Figure 13 shows examples of a three-input TTL NAND gate wired for use as a two-input type.

Note that the fan-in of a TTL NAND gate is an almost constant ‘1,’ irrespective of the number of inputs used. Thus, CMOS or TTL NAND gates can be converted into simple inverters by simply shorting all of their inputs together. Figure 14 shows examples of TTL NAND gates used as inverters. Also note that NAND gates are fairly versatile elements, as demonstrated in Figure 15, which shows ways of using two-input elements to make a two-input or three-input AND gate or a three-input NAND gate.

Practical OR Gate IC Circuits

The output of an OR gate goes high when any of its inputs (A or B, etc.) go high. The simplest way to make an OR gate is via a number of diodes and a single resistor, as shown (for example) in the three-input OR gate of Figure 16. The diode OR gate is reasonably fast, very cost-effective, and can readily be expanded to accept any number of inputs by simply adding one more diode to the circuit for each new input.

Relatively few dedicated OR gate ICs are available. Figure 17 lists basic
Details of the six most popular OR gate ICs: the 74LS32, 74HC32, and 4071B (see Figures 18 and 19) are quad two-input types; the 4075B and 74HC4075 (see Figure 20) are triple three-input types; and the 4072B (see Figure 21) is a dual four-input type.

When using OR gate ICs, each unwanted gate should be disabled by shorting all of its inputs together and tying them to one of the IC's supply lines. In CMOS ICs, the shorted inputs can be wired directly to either supply line, but in TTL ICs the inputs must (to give minimum quiescent current consumption with good stability) be tied high via a 1K resistor, as shown in Figure 22.

Note that the fan-in of a TTL NOR gate is directly proportional to the number of inputs used — at a fan-in rate of one per input — and that a TTL two-input OR gate can be made to act as a simple non-inverting buffer by either tying one input to ground or by tying both inputs together, as shown in Figure 23. Just make sure the buffer has a fan-in of one in the former case, and a fan-in of two in the latter. Also note that OR gates can be directly cascaded to make a compound OR gate with any desired number of inputs. Figure 24, for example, shows ways of cascading two-input elements to make OR gates with three, four, or five inputs, and Figure 25 shows a three-input OR element and a three-input diode OR gate cascaded to make a compound five-input OR gate.

Figures 18 and 19) are quad two-input types; the 4075B and 74HC4075 (see Figure 20) are triple three-input types; and the 4072B (see Figure 21) is a dual four-input type.

Note that the fan-in of a TTL NOR gate is directly proportional to the number of inputs used — at a fan-in rate of one per input — and that a TTL two-input OR gate can be made to act as a simple non-inverting buffer by either tying one input to ground or by tying both inputs together, as shown in Figure 23. Just make sure the buffer has a fan-in of one in the former case, and a fan-in of two in the latter. Also note that OR gates can be directly cascaded to make a compound OR gate with any desired number of inputs. Figure 24, for example, shows ways of cascading two-input elements to make OR gates with three, four, or five inputs, and Figure 25 shows a three-input OR element and a three-input diode OR gate cascaded to make a compound five-input OR gate.
Miniature 12VDC Push-Type Solenoid
Ledex™, 0.5" diameter x 1" long tubular solenoid with 3/8" diameter threaded bushing for mounting. 1/16" diameter x 1/2" long plunger. 40 Ohm coil. Operates on 12 Vdc. 1" wire leads.
CAT# SOL-102
$3.25 each

12VDC 300mA switching power supply
Friwo # SPA4UL.
Input: 100-240V 50-60Hz.
Output: 12Vdc 300mA.
6' cord with 2.1mm coax power plug center +.
CAT# PS-1236
$5.50 each

18 Amp solid-state relay, 3-15Vdc control
Crydom # EZ240D12.
Control Voltage: 3-15 Vdc.
Output: 18 Amps @ 240 Vac.
SCR output, low leakage solid state relay. 1.72" x 1.5" x 1.02" high including 0.25" QC/solder terminals. Mounting holes on 2.2" centers. UL, CSA, CE.
CAT# SRLY-1236
$10.50 each

Solar Cell
Output: approximately 3 Volts @ 40 mA.
60mm square x 2.5mm thick epoxy-encapsulated silicon photovoltaic cell. Solid, almost-unbeatable module with solderable foil strips on backside. Ideal for solar-powered battery chargers and other projects.
CAT# SPL-61
$3.75 each

Mini-Piezo Siren, 12 VDC
One of the loudest, most annoying piezo-electric sirens we have ever heard.
High-pitched, 100 db warble tone strongly encourages intruders to leave. Operates on 6-12Vdc.
Compact, only 2.27" long x 1.69" x 1.53." Metal mounting bracket. 6' wire leads.
CAT# ES-9
$4.20 each

10' Musical instrument cable, 1/4" phone plugs
Flexible 10 foot musical instrument cable with 1/4" phone plugs on each end.
Cable jacket labeled "Professional OFC Noiseless Instrument Cable."
CAT# MCB-101
$3.50 each

330 uF 250 V snap-in capacitor
Rifa # PEH532SAE3330M2
330uF, +/-20%, 250V.
-40/+ 105C deg.
CAT# EC-3325
$1.50 each

15mm Piezo Disc
2" pigtall leads.
CAT# PE-53
$75 each

Gearhead motor/generator
Barber-Colman # CYQM23061-5-2.
Permanent magnet. Rated 14 VDC @ 650 mA.
Reversible. Sleeve bearing. 400 rpm, 325 mA no load speed.
350 rpm @ 7.5 oz in torque.
650 mA. Continuous duty. 34 oz-install torque @ 2.2 amps. Generator brushless AC output. 6 VAC out @ 1800 rpm. Gearhead ratio 10:1.
Dimensions: 2" dia. x 3-1/4" long. Offset shaft 1/4" dia. x 1" long with flatted side. Face mount. Two tapped holes.
CAT# DCM-314
$12.00 each

6-Channel Transmitter and Receiver
Vex # 276-2153.
Transmitter and receiver for remote control of robotics servos.
Designed as an add-on kit to allow two human operators to control different aspects of the same robot, it can also be used as the primary control (see note below).
6 channels (4 analog and 2 digital). Two joysticks, each with an X and Y axis, control the analog channels 1-4.
Momentary switches on the front and back operate the two digital channels. Operates on Channel 89 (75.970MHz). Includes transmitter and receiver with crystals for Channel 89, receiver antenna and sleeve holder for antenna.
CAT# JS-6
$29.95 each

Note: We have been told recently that in order to use this transmitter as a primary control, it is necessary to use a micro controller module to split and amplify the received signal into six individual channels.

Quality Parts Fast Shipping Discount Pricing
CALL, WRITE, FAX or E-MAIL for a FREE 96 page catalog. Outside the U.S.A. send $3.00 postage.
Creating an EXERGAME With the HYDRA GAME SYSTEM

EXERGAMES, typified by Dance Dance Revolution and the more recent Wii Sports compilation for the Nintendo Wii, encourage whole body movement over mere thumb flexing. Whether players intend to shave a few extra pounds or to simply interact with a more engaging interface, exergames rely on non-traditional input devices and technologies for gameplay.

Given the popularity of exergames and the success of the Wii interface, when I was asked to review the Hydra Game System, I couldn’t resist exploring the feasibility of developing an exergame. This article describes the development of a simple exergame using the latest addition to the Parallax line of microcontrollers and a popular dual-axis accelerometer.

Exergame Design

The design of an exergame, like that of other serious games, starts with the creation of a game design document that addresses a relevant subset of the issues outlined in Table 1. For example, every exergame should incorporate fun elements, such as some form of escalating challenge, but not all exergames require music. Of key importance in an exergame design document is identifying the skill set that should be developed in players. This skill set drives the visual, physical, and logical components of the game design.

A useful construct in designing most exergames is mapping skills to gameplay and a reward system or scoring. For example, an exergame could replicate the rehabilitation regimen required by a player with an ankle injury. If rehabilitation involves predominantly lateral or side-to-side ankle exercises, then a game that incorporates left and right ankle flexion in gameplay may be appropriate. Moreover, just as an elastic band or other tool can be used to achieve a variety of rehabilitation goals, a single exergame can often be used to enhance a variety of skills. A game that emphasizes ankle movement could be used to improve the player’s balance and body awareness, for example.

The exergame considered here is designed to encourage use of a common wobble board. As shown in Figure 1, a wobble board is simply a

<table>
<thead>
<tr>
<th>EXERGAME DESIGN ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>Characters</td>
</tr>
<tr>
<td>Effectors</td>
</tr>
<tr>
<td>Game Flow</td>
</tr>
<tr>
<td>Screens & Menus</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>Options</td>
</tr>
<tr>
<td>Sounds & Music Environment</td>
</tr>
<tr>
<td>Map</td>
</tr>
<tr>
<td>Fun Elements</td>
</tr>
<tr>
<td>Logic</td>
</tr>
<tr>
<td>Equipment</td>
</tr>
<tr>
<td>Cameras</td>
</tr>
<tr>
<td>Objectives</td>
</tr>
<tr>
<td>Introductory Material</td>
</tr>
<tr>
<td>Gameplay</td>
</tr>
<tr>
<td>Closing Material</td>
</tr>
<tr>
<td>Scoring</td>
</tr>
<tr>
<td>Skill Set</td>
</tr>
<tr>
<td>Media Assets</td>
</tr>
</tbody>
</table>

FIGURE 1. Wobble board, side (left) and top (right) views.

TABLE 1. Basic exergame design elements. Every element may not be applicable to a given game.
plastic or wooden disc, typically 18 inches in diameter. A dome over a pivot point in the center of the bottom side allows 15 to 20 degrees of tilt. OPTP is one of several vendors that offers affordable models starting at about $40 (www.optp.com).

Physical therapists and sports trainers use balance boards with their clients to rehabilitate ankle injuries, enhance range of motion, and for general motor skill training. Many runners and martial artists incorporate wobble boards in their training programs to increase flexibility and reduce incidence of injury. The downside of working with a wobble board is that there is no immediate feedback and the routines quickly become boring – hence the motivation for an exergame.

The on-screen view of the wobble board-controlled exergame is shown in Figure 2. After a series of countdown screens, the player is presented with a constantly moving bull’s-eye target. While standing on the wobble board, the player attempts to adjust the tilt of the board so that the white dot constantly tracks the center of the bull’s-eye. The goal of gameplay is to track the bull’s-eye target as long as possible within 100 seconds. Contact time translates directly to score.

To move the dot up on the TV display, the player tilts the wobble board forward by pressing her toes down while simultaneously adjusting her body to maintain balance. Similarly, moving the dot to the left involves the player shifting her body weight, pressing her left leg down, and flexing her ankles to the right. Intermediate players can stand with their feet together. Advanced players can stand on one foot while holding their free knee to their chest or performing a similarly challenging maneuver. Based on personal use and feedback from several users, the game succeeds in transforming a typically boring series of exercises into a fun and slightly addictive activity.

The following sections describe the Hydra Game System, including the hardware and software, the characteristics of the Memsic 2125 accelerometer, and the software and hardware required to interface the accelerometer to the Hydra.

Hydra Game System

The Hydra Game System is aptly named, in that it isn’t simply another microcontroller board, but is a complete system for game development. In addition to the Hydra board and peripherals, the system includes a CD-ROM filled with software and an 800+ page book that provides an integrated explanation of the hardware environment in the context of classic or retro game development.

Working with the Hydra board (see Figure 3) and library of games, game engines, and demos – including titles inspired by Breakout, PacMan, Lock N Chase, Q-bert, and Centipede – is like taking a step back in time to the days of the Atari and Commodore-64. Although VGA is supported, most of the demos are written to composite NTSC video, which accounts for the low resolution, retro look of the exergame shown in Figure 2.

Hardware

The main Hydra board is populated with an eight-core Propeller chip clocked at 80 MHz, a 128 KB EEPROM, and a 10 MHz crystal. All three of these core components are socketed for future upgrades and experimentation. The Hydra also sports a game card expansion port near the center of the board, and ports for RCA audio and video out, VGA out, PS/2 mouse and keyboard, RJ-11 serial network, 9 VDC power in, mini-USB, four-pin USB2USER, and a pair of Nintendo NES gamepads.

The Hydra Game System includes a blank experimentation card and a 128K EEPROM card, either of which can be plugged in to the game card expansion port. Additional cards can be purchased from Parallax; 3V and 5V power, eight I/O ports, serial network, USB, and EEPROM lines are available from the 20-pin game card expansion port, and on the EEPROM and experimental card solder pads. To facilitate
experimentation, I soldered 2 x 10 header pins to the 3 mm spacing, through-hole solder pads, as shown in Figure 4.

Because the I/O lines on the expansion bus are shared by the VGA connector, VGA output must be disabled to use the expansion port I/O. In addition to the eight I/O lines on the expansion port, the serial network transmit and receive lines routed to the RJ-11 jack are available for I/O.

Additional components of the Hydra Game System include a compact 9 VDC power brick, USB and RCA cables, a miniature keyboard, travel mouse, and a NES-compatible gamepad. The mouse and gamepad are useful for playing games, and the small but useable keyboard is primarily used for programming the Hydra without a PC using Hydra Basic. Although a rudimentary operating system may be downloaded from the online forums to facilitate use of Hydra Basic, the utility of the language is limited by the 32K RAM available on the Propeller chip.

Propeller IDE

My sense of nostalgia evaporated as soon as I started working with the numerous examples provided on the CD-ROM. Instead of linear Basic, FORTH, or assembler, games on the Hydra are written using high-level SPIN and, for the technically endowed, low-level assembler. SPIN is unusual in that it borrows somewhat from object oriented languages and supports multiple cores. The multi-core paradigm takes some getting used to, as does the colorful Parallax Propeller IDE, shown in Figure 5. The MS Windows-based IDE can be freely downloaded from the Parallax site.

FIGURE 5. Parallax Propeller IDE.

A feature of the IDE is the option to either quickly load a program into RAM during development or load the program into onboard or expansion card EEPROM. The later operation requires a few more seconds. When the 128K EEPROM expansion card is inserted, the onboard EEPROM is automatically disconnected.

Following the spirit of the SPIN language, the exergame was developed in about 200 lines of high-level SPIN — much of which was borrowed from or inspired by the demos on the CD-ROM. The code is available for download from the Nuts & Volts website (www.nutsvolts.com). The objects — akin to include files in C — used in the exergame are TV and graphics drivers from the Hydra Game System and the Memsic 2125 driver from the Parallax library. Note that unlike the Parallax objects, the sources included on the Hydra CD-ROM may not be freely distributed.

Because SPIN uses white spaces to indicate block levels, it’s a good idea to use the IDE’s highlight function (Control-I) that shows block relationships. As an example of how white space is used within the IDE, consider the following SPIN code from the exergame:

```
if || (i_squared - t_squared) < 550 'absolute value
if (timeRemaining >0) 'time variable
gr.text(-120,-80,string("Score!"))) 'print "Score!"
totalPoints := totalPoints +1 'add points
```

Although the IDE is very sophisticated for a microcontroller system, version 1.05.2 lacks a true debugger. There is an on-board LED and it is possible to write values to the video out port, but both approaches are limited. Using video consumes cycles and precious RAM. A traditional text-based debugger — such as the one available for the BASIC Stamp microcontrollers — would be more useful.

You’ll also find a small TV with composite video and audio input — or a computer monitor with a composite video input port — necessary for efficient game development. If you don’t have a dual monitor setup on your PC, Parallax offers a nice 2.5” LCD monitor that supports composite video and audio.

Wobble Board Interface

There are several ways to interface a wobble board to the Hydra to create an exergame. The simplest is to mount four mercury switches on the wobble board oriented such that one switch is closed with the board tilted forward, back, right, and left. Wire each mercury switch in parallel with the appropriate button on the NES game controller and the wobble board becomes a proxy for the controller pad.

Unfortunately, mercury switches are inherently limited because of their sluggish response time and binary output. Finer resolution in direction and degree of tilt requires more switches and I/O lines. A more flexible approach is to use an accelerometer that supports continuous sensing of tilt.

The two obvious options for this project are the Memsic 2125 dual-axis accelerometer and the Hitachi H48C tri-axis accelerometer. Both units are supported by Parallax, and driver objects for each sensor can be freely downloaded from the Parallax site. Because only two-axis tilt is required, the less expensive Memsic 2125 is used here.
The Memsic 2125 thermal accelerometer is an example of a micro electro-mechanical machine system (MEMS) based on IC manufacturing techniques (hence the name MEMSIC). In operation, a heater within the Memsic 2125 warms a bubble of gas that moves in response to gravity and acceleration of the device. Thermopiles near the periphery of the bubble sense identical temperatures when the accelerometer is level and different temperatures if the device is tilted.

Temperature differences detected by the thermopiles are converted into pulses by the onboard electronics according to the relationship illustrated in Figure 6. Acceleration at earth normal gravity (9.8 m/s²) is considered 0, and the update frequency is approximately 100 Hz at room temperature.

The angle of tilt is calculated with elementary trigonometry, given the accelerometer signals from the x and y axes. For example, if the duty cycles of the x- and y-axis signals increase equally, then the angle of tilt is equidistant between the two positive x and y axes, or 45 degrees. The amount of tilt in this direction is a function of the magnitude of the positive shift in duty cycle, as described in Figure 6. Fortunately, the low-level magnitude and direction calculations are handled by the Memsic 2125 driver from Parallax.

Figure 7 shows the dual axis recording of the Memsic 2125 used in my exergame. Note the clean square wave output and a frequency of just over 100 Hz. There is an obvious difference between the x-axis (top) and y-axis (bottom) duty cycles. According to the formula in Figure 6, the accelerations along each axis are:

\[
A_x = \frac{(T1/T2 - 0.5)}{0.125}
\]

\[
A_y = \frac{(T1/T2 - 0.5)}{0.125}
\]

These calculations indicate negative acceleration — and therefore tilt — along the x-axis and positive acceleration along the y-axis of the accelerometer.

Connecting the Memsic 2125 to the game card on the Hydra requires four lines. As shown in Figure 8, the accelerometer requires 5 VDC at 4 mA, ground, and access to two I/O ports on the Hydra. I used 1/8 watt, 220 ohm resistors on the x- and y-axis output pins of the accelerometer and connected these to I/O pins 6 and 7 on the Hydra EEPROM card, respectively.

The specifics of mounting a Memsic 2125 on a wobble board depend on the design of your particular board. The mount shown in Figures 9 and 10 are specific to the OPTP wobble board. Although not visible in Figure 9, the Memsic 2125 is inserted into an eight-pin socket so that the sensor can be used in other projects. Figure 10 shows the perf board glued in place, along with the four-pin 0.10” connector on the cable to the 128K EEPROM card on the Hydra.

Game Coding

The core algorithm in the exergame compares the distance between the origin at the center of the screen to the dynamic bull’s-eye and the wobble board-controlled dot. If the distances — the hypotenuses of the triangle incorporating the bull’s-eye and the triangle incorporating the dot — are not significantly different, then the assumption is that the dot is on target. As in the following SPIN
code, the score is updated and the message “Score!” appears on the screen when the dot tracks the center of the target.

```plaintext
t_squared := (target_x * target_x) + (target_y * target_y)
i_squared := i*i
if || (i_squared - t_squared) < 550
  if (timeRemaining >0)
    gr.text(-120,-80,string("Score!"))
  totalPoints := totalPoints +1
```

The downside of this simple test for target and dot overlap is that there are multiple possible dot locations that will result in points. However, in practice, this simplification works well. A more complete and complex approach is to use a sine lookup table and compute the single point on the screen where target and player-controlled dot overlap in real time. Readers interested in following this approach can view several examples in the text accompanying the system.

The Memsic 2125, like every sensor, is imperfect. In addition to device-to-device differences in response and settling time, output from a stationary accelerometer varies randomly over time.

The filters are based on value differences instead of consecutive readings from the Memsic 2125 because the Propeller is operating at a significantly higher frequency than the accelerometer.

A final note regarding coding the Hydra is that this exergame relies on the Memsic 2125 object supplied by Parallax. This object or driver includes a self-calibration routine at startup that assumes the accelerometer is level. As such, the wobble board must be positioned close to horizontal at startup.

From Here

The exergame described here is a mere hint of what can be accomplished with the Hydra Game System. Consider adding a colorful background from the extensive library of image files on the CD-ROM that accompanies the system. Sound effects are another obvious addition to the exergame. More importantly, the wobble board interface can be used with very little modification on many of the sample games on the Hydra CD-ROM. Imagine playing a game similar to Break Out using a wobble board instead of a controller pad.

According to Andre’ LaMothe, developer of the Hydra and author of the text included with the system, a 512K expansion card is in production. The card will enable development of games with bitmapped graphics, more media, and, in general, greater complexity. Be sure to visit the forums on Parallax and XGameStation for any software updates and hardware extensions.

RESOURCES

Hydra Game Development Kit, Memsic 2125 accelerometer, and software objects available from Parallax. www.parallax.com

Hydra Developer’s Forum. Forums.parallax.com/forum

XGameStation.

Andre’ LaMothe’s website for the Hydra, documentation, and forums.

Bergeron, B., Developing Serious Games. 2006: Thompson.
Announcing the 2nd Annual Schmartie Awards

$1000+ Grand Prize

SchmartBoard is looking for the next SchmartModule design. SchmartModules are functional circuit blocks such as RS232 or Power that physically connect to other SchmartBoards’ to make prototyping easier. The winner will receive $1000 plus 10% continued commission and the notoriety of having their name on every one of the winning SchmartModules sold worldwide.

2nd Prize - A Link Instruments DSO8502 500Mhz Digital Oscilloscope

3rd Prize - A Weller WD1002 Soldering Station

Honorable Mentions - Three people will win a Parallax Boe-Bot

All Valid Entries - Will receive a free SchmartBoard Prototyping Boards and a SchmartBoard t-shirt

Co-Sponsored By:

Visit www.schmartboard.com for details

Contest Expires 12/31/07

SchmartBoard is Simply the Best Electronic Circuit Prototyping System
Selected Titles for the Electronics Hobbyist and Technician

The Nuts & Volts Hobbyist BOOKSTORE

ELECTRONICS

Practical Electronics for Inventors
by Paul Scherz

This intuitive, application-driven guide to electronics for hobbyists, engineers, and students doesn’t overload readers with technical detail. Instead, it tells you — and shows you — what advanced electronics parts and components do, and how they work. Check full of illustrations, Practical Electronics for Inventors offers over 750 hand-drawn images that provide clear, detailed instructions that can help turn theoretical ideas into real-life inventions and gadgets. **$39.95**

Troubleshooting Electronic Equipment
by R. S. Khandpur

From cell phones to medical instruments to digital and microprocessor based equipment, this hands-on, heavily illustrated guide clearly explains how to troubleshoot, maintain, and repair all types of electrical equipment. The author covers all the essentials such as necessary tools, soldering techniques, testing, fundamental procedures, and mechanical and electrical components. **$49.95**

Nuts & Volts of BASIC Stamps — Volume 7
by Jon Williams

Nuts & Volts of BASIC Stamps — Volume 7 includes articles #129-140 from Nuts & Volts Magazine. In this 2006 collection, BASIC Stamp 1, BASIC Stamp 2, SX/B, and Propeller microcontroller projects are explored in a series of real-world applications. This book is useful for the Nuts & Volts reader, newcomers to BASIC Stamp, SX, and Propeller microcontroller projects, and seasoned programmers looking for new ideas. **$14.95**

Practical Electronics Handbook: Sixth Edition
by Ian Sinclair/John Dunton

Ian Sinclair’s Practical Electronics Handbook combines a wealth of useful day-to-day electronics information, concise explanations, and practical guidance essential to anyone involved in electronics design and construction. The collection of key data, fundamental principles, and circuit design basics provides an ideal reference for a wide range of students, enthusiasts, technicians, and practitioners of electronics who have prided themselves beyond the basics. The sixth edition is updated throughout with new material on microcontrollers and computer assistance, and a new chapter on digital signal processing. **$39.95**

Nuts & Volts of BASIC Stamps — Volume 6
by Jon Williams

Nuts & Volts of BASIC Stamps — Volume 6 includes articles #117-128, written for 2005. Article topics consist of RFID Readers and Ultrasonic Measurement, SX/B and the Professional Development Board, the advanced MIDI receiver, programming the SX microcontroller in BASIC, mastering the MC14489 display driver, and more! The Nuts & Volts of BASIC Stamps books are a favorite Parallax technical pick and are a tremendous technical resource for all PBASIC programming projects. **$14.95**

Electronic Circuits — Fundamentals & Applications: Third Edition
by Mike Tooley

In Electronic Circuits, Mike Tooley provides all the essential information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies, and oscillators. The third edition now offers an even more extensive range of topics, with extended coverage of practical areas such as circuit construction and fault finding, and new topics such as circuit simulation, electronic CAD, and a brand new chapter devoted to the PIC microcontroller. **$34.95**

Electronic Games for the Evil Genius
by Thomas Petruzzellis

You can have a wicked amount of fun on your way to becoming a game master! In Electronic Games for the Evil Genius, popular how-to author Tom Petruzzellis gives you everything you need to build 35 exciting games and gadgets. You get complete, easy-to-follow plans, with clear diagrams and schematics, so you know exactly what’s involved before you begin. Packed with fun projects that you’ll love to build and play with, this guide develops game expertise one simple step and project at a time. **$24.95**

by Douglas Self

Whether you are a dedicated audiophile who wants to gain a more complete understanding of the design issues behind a truly great amp, or a professional electronic designer seeking to learn more about the art of amplifier design, Douglas Self’s Handbook is the essential guide to design principles and practice. The fourth edition includes new material on DC offset protection circuitry, the design of DC servos, and electrical safety and safety standards. **$44.95**

Closed Circuit Television — Third Edition
by Joe Cieszynski

Closed Circuit Television (CCTV) surveillance remains a growing industry in response to increased security threats, and while new developments have brought clearer images, digital recording, and high speed data transmission, effective security systems still rely upon proper specification and installation by engineers with an in-depth knowledge of CCTV principles and technology. The third edition of Closed Circuit Television provides a thorough technical guide for all those involved in the design, specification, installation, and maintenance of CCTV systems. **$39.95**
CALL 1-800-783-4624 today!
Or Order online at www.nutsvolts.com

Electromechanical Devices & Components Illustrated Sourcebook
by Brian Elliott

Master the key elements of electromechanical components. Essential to the design, repair, or operation of your electromechanical devices, this quick-find reference provides illustrations, descriptions, and relevant calculations for 2,000 time-tested electromechanical components.

$39.95

PROJECTS

101 Outer Space Projects for the Evil Genius
by Dave Prochnow

The sky is not the limit! If you yearn to touch the stars, 101 Outer Space Projects for the Evil Genius has everything you need to explore the universe from the comfort of your own home. Whether you’re a beginner stargazer or a more experienced astronomer, you’ll find an outstanding project to satisfy you, from model rockets and celestial maps to space robots, GPS systems, and much, much more. Full of easy-to-follow plans and clear schematics for each project, as well as lists of materials and tools so you know exactly what’s involved before you begin.

$24.95

Take This Stuff and Hack It!
by Dave Prochnow

Transform common household items into really cool stuff. You don’t need to be an electronics genius to get started turning everyday items into high-performing wonders. With how-to guru Dave Prochnow’s step-by-step directions and fully illustrated plans, even beginners can hack their way to a high-tech home, cooler toys, and less yard work. Certain to fire your imagination and start you plotting new, original, and even more creative wonders you can make from ordinary household items, Take This Stuff and Hack It! is the perfect gift for your inner inventor.

$27.95

25 Home Automation Projects for the Evil Genius
by Jerri Ledford

Computer technology has caught up with home automation, and it’s now easy and inexpensive to automate everything in a house — including lighting, security, appliances, entertainment, and environmental conditions — and here’s how to do it! This well-illustrated resource offers 25 complete home automation projects that require only basic household tools and the instructions found within its pages.

$24.95

NEW 2006 CD-ROMS!

Nuts & Volts CD-ROM

Here’s some good news for Nuts & Volts readers! Along with all 24 issues of Nuts & Volts from the 2004 and 2005 calendar years, the 2006 issues are now available, as well. These CDs include all of Volumes 25, 26, and 27, issues 1-12, for a total of 36 issues (12 on each CD). These CD-ROMs are PC and Mac compatible. They require Adobe Acrobat Reader version 6 or above. Adobe Acrobat Reader version 7 is included on the discs.

$24.95 – Buy 2 or more at $19.95 each

SERVO CD-ROM

Are you ready for some good news? Along with the first 26 issues of SERVO Magazine, all issues from the 2006 calendar year are now available, as well. These CDs include all of Volume 1, issues 1-12; Volume 2, issues 1-12; Volume 3, issues 1-12, and Volume 4, issues 1-12, for a total of 23 issues all together. These CD-ROMs are PC and Mac compatible. They require Adobe Acrobat Reader version 6 or above. Adobe Acrobat Reader version 7 is included on the discs.

$24.95 – Buy 2 or more at $19.95 each

Programming the PIC Microcontroller with MBASIC
by Jack Smith

No microcontroller is of any use without software to make it perform useful functions. This comprehensive reference focuses on designing with Microchip’s mid-range PIC line using MBASIC, a powerful but easy to learn programming language. It illustrates MBASIC’s abilities through a series of design examples, beginning with simple PIC-based projects and proceeding through more advanced designs.

$59.95

WE ACCEPT VISA, MC, AMEX, and DISCOVER. Prices do not include shipping and may be subject to change. Ask about our 10% subscriber discount on selected titles.
Today, there is actually a fiber optic cable glut. Miles and miles of it were laid in the early Internet boom days of 1998-2002, then the crash. Lots of that cable is still unused or as they say in the industry, it is “dark” fiber. With booming Internet activity going on today and the push toward TV over the Internet, lots of that fiber is being brought out of the darkness and even more new fiber is being laid for special applications.

Fiber optic communications systems are not something we think of every day even though we all use them. Don’t think so? Consider this. When you make a long distance call, the fiber network is used. In fact, in making any phone call today — wired or wireless — somewhere in the telephone system your call is being carried at least part way by light waves over fiber. Do you have cable TV? (Over 80% of the US population does so you probably do, too.) Most cable TV systems are what we call hybrid fiber cable (HFC) systems meaning that a main fiber optic backbone cable carries the TV signals to a box in your neighborhood where the connection continues from that box to your home over RG-6/U 75-ohm coax. If you use email or the Internet, you use fiber because the backbone of the Internet is fiber. And most of that fiber is buried and invisible.

Recently, I attended the Optical Fiber Conference (OFC) in Anaheim, CA. I have not been to that conference in a few years as the early 2000’s were really rough on the fiber industry. When the Internet bubble burst in 2001, the fiber industry essentially collapsed. It did not go away, of course, but little new equipment was sold, lots of R & D was abandoned or put on hold, start-up companies folded, and lots of other companies were bought and/or merged. All that consolidation turned out to be good and business has emerged even stronger today. The OFC was booming again this year as the industry renews its growth cycle. Here is a look at some of the latest trends and developments in this field which affect us all, even if you think it doesn’t.

REMEMBER HOW IT WORKS

Fiber optic communications is the transmission of light over a glass or plastic fiber cable. The light is generated by a laser in most cases, but in some smaller, slower networks an LED is used. The light is infrared (IR) so you cannot see it as it is lower in frequency than red light. The light color or frequency is usually expressed in wavelengths (\(\lambda\)) and that is measured in nanometers (nm). A nanometer is one billionth of a meter. IR light extends from about 700 to 1,600 nm. The most common IR operational wavelengths are 780, 850, 1,310, 1,490, and 1,550 nm. The 780 nm wavelength is the common TV remote control frequency while 1550 nm is the main long distance high speed operating wavelength.

In any case, since most signals are digital data today, the binary signals simply modulate the light by turning the laser light off and on creating pulses. This is called on-off keying (OOK) or amplitude shift keying.
(ASK). The light pulses travel down the fiber and eventually encounter a photodiode at the receiver that converts the light back into a binary signal. Data in the long distance and Internet backbone is usually sent with a protocol standard known as the Synchronous Optical Network or Sonet. What it does is package data into blocks or frames of 810 bytes of data and send it at one of several standard data rates; the slowest is 51.84 Mb/s and the fastest is 39.812 Gb/s. Most data exchange is done at the 2.488 and 9.953 Gb/s rates. See Table 1 for the Sonet standard rates.

Sonet networks are either point-to-point or in rings. The long haul networks are known as wide area networks (WANs). When Sonet is used in smaller city or town rings, it is called a metropolitan area network (MAN).

Ethernet — the local area network (LAN) standard — now sends data over fiber (and copper) LANs at 1 Gb/s and 10 Gb/s. Data is by packets rather than synchronous frames so the format is less complex. High speed Ethernet is also being more widely used in MANs and in some cases, WANs like Sonet. The IEEE (Institute of Electrical and Electronics Engineers), who standardizes Ethernet, is working on a 100 Gb/s standard for long haul fiber networks.

FASTER AND FARTHER

In the computer, electronics, and communications fields, the ultimate and on-going goal is to make everything go faster and at a longer distance. The same is true in fiber optics. For years, the average long distance data rate over the backbone was 2.5 Gb/s (actually 2.488 Gb/s Sonet rate). Today, that has been increased to an average of 10 Gb/s. Most long distance calls and virtually all Internet messages go at that 10 Gb/s rate through the main routers in the system. The distance is roughly a maximum of several hundred kilometers before the light signals get too weak. They then need to be converted back to electrical signals where they are amplified, reshaped, and otherwise rejuvenated before being converted back to light and sent on their way.

Now the push is on to boost data rates and extend the range of the light signals. Before the technology crash in 2001, there was an effort to boost the speed to 40 Gb/s (39.812 Gb/s Sonet rate). That work has now been renewed and there are lots of new products to support that data rate. Network providers are beginning to offer services at that speed. Verizon recently announced that some of their network segments in the northeast US have already been bumped up to the 40 Gb/s rate. And work is on the way to move that up to 100 Gb/s.

Besides the IEEE effort to build a 100 Gb/s Ethernet, other efforts are under way to boost the data rate to 100 Gb/s and beyond. Some of these are Sonet type systems while others are proprietary, but progress is being made. One of the easiest ways to get to 100 Gb/s over a single fiber is to use what is called dense wavelength division multiplexing (DWDM). This is a technique where a very high speed data stream is divided up into many slower streams. These streams are then transmitted simultaneously down the same fiber, but with each stream modulating a different light wavelength. The different “colors” of light travel down the fiber together and are separated out by filters at the receiver where they are then recombined back into the fast single stream.

Most of the first 100 Gb/s systems are using DWDM. But single wavelength 100 Gb/s is tough. One of the main reasons is that glass fiber greatly attenuates and distorts the light. These problems are called polarization mode distortion (PMD) and chromatic dispersion. New types of fiber help to mitigate the problems but mostly the problems are dealt with by an equalization technique implemented at the receiver. The signals are predistorted in a special way and the receiver corrects for them using fast digital signal processing techniques.

Another solution lies in using different modulation methods. The standard OOK or ASK is being replaced by more sophisticated modulation techniques like differential phase shift keying (DPSK) and differential quadrature phase shift keying (DQPSK). An old telephone system modulation method called duobinary has also been applied. All of these help overcome the attenuation and distortion allowing faster data rates over longer distances.

There are lots of demo 100+ Gb/s systems. It will be a few more years before we see standards and equipment for those rates, but they are on the way. Why? Because of the greater load the Internet carries with the ever-increasing music downloads and the forthcoming Internet video. Companies will begin offering movies-on-demand or video-on-demand, as well as Internet protocol television (IPTV) that is designed to compete with the cable TV companies. The current Internet structure and bandwidth can handle some video now, but it will eventually be overwhelmed if video becomes popular on the Internet. The new 100+ Gb/s technology is on the way to solve this problem.

PASSIVE OPTICAL NETWORKS

Another hot optical topic today is the PON. Passive Optical Networks (PONs) are fiber optical networks designed so they do not use an active repeater or other equipment between the source central office and a home or business. Right now, most individuals

TABLE 1. Sonet Data Standards and Rates

<table>
<thead>
<tr>
<th>Sonet Level</th>
<th>Data Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-1/OC-1</td>
<td>51.84 Mb/s</td>
</tr>
<tr>
<td>STS-3/OC-3</td>
<td>155.52 Mb/s</td>
</tr>
<tr>
<td>STS-12/OC-12</td>
<td>622.08 Mb/s</td>
</tr>
<tr>
<td>STS-48/OC-48</td>
<td>2.488 Gb/s</td>
</tr>
<tr>
<td>STS-192/OC-192</td>
<td>9.953 Gb/s</td>
</tr>
<tr>
<td>STS-768/OC-768</td>
<td>39.812 Gb/s</td>
</tr>
</tbody>
</table>

STS means synchronous transport signal and OC means optical carrier.
and businesses get their Internet service via the cable TV system or the phone company’s DSL lines. While both are fast, they are running out of steam, especially DSL. The ideal high speed service is fiber but it is more expensive at the moment. The ultimate goal is to run fiber to the home (FTTH) and use it to supply fast Internet access, phone service via voice over IP, and IPTV.

PONs make this possible because they are fast and reasonably inexpensive due to their totally passive nature. For long haul fiber networks, the signals must be converted from optical to electrical and back to optical (OEO) to rejuvenate them in case of fiber loss and/or distortion. Such OEO repeaters are expensive. By eliminating them and just running the cables only, costs are cut dramatically making PONs a viable alternative to current methods like DSL and cable TV.

Asia (Japan and Korea, particularly) and some parts of Europe already use EPON, a system based on the Ethernet standard. Data is transmitted at 1 Gb/s downstream over the fiber to the home on 1,490 nm where it encounters splitters that divide the optical signal and send it off to multiple homes or businesses. A splitter is just a passive light divider with no electronics. Splitters are available to divide the signal by a ratio of 1:4, 1:8, 1:16, 1:32, or 1:64. A splitter is also a combiner where it can take multiple light signals, add them together, and send the combination back to a central office. The upstream data rate is also 1 Gb/s, but it rides on a 1,310 nm wavelength.

In the US, Verizon has initiated its FiOS system using a PON in some parts of the country and selling the service as the faster alternative to cable TV and DSL. AT&T is also testing a similar system for IPTV. Fiber is a bit more expensive, but the basic date rates are in the 30 to 50 Mb/s; many times faster than conventional services. It can easily handle multiple HDTV channels, as well as VoIP phone service and Internet access. Several million homes already use it and more are being rolled out over the coming years.

The technology is referred to as GPON or Gigabit PON. The basic downstream data rate is 2.488 Gb/s on 1,490 nm with a fast 1.244 Gb/s upstream rate on 1,310 nm. A separate downstream wavelength of 1,550 nm is reserved for TV. While each customer does not get the full 2.488 Gb/s speed, the system divides the fast stream among the customers who are served by passive fiber and splitters.

Fiber is widely used in 1 Gb/s and 10 Gb/s Ethernet LANs and in Fibre Channel—a type of network widely used in storage area networks, large arrays of hard disk storage systems. The fiber provides 1, 2, 4, 8, or 10 Gb/s of speed so that servers can access data on the disk drives fast.

As prices continue to drop and the pressure continues to build for IPTV and faster services, fiber will be more widely adopted further reducing prices. Fiber truly is the fastest data communications medium available and it will grow at an even faster rate as the demand for Internet speed and bandwidth continues.
Call 1-800-4-HALTED (1-800-442-5833) to order... ...or use our web search! Search

HSC#80842 $12.50
HSC#80822 $14.95
HSC#21067 $19.95
HSC#21183 $24.95

Fujitsu Laptop Power Supply
16VDC, 3.75 A, Fits many models
HSC#21183 $24.95

USB 2.0 to IDE Drive Adaptor
HSC#80822 $14.95

12 VDC Hobby Motor
1" dia., Qty Discounts!
HSC#21369 $2.50

AC adapter, 12VDC, 4.4A
HSC#19312 $12.50

External 3.5" IDE Drive Case
HSC#19976 $19.95

Logitech QuickCam Express
HSC#21061 $19.50

Tripplite Outlet Strip, 5 ft. long
HSC#20794 $39.95

Have you signed up for our e-mail list yet? We are sending out special offers to our special customers!
Just log on to www.halted.com and sign up...
You'll be the first to know about our latest inventory, sales promotions and limited-time pricing!
We never sell or share our customer info, and mail only to registered customers.

HSC Electronic Supply
Three Retail Stores to serve you!
Main Office - Mail Orders...
3500 Ryder St., Santa Clara, CA 95051
Santa Clara 1-408-732-1573
Sacramento 1-916-338-2545
Rohnert Park 1-707-585-7344

Order Toll-Free: 1-800-4-HALTED (442-5833)
or...ONLINE AT: www.halted.com
Terms: Some quantities limited; all items are subject to prior sale. Minimum order: $10.00 plus shipping. Orders under $20.00 subject to $5.00 handling fee in addition to shipping. All orders shipped by UPS Surface unless otherwise specified. $9.00 UPS charge added for COD. Visit our website for detailed information on domestic and international shipping.

HSC#80797 $119.00
I f you’ve had the time and interest to take in our previous C8051F120 discussions, you have already been introduced to many of the C8051F120’s on-chip peripherals. This month’s collection of technical speak, C8051F120 C source code, pictures, and graphics will cover the remainder of the C8051F120 peripherals that we have not yet examined.

Up to this point, everything hardware has been based on the electronics you see in Photo 1. The collection of active and passive electronic components surrounding the C8051F120 microcontroller in Photo 1 makes up a Silicon Laboratories C8051F120 Development Board, which is part of a Silicon Laboratories Development Kit. With the assistance of the Silicon Laboratories USB Debug Adapter you see in Photo 2, I can use the C8051F120 Development Board to exercise all of the C8051F120’s on-chip peripherals. All of the C8051F120’s analog-to-digital converter inputs, comparator inputs, comparator outputs, digital-to-analog converter outputs, general-purpose I/O port pins, voltage reference inputs, voltage reference outputs, capture inputs, PWM outputs, general-purpose timer outputs, counter outputs, and serial ports are available to us on the C8051F120 Development Board by way of pins, screw terminals, a D-shell connector, and a 96-pin expansion I/O connector. This high accessibility of C8051F120 signals allows me to use a Cleverscope to show you waveforms, logic levels, and voltages that are generated in response to stimuli introduced by the C programming language.

USB is the big thing in personal computers these days. However, as long as microcontroller hardware continues to include on-chip UARTs, RS-232 will live. So, let’s begin this month’s discussion by putting some frills into the UART code we discussed previously.

UART INTERRUPTED

We initialized and activated the C8051F120’s UART0 in the previous Design Cycle column. However, we didn’t care to listen for other intelligent electronic devices as we were using UART0 to do all of the talking. So, this time around, we’ll add some ears to our UART0 code.

If you’re just tuning in, we used the Configuration Wizard 2 application to lay the groundwork for much of the UART0 code we generated in previous Design Cycle discussions. We will continue to use the Configuration Wizard 2 application as we go about enabling and activating the remainder of the C8051F120 peripherals we are yet to encounter. However, there are some things the Configuration Wizard 2 cannot do for us. For example, the Configuration Wizard 2 is not designed to allocate UART0 transmit and receive buffers in the C8051F120’s SRAM area. Generating interrupt handler routines is another task that the Configuration Wizard 2 is not suited for. That leaves us to use our noggins to augment the basic UART0 code that was provided so graciously to us by the
in our buffer scheme, both of the transmit and receive buffers can be considered to be circular. Incoming buffer characters are stored in the buffer Tail address and outgoing buffer characters are taken from the buffer Head address. Thus, the Head is always chasing the Tail and the buffer is considered empty when the Head address is equal to the Tail address. Conversely, the buffer is full when the Tail address is one less than the Head address.

To give you a better picture of the receive buffer mechanics, I initialized all of the C8051F120 on-chip peripherals, turned on the UART0 interrupts, and entered a never-ending loop to capture 16 characters I sent from a personal computer running Tera Term Pro. The results are shown in the µVision3 Watch Window I captured for you in Screen Shot 1. By declaring the buffer areas using “char xdata,” both of the transmit and receive buffers are allocated in the C8051F120’s on-chip 8K XRAM memory area. Since the transmit and receive buffers are so small, we could have also allocated them into the C8051F120’s 256-byte SRAM area using “char idata” in the buffer declaration statements.

With the UART initialized to run in eight-bit mode with its interrupts active and the transmit and receive buffers allocated, our next step entails writing the receive interrupt handler. No sweat. Coding the receive interrupt handler is a walk in the park. Here’s the receive interrupt handler code:

```c
static void com_isr (void) interrupt 4
{
    // RECEIVE INTERRUPT HANDLER
    unsigned char c;
    if (RI0) {
        c = SBUF0; //read character
        RI0 = 0; //clear interrupt request flag
        //check for end of receive buffer
        if (RxHead + RxBUFLEN != RxTail) {
            //put character into buffer
            RxBuf[RxTail++ & RxBUFMASK] = c;
        }
    }
}
```

SCREEN SHOT 1. The 16 characters I keyed into the Tera Term Pro window are shown in the hex dump area beginning at address 0x00000 and ending at address 0x000FF. Note that the debug window points out the beginning address (X:000000) of the receive buffer, which, according to the “X:,” is located in the C8051F120’s internal XRAM memory.
The com_isr interrupt handler is called when a transmit or receive event occurs. In the case of the receive interrupt handler code, the first thing we do is check the RI0 receive interrupt flag. If the RI0 flag is set, we simply pull the incoming character from the UART0 buffer, reset the RI0 flag, check for a full receive buffer, and if the buffer is available, we stash the incoming character into the next available receive buffer slot. If the receive buffer is full, the character is tossed into the bit bucket.

The transmit interrupt handler code is just as simple:

```c
// TRANSMIT INTERRUPT HANDLER
if (TI0)
{
    TI0 = 0; // clear interrupt request flag
    if (TxHead != TxTail) // if characters in buffer
    {
        SBUF0 = TxBuf[TxBuf++ & TxBUFMASK];
        CharInTxBuf = 0; // clear 'CharInTxBuf' flag
    }
    else
    {
        SendChar = 0; // clear 'SendChar' flag
    }
}
```

If the transmit interrupt flag (TI0) is set, we immediately clear it and check to see if the transmit buffer is empty. If the transmit buffer contains a character to be transmitted, we

The com_isr interrupt handler is called when a transmit or receive event occurs. In the case of the receive interrupt handler code, the first thing we do is check the RI0 receive interrupt flag. If the RI0 flag is set, we simply pull the incoming character from the UART0 buffer, reset the RI0 flag, check for a full receive buffer, and if the buffer is available, we stash the incoming character into the next available receive buffer slot. If the receive buffer is full, the character is tossed into the bit bucket.

The transmit interrupt handler code is just as simple:

```c
// TRANSMIT INTERRUPT HANDLER
if (TI0)
{
    TI0 = 0; // clear interrupt request flag
    if (TxHead != TxTail) // if characters in buffer
    {
        SBUF0 = TxBuf[TxBuf++ & TxBUFMASK];
        CharInTxBuf = 0; // clear 'CharInTxBuf' flag
    }
    else
    {
        SendChar = 0; // clear 'SendChar' flag
    }
}
```

If the transmit interrupt flag (TI0) is set, we immediately clear it and check to see if the transmit buffer is empty. If the transmit buffer contains a character to be transmitted, weperforming any error checking and thus the buffer mask bits are not used to their full potential. Basically, the buffer mask bits are used to make sure that the buffer addressing never leaves the extents of the allocated buffer. In other words, a 16-byte buffer will never correctly recognize a buffer address greater than 15. Remember that address zero completes the 16 bytes.

I’ve augmented the UART0 interrupt handler routines with some utility routines that pull incoming characters from the receive buffer and push outgoing characters into the transmit buffer. I’ve provided a complete µVision3 project based on the C8051F120’s UART0 as a download from the Nuts & Volts website (www.nutsvolts.com).

CIPHERING WITH THE C8051F120

That’s what Jethro Bodine would call what the C8051F120’s MAC (Multiply and Accumulate) unit does. The C8051F120 MAC unit is most useful when the C8051F120 is involved in math-intensive operations such as digital filtering. However, the C8051F120’s MAC unit can be used to perform less complicated mathematical operations, as well. Many of the mathematical tasks that a microcontroller gets involved in use signed fractional numbers, as well as integers. The MAC unit can easily handle both.

The C8051F120’s MAC unit is very easy to understand and use. The bulk of the MAC unit consists of a pair of 16-bit registers (MAC0AH/MAC0AL and MAC0BH/MAC0BL) in which the values to be multiplied are loaded. The result of the multiplication is pushed into the MAC’s 40-bit accumulator. The accumulator can be instructed to sum the incoming multiplication results or clear itself to hold only a single multiplication result. Upon command, the result held in the MAC’s accumulator can be shifted left or right by one bit.

Let’s do some cipherin’ with the C8051F120 MAC. First, we will load the MAC “A” 16-bit register pair with

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0x00</td>
</tr>
<tr>
<td>b</td>
<td>0x01</td>
</tr>
<tr>
<td>c</td>
<td>0x02</td>
</tr>
<tr>
<td>d</td>
<td>0x03</td>
</tr>
<tr>
<td>e</td>
<td>0x04</td>
</tr>
<tr>
<td>f</td>
<td>0x05</td>
</tr>
<tr>
<td>g</td>
<td>0x06</td>
</tr>
<tr>
<td>h</td>
<td>0x07</td>
</tr>
</tbody>
</table>

extract the character from the Head of the transmit buffer and transmit the character by loading it into UART0’s SBUF0.

Now is a good time to look at the job that the buffer masks do. Note that we are not performing any error checking and thus the buffer mask bits are not used to their full potential. Basically, the buffer mask bits are used to make sure that the buffer addressing never leaves the extents of the allocated buffer. In other words, a 16-byte buffer will never correctly recognize a buffer address greater than 15. Remember that address zero completes the 16 bytes.

I’ve augmented the UART0 interrupt handler routines with some utility routines that pull incoming characters from the receive buffer and push outgoing characters into the transmit buffer. I’ve provided a complete µVision3 project based on the C8051F120’s UART0 as a download from the Nuts & Volts website (www.nutsvolts.com).

CIPHERING WITH THE C8051F120

That’s what Jethro Bodine would call what the C8051F120’s MAC (Multiply and Accumulate) unit does. The C8051F120 MAC unit is most useful when the C8051F120 is involved in math-intensive operations such as digital filtering. However, the C8051F120’s MAC unit can be used to perform less complicated mathematical operations, as well. Many of the mathematical tasks that a microcontroller gets involved in use signed fractional numbers, as well as integers. The MAC unit can easily handle both.

The C8051F120’s MAC unit is very easy to understand and use. The bulk of the MAC unit consists of a pair of 16-bit registers (MAC0AH/MAC0AL and MAC0BH/MAC0BL) in which the values to be multiplied are loaded. The result of the multiplication is pushed into the MAC’s 40-bit accumulator. The accumulator can be instructed to sum the incoming multiplication results or clear itself to hold only a single multiplication result. Upon command, the result held in the MAC’s accumulator can be shifted left or right by one bit.

Let’s do some cipherin’ with the C8051F120 MAC. First, we will load the MAC “A” 16-bit register pair with

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0x00</td>
</tr>
<tr>
<td>b</td>
<td>0x01</td>
</tr>
<tr>
<td>c</td>
<td>0x02</td>
</tr>
<tr>
<td>d</td>
<td>0x03</td>
</tr>
<tr>
<td>e</td>
<td>0x04</td>
</tr>
<tr>
<td>f</td>
<td>0x05</td>
</tr>
<tr>
<td>g</td>
<td>0x06</td>
</tr>
<tr>
<td>h</td>
<td>0x07</td>
</tr>
</tbody>
</table>

extract the character from the Head of the transmit buffer and transmit the character by loading it into UART0’s SBUF0.

Now is a good time to look at the job that the buffer masks do. Note that we are not performing any error checking and thus the buffer mask bits are not used to their full potential. Basically, the buffer mask bits are used to make sure that the buffer addressing never leaves the extents of the allocated buffer. In other words, a 16-byte buffer will never correctly recognize a buffer address greater than 15. Remember that address zero completes the 16 bytes.

I’ve augmented the UART0 interrupt handler routines with some utility routines that pull incoming characters from the receive buffer and push outgoing characters into the transmit buffer. I’ve provided a complete µVision3 project based on the C8051F120’s UART0 as a download from the Nuts & Volts website (www.nutsvolts.com).

CIPHERING WITH THE C8051F120

That’s what Jethro Bodine would call what the C8051F120’s MAC (Multiply and Accumulate) unit does. The C8051F120 MAC unit is most useful when the C8051F120 is involved in math-intensive operations such as digital filtering. However, the C8051F120’s MAC unit can be used to perform less complicated mathematical operations, as well. Many of the mathematical tasks that a microcontroller gets involved in use signed fractional numbers, as well as integers. The MAC unit can easily handle both.

The C8051F120’s MAC unit is very easy to understand and use. The bulk of the MAC unit consists of a pair of 16-bit registers (MAC0AH/MAC0AL and MAC0BH/MAC0BL) in which the values to be multiplied are loaded. The result of the multiplication is pushed into the MAC’s 40-bit accumulator. The accumulator can be instructed to sum the incoming multiplication results or clear itself to hold only a single multiplication result. Upon command, the result held in the MAC’s accumulator can be shifted left or right by one bit.

Let’s do some cipherin’ with the C8051F120 MAC. First, we will load the MAC “A” 16-bit register pair with

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0x00</td>
</tr>
<tr>
<td>b</td>
<td>0x01</td>
</tr>
<tr>
<td>c</td>
<td>0x02</td>
</tr>
<tr>
<td>d</td>
<td>0x03</td>
</tr>
<tr>
<td>e</td>
<td>0x04</td>
</tr>
<tr>
<td>f</td>
<td>0x05</td>
</tr>
<tr>
<td>g</td>
<td>0x06</td>
</tr>
<tr>
<td>h</td>
<td>0x07</td>
</tr>
</tbody>
</table>
We'll then multiply the value in MAC0A by +0.50. The fractional values entered into the MAC0A and MAC0B registers are translated in Figure 1. The code for our little MAC fractional multiply operation looks like this:

```c
void main()
{
    unsigned int a, b, c, d, e, f, g, h;
    Init_Device();
    SFRPAGE = MAC0_PAGE;
    MAC0CF = 0x0A; // clear accum-fractional mode
    MAC0AH = 0x40; // load +0.50
    MAC0AL = 0x00; // 0x4000 = +0.50
    MAC0BH = 0x40; // load +0.50
    MAC0BL = 0x00; // kicks off multiply operation
    NOP; // multiply happening here
    NOP; // accumulator updated
    NOP; // rounding register updated
    a = MAC0ACC3; // accumulator registers
    b = MAC0ACC2;
    c = MAC0ACC1;
    d = MAC0ACC0;
    e = MAC0OVR; // accumulator overflow register
    f = MAC0STA; // status register
    g = MAC0RNDH; // rounding registers
    h = MAC0RNDL;
    while(1);
}
```

According to Screen Shot 2, the accumulator contains 0x2000. Using Figure 1 as our guide, 0x2000 is equivalent to +0.25. It’s really easy to do integers with the C8051F120’s MAC unit, too. All we have to do is clear the fractional/integer bit in the MAC0C register and treat our numbers just like we’re used to in the MAC0A, MAC0B, and accumulator registers. Keep in mind that the most significant bits of these registers is the sign bit in integer mode. Here’s what MAC integer operation code looks like:

```c
void main()
{
    unsigned int a, b, c, d, e, f, g, h;
    Init_Device();
    SFRPAGE = MAC0_PAGE;
    MAC0CF = 0x08; // clear accum-integer mode
    MAC0AH = 0x00; // load +2
    MAC0AL = 0x02; // 0x0002 = +2
    MAC0BH = 0x00; // load +2
    MAC0BL = 0x02;
    NOP; // accumulator updated
    NOP; // rounding register updated
    a = MAC0ACC3; // accumulator registers
    b = MAC0ACC2;
    c = MAC0ACC1;
    d = MAC0ACC0;
    e = MAC0OVR; // accumulator overflow register
    f = MAC0STA; // status register
    g = MAC0RNDH; // rounding registers
    h = MAC0RNDL;
    while(1);
}
```

We all know what the answer is. However, the answer (4) will be situated in the accumulator’s MAC0ACC0 register with the remaining MAC0ACCC registers holding zero values (0x0004). I’ve included both the fractional and integer code we just looked at in the source code download package so you can get hands-on with the C8051F120’s MAC unit.

MAKING WAVEFORMS WITH THE C8051F120 DAC

The C8051F120 contains a pair of on-chip digital-to-analog converters and before we’re done, we’ll put them both to use. I could exercise the C8051F120’s DAC by entering some values into the DAC registers and reading out the resultant voltages. That would be boring as heck. So, let’s create some waveforms using the C8051F120’s DAC0.

The very first thought that came to my mind was to simply sweep DAC0 from 0.00 to its maximum voltage value. The C8051F120 has an on-chip +1.2V voltage reference that can be used to feed the comparators, the analog-to-digital converters, and the digital-to-analog converters. An x2 buffer/amplifier boosts the C8051F120’s on-chip reference voltage to +2.4V. Thus, I can sweep the 12-bit digital-to-analog converters between 0.0V (0x000) and +2.4V (0xFFF) by simply sweeping the DAC data registers. It then occurred to me that if I performed this sweep with reference to a timebase, I could create a sawtooth waveform. Let’s write some DAC code to see if I can indeed create a crude sawtooth waveform by sweeping DAC0 with some rhythm.

I used the Configuration Wizard 2 application to help...
void DAC_Init() {
 SFRPAGE = DAC0_PAGE; // update DAC on Timer2 overflow-enable DAC
 DAC0CN = 0x98;
}

I have the option of updating the DAC0 data registers with a write to DAC0H or on an overflow of Timers 2, 3, or 4. Random chance has worked in our favor as I am able to load my DAC0 sweep values into the DAC0 data registers on every overflow of what is now our timebase, Timer 2. I won’t have time to poll for a Timer 2 overflow as I will compromise the resultant waveform. So, I’ll turn on the Timer 2 interrupt mechanism and trip the interrupt mechanism on every Timer 2 overflow. Once tripped, I’ll execute the code contained within the tmr_isr interrupt handler:

```c
static void tmr_isr (void) interrupt 5 {
  //Sawtooth Code
  if(++low_counter == 0) {
    if(++high_counter == 0x10)
      high_counter = 0x00;
  }
  DAC0L = low_counter;
  DAC0H = high_counter;
}
```

The Sawtooth Code simply increments the low_counter variable until it overflows from 0xFF to 0x00. On every low_counter overflow, the high_counter variable is incremented until it overflows from 0x00 to 0x10. Thus, the maximum count that the low_counter and high_counter register pair can contain is 0xFFF, which is the maximum value we can push into the DAC0 data registers.

I used the SWAG method of choosing the Timer 2 overflow value. I just kept adjusting the Timer 2 reload value until I got a nice trace on the Cleverscope. The Timer 2 code that you’ll get in the download package is shown here:

```c
SFRPAGE = TMR2_PAGE;
TMR2CN = 0x04; //enable Timer 2
TMR2CF = 0x08; //SYSCLK is timer source clock
//reload Timer 2 on overflow to 0xFF4C
RCAP2L = 0x4C;
RCAP2H = 0xFF;
```

With all of the DAC0 and Timer 2 initialization and interrupt code in place, all that’s needed to generate a sawtooth wave is this:

```c
void main() {
  Init_Device(); // init the chip peripherals
  low_counter = 0x00; // init the waveform counters
  high_counter = 0x00;
  while(1); // saw logs
}
```

While I was tinkering with the sawtooth wave you see in Screen Shot 3, I figured I could just as easily put a triangle waveform on the Cleverscope graph window. All I

■ SCREEN SHOT 5. This is an example of how to modulate a square wave using a sawtooth wave and a comparator. All of this is done by the C8051F120 peripherals. DAC0 provides the sawtooth waveform and DAC1 is acting as a reference voltage for Comparator 1. The base reference voltage is provided by the C8051F120's on-chip reference voltage generator.
have to do is count down when the DAC0 data registers get loaded with 0xFFF instead of resetting the DAC0 data registers to 0x00 at that point. As it turned out, to get a triangle wave to appear on the Cleverscope graph window, I only had to add some triangle code to the Timer 2 interrupt handler:

```c
static void tmr_isr (void) interrupt 5
{
    //Triangle
    if(phase == 0)
    {
        if(++low_counter == 0)
        {
            if(++high_counter == 0x10)
            {
                phase = ~phase;
                high_counter = 0x0F;
                low_counter = 0xFF;
            }
        }
    }
    else
    {
        if(—low_counter == 0xFF)
        {
            if(—high_counter == 0xFF)
            {
                phase = —phase;
                high_counter = 0x00;
                low_counter = 0x00;
            }
        }
    }
    DAC0L = low_counter;
    DAC0H = high_counter;
}
```

The triangle interrupt handler code depends on the value of the phase variable to determine whether it needs to increment or decrement the value being fed to the DAC0 data registers. This country boy guessed right again as you can see in the Cleverscope display shown in Screen Shot 4. We’re not done with DACs yet. I’ve got another idea.

DARE TO COMPARE

What if I fired up DAC1 and set it to generate +1.2V by writing 0x7FF to the DAC1 data registers, used the DAC1 voltage as a reference voltage for Comparator 1, and fed Comparator 1 with the sawtooth wave from DAC0? I should get a square waveform that is modulated by the Comparator 1 reference voltage versus the voltage of the sawtooth waveform. Let’s code it up and see if I’m right.

Once again, I let the Configuration Wizard 2 application do the dirty work of initializing Comparator 1:

```c
void Comparator_Init()
{
    unsigned int i;
    SFRPAGE = CPT1_PAGE;
    CPT1CN = 0x80; // enable Comparator 1
    for (i=0;i<60;i++) // Wait 20us for init
    {
        CPT1CN &= ~0x30; // clear the interrupt flags
        CPT1MD = 0x30; // set mode to fastest
    }
}
```

DAC1 does not need to do anything fancy. So, I simply enabled it and it will only update its data registers on a write to DAC1H (done by loading DAC1CN (DAC1 Control Register with 0x80). Now all I need to do is turn the sawtooth waveform loose and write the +1.2V voltage value to the DAC1 data registers:

```c
void main()
{
    Init_Device();
    low_counter = 0x00;
    high_counter = 0x00;
    SFRPAGE = DAC1_PAGE;
    DAC1L = 0xFF;
    DAC1H = 0x07;
    while(1);
}
```

Take a look at Screen Shot 5. The modulated square wave is actually the output of Comparator 1. As the sawtooth wave voltage passes through +1.2V, the Comparator 1 output trips from low to high and remains high as long as the sawtooth voltage is above +1.2V, which is what we dialed into Comparator 1 as its reference voltage. If I load DAC1’s data registers with a larger value, Comparator 1’s reference voltage will also

SCREEN SHOT 6. You can see that as I increase Comparator 1’s reference voltage, the high portion time of the Comparator 1 output square waveform grows smaller. By sweeping DAC1, we can create a PWM signal at the output of Comparator 1.
increase accordingly. The result is the square waveform you see in Screen Shot 6. The DAC1 data registers are loaded with 0xBFF, which forces Comparator 1 to trip at 1.80V.

If you’re wondering why the Comparator 1 output is larger in voltage magnitude than the sawtooth waveform, the answer is simple. Comparator 1 can swing its output from 0.00V to just a bit below +3.3V as its output is referenced to the C8051F120’s VDD, which happens to be +3.3V. DAC0, which is supplying the sawtooth waveform, is referenced to the C8051F120’s +2.4V on-chip voltage reference, which is being...
supplied to DAC0 via the x2 buffer/amplifier.

CHECKED OUT

You’re ready to roll with your own C8051F120 applications as you’re now “checked out” on the C8051F120 and its on-chip peripherals. If you’re wondering about the absence of analog-to-digital converter coverage, here it is courtesy of the Configuration Wizard 2 application:

```c
void ADC_Init()
{
    SFRPAGE = ADC0_PAGE;
    ADCON1 = 0x80;  // enable ADC0
}
```

Use the Configuration Wizard 2 application to choose your analog-to-digital converter trigger method and write some simple code to poll for and fetch the analog-to-digital converter result. That’s all you need to read voltages at the C8051F120’s AN0 input. Using the C8051F120’s analog-to-digital converter in basic mode is no different than using any other microcontroller’s analog-to-digital converter.

The key to C8051F120 application success lies with the Configuration Wizard 2 application and the Keil µVision3/Silicon Laboratories development suite. If you have control over the aforementioned items, you can easily add the C8051F120 to your Design Cycle. NV
Lumax

* Dark half-tone on yellow background

* High contrast & wide viewing angles

* HD4870 equivalent controller built-in

* Bright LED back light

Order online at:
www.411techsystems.com

Batteries

5V/3.3V from 1 or 2 AA AAA

Battery pack or PCB Only

Input Jumper

Terminated Connector

Beautifully Simple

www.bothelabs.com

Software

USB

Universal Serial Bus

Low as $39

Windows API library (DLL)

Read/Write your USB device

No custom drivers

Develop your host software

For HID class USB devices

Visual C and Visual Basic

Free demo w/ source code

www.kadtronix.com

Audio/Video

ARDUINO

Open-source hardware & software

6/16

6 x PWM

20/10

14 Flash

1 x RAM

Altium 168

Bare Bones Arduino

$15 Kit/pt.

NSV readers take 15% off first order.

moderndevice.com

arduino.cc

Design/Eng Services

* Circuit board layouts

* Prototype assemblies

www.jspreelectronics.com

Robotic Controllers

Robot Bases, PIC, OOPIC, Stamp, and Walking Machine Controllers.

New ZIG-BEE RF-link boards.

Chips, kits, assembled.

www.oricotech.com

LCDs/DisplayS

* Direct half-tone on white background

* High contrast & wide viewing angles

* HD4870 equivalent controller built-in

* Bright LED back light

Order online at:
www.411techsystems.com

Micro Controllers

MicroStamp11

World’s Smallest 68HC11 Microcontroller Module!

- telemetry
- microcontrollers
- smart toys
- anemotronics
- model railroading
- home automation

www.microstamp1.com

Satellite

FREE Satellite TV Buyer’s Guide

C-band + Ku-band + DTV + FTA

Digital Programming Paks

Low Prices

GREAT Selection

800-500-9275

www.skyvision.com

Security

WIRELESS FIELD STRENGTH TESTING

- Detects Bugs & Hidden Cameras

- Identifies Booby & Cold spots

- Measures baseline 3G TVania

- Discovers hidden-site locations

- Anino & Antenna for distant antennas

- Locate cable leaks & connector problems

Model

ZC 300

LOGIC METER - LINEAR DETECTOR MODES

- Featuring dual signal detector and location produced

DIGITAL ANALOG SIGNAL DIRECTION

- Enhanced call phone, video, computer data

- Lens up transmits

$599 w/ directions 1.8-6.6 GHz Log Periodic Antenna

www.zapchecker.com

Classified Ads Work!

Call us today to place your ad.

951-371-8497

Classified Advertising

$50.00 Per Inch — No extra charge for color.

Classified ads must be paid in full prior to the closing date, or the ad will be placed in the following issue, at our discretion. Minimum charge is one inch with half-inch increments. No proofs will be sent. Ads to be typeset by Nuts & Volts must be received by the closing date. Supplied ads must be received by the artwork due date.

Call 951-371-8497 or email classified@nutsvolts.com for closing dates, available sizes, and special prepay discount offers.
>>> QUESTIONS

What technology is used in the customer sensors above the grocery store doors to detect an approaching customer? Are these units available new or surplus anywhere?

Bert Henscheid
via email

I need to interface a GPS engine serial data out to two different devices. I would also like to isolate the three units from each other. Can the serial data output from a GPS engine drive two opto-isolators directly, and if so, would the output of the GPS be connected directly to the isolator input? Next, are there opto-isolators that have one input and two or more outputs?

Charlie Willwerth
Saint Augustine, FL

I would like to do some kernel debugging and the software I am using requires the use of one PC to monitor another PC. In the past, this would be done using a null modem cable between the two serial ports. Now with only USB ports, I am wondering how to create a null modem cable. One thought would be to get two USB to serial port adapters and hook a null modem cable between them. I’m not sure that would work, and even if it did, a more direct approach and explanation would be much appreciated.

John Huseby
via email

How can I vary the 60 Hz line voltage frequency by very small amounts? I have an expensive electric clock that keeps very bad time. I’m thinking if I could adjust the frequency going to the clock, I could correct this problem. Either a commercial piece of equipment or a schematic would be useful.

Richard Flaws
Oswego, IL

I need a simple circuit that would supply a two second on pulse and be off for 10 to 12 minutes. It should repeat this cycle over and over again. The on pulse would drive a 3 VDC relay. This would be powered from a 5 VDC power supply. Any ideas?

John
via email

Is the new Microsoft operating system Vista back compatible? I have many programs on Astronomy from Windows 98 vintage, on floppies, that cannot be duplicated.

Lyle A. Nelson
Devils Lake, ND

How hard would it be to make my APC UPS more usable during extended power outages by using 12 volt Optima...
batteries? Would the charge controller be over tasked? Or, would it be better to just buy a much bigger unit? I want scalability dependent on me, not what the company offers.

#06077 via email

>>> ANSWERS

[#3072 - March 2007]
I built an ATMEL-based stepper controller that sent the step commands through four power MOSFETs that connected directly to the coils of a "four volt, 1.2 amp/phase" unipolar stepper. It was an inexpensive motor but it worked great — good torque and speed and started right back if stalled. I bought more of the "same" motor — it had a different label and didn't work at all — stalled, shook, and no torque. I got several different motors from different companies, all with a rating of 4-5 volts at 1-1.2 amps (I'm using a switch-mode power supply rated five volts, 3.5 amps) and they all respond differently. None of them will work. I can't (nor can the motor company) figure out why there is so much variation in output with motors with the same ratings. Is there some way I can get the rated power out of these motors without spending a fortune? Is there another motor rating or spec that I can use to judge these motors?

Stepper motors are rated by volts/amps per phase, phase inductance, steps per revolution, number of phases, detent, and holding torque. A quick way to tell motor performance at given current and voltage per phase is to compare the holding torque since it is the maximum torque the motor can develop at low speeds and the highest load. Another important parameter is winding inductance; the lower, the better for high speed performance, since a low inductance allows winding current to build up faster. From what you are describing, you may have an incorrect phasing sequence or system resonance.

Another possibility is a difference in phase inductance or not enough current, or demagnetized (overheated) motors or winding shorts, just to give you the starting points. Keep in mind that torque is roughly proportional to current in the linear region.

Excellent references are Stepping Motor Basics at EAD Motors (www.eadmotors.com), and the best one I have seen is Jones on Stepping Motors at University of Iowa (www.cs.uiowa.edu/~jones/step). There are also other resources at Camtronics, Inc. (dynamometer testing). If you need to get into the more sophisticated five-phase systems, there is Oriental Motors at (www.orientalmotor.com/products/ac-dc-step-motors/).

Walter Heissenberger
Hancock, NH

[#2075 - February 2007]
I need an alternator circuit that will allow me to charge an eight-volt lead-acid battery in a WWII army vehicle using a standard automobile alternator.

I drive a WWII army vehicle using a standard automobile alternator. The other motors run better with the controller, which has variable current, but still vary in performance. The controller runs as if it were an external regulator. I can't (nor can the motor company) figure out why there is so much variation in output with motors with the same ratings. Is there some way I can get the rated power out of these motors without spending a fortune? Is there another motor rating or spec that I can use to judge these motors?

Stepper motors are rated by volts/amps per phase, phase inductance, steps per revolution, number of phases, detent, and holding torque. A quick way to tell motor performance at given current and voltage per phase is to compare the holding torque since it is the maximum torque the motor can develop at low speeds and the highest load. Another important parameter is winding inductance; the lower, the better for high speed performance, since a low inductance allows winding current to build up faster. From what you are describing, you may have an incorrect phasing sequence or system resonance.

Another possibility is a difference in phase inductance or not enough current, or demagnetized (overheated) motors or winding shorts, just to give you the starting points. Keep in mind that torque is roughly proportional to current in the linear region.

Excellent references are Stepping Motor Basics at EAD Motors (www.eadmotors.com), and the best one I have seen is Jones on Stepping Motors at University of Iowa (www.cs.uiowa.edu/~jones/step). There are also other resources at Camtronics, Inc. (dynamometer testing). If you need to get into the more sophisticated five-phase systems, there is Oriental Motors at (www.orientalmotor.com/products/ac-dc-step-motors/).

Walter Heissenberger
Hancock, NH

#1 Newer automotive alternators have built-in regulators, so you will have to either remove the internal regulator or find an older one that requires an external regulator. On Delco alternators, you can tell if the regulator is internal or external by the connector. If the blades are parallel, the regulator is internal. On alternators that use an external regulator, the two blades are at right angles. As I recall, the blade on the right connects to the field; the other is for the idiot light. This circuit is similar to one I sent in earlier. The LM2594 is a PWM regulator operating at 150 kHz. The diode is a three amp Schottky to catch the backswing of the inductance of the field winding. The TIP41C is a TO-220 transistor and should not need a heatsink because it is used as a switch. The eight volt battery is actually 8.4 volts and needs 9.2 volts to charge.

Russell Kincaid
Milford, NH

#2 Most alternators have a built-in regulator, which must be removed and replaced with one designed for eight volts to charge your eight volt battery. The regulator controls the current to the field winding of the alternator which, in turn, controls the alternator output. This URL provides details and a schematic for building your own simple adjustable regulator: www.amsterdamhouseboats.nl/voltage_regulator.htm

A modification to the circuit is needed to operate with an eight volt battery. The 6.2 volt zener diode and the 3.3K resistor in series with it need to be changed to a 3.9 volt zener and a 2.2K resistor. The 3.3K resistors in series with the 1K pot also need to be changed to 2.2K — see the schematic below which includes the modifications.

Ed Schick
Harrison, NY
I have been told by someone whose judgement and knowledge I normally trust that malware exists that will write itself into the EEPROM on a hard drive, normally accessible only by the drive manufacturer, used to store such things as a bad sector map, natural-tological translation tables, etc. If this is true, are there third-party utilities that can detect and delete such malware? Otherwise, must it be returned to the manufacturer to be "cleaned?"

The data sheets for several EEPROMs — especially the Flash variety — show a serious possibility that any malware that gets into the EEPROM can set a protection flag that makes it irreversible and uneraseable.

An obvious clue to such malware would be a pop-up message saying "a Flash update is available for your (brand) computer."

In this situation, if it ain't broke, don't break it. The message sounds like a good idea without giving any clue as to why it would be, when it is certainly a dangerous procedure to do a Flash update with a high likelihood of failure; the consequence will certainly render the updated device DEAD.

A less obvious source of Flash malware is DRM, and the DMCA forbids testing DRM for anything including viruses. Sure enough, in November 2005, a major record label was caught putting a dangerous virus on their retail music CDs which kills the CD drive. A dead burner, or one that often burns "coasters" may have been infected. I've seen a burner go dead right out of the box with a "Flash update." I've also seen one noisily grind scratches into a CD with its laser lens.

Flash updates and DRM are avoidable. If by some other means the Flash is corrupted, since it is irreversible, there is no software solution. In the case of a hard drive, it either kills the drive dead or infects it with a permanent virus, and in the worst case the virus does nothing harmful except undetectably spy on you, otherwise it becomes an obviously bad drive. Spyware may create a "tumor partition" (I don't know exactly what this is called) which cannot be removed and may be indistinguishable from many megabytes of bad sectors. I'd assume it contains a record of everything you do on the computer.

There is really no software defense against any kind of malware but there is one surefire hardware defense since the beginnings of home computers: write protected media.

In the past, this was a hole in a floppy or tape which could be covered to switch off the possibility of unauthorized writing to the media. This is notably absent from much modern media, such as hard drives. Non-burning CD-ROM drives are well protected, and SD Flash cards are reasonably protected. Protecting EEPROM or Flash firmware may require significant hardware modification, the simplest of which may be replacing the firmware in a non-eraseable ROM. Perhaps only the design engineer of your drive knows the full details.

William Como
Bethpage, NY
<table>
<thead>
<tr>
<th>Category</th>
<th>Advertisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-WIRE</td>
<td>Hobby Boards</td>
</tr>
<tr>
<td>AMATEUR RADIO AND TV</td>
<td>PolarisUSA Video, Inc.</td>
</tr>
<tr>
<td>BUSINESS OPPORTUNITIES</td>
<td>EZ PCB</td>
</tr>
<tr>
<td>BUYING ELECTRONIC SURPLUS</td>
<td>Earth Computer Technologies, Matco, Inc.</td>
</tr>
<tr>
<td>CCD CAMERAS/VIDEO</td>
<td>Circuit Specialists, Inc.</td>
</tr>
<tr>
<td>PCB Pool</td>
<td>PCB Fab Express</td>
</tr>
<tr>
<td>PCB Cart</td>
<td>Pulsar, Inc.</td>
</tr>
<tr>
<td>PCB Fab Express</td>
<td>Rs4Systems, Inc.</td>
</tr>
<tr>
<td>RAMBLEau</td>
<td>Schmart Board</td>
</tr>
<tr>
<td>CIRCUIT BOARDS</td>
<td>AP Circuits, Blink Manufacturing, Cunard Associates, Dimension Engineering, Ez PCB, IMET Corporation, Maxstream, PWB Pool, PWB Fab Express, Pulse, Rs4Systems, Inc., Schmart Board.</td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td>Avacom Tec, LLC</td>
</tr>
<tr>
<td>COMPONENTS</td>
<td>Jameco, Lemos International Co., Inc., LinkX Technology, Maxim, Pulsar, Inc.</td>
</tr>
<tr>
<td>COMPUTER</td>
<td>Super Bright LEDs</td>
</tr>
<tr>
<td>HARDWARE</td>
<td>ActiveWire, Inc.</td>
</tr>
<tr>
<td>LSI (micon)</td>
<td>Renesas Technology Corp.</td>
</tr>
<tr>
<td>MICROCONTROLLERS / I/O BOARDS</td>
<td>Abacom Technologies, Avcom Tec, LLC, EMAC, Inc., HobbyLab, Microchip, microEngineering Labs, MVS.</td>
</tr>
<tr>
<td>MISC./SURPLUS</td>
<td>All Electronics Corp.</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>Avcom Tec, LLC, Command Productions, EMAC, Inc., Hobby Engineering, RMOD/Spring Circuits, Schmart Board, XGameStation.</td>
</tr>
<tr>
<td>EMBEDDED TOOLS</td>
<td>NetBurner</td>
</tr>
<tr>
<td>ENCLOSES</td>
<td>Integrated Ideas & Tech.</td>
</tr>
<tr>
<td>IP HOME AUTOMATION</td>
<td>MicroAutomata</td>
</tr>
<tr>
<td>KEYBOARD EMULATORS</td>
<td>Hagstrom Electronics, MouserISAUSA Video, Inc.</td>
</tr>
<tr>
<td>LASERS</td>
<td>Information Unlimited</td>
</tr>
<tr>
<td>WEATHER MONITORING</td>
<td>Hobby Boards</td>
</tr>
<tr>
<td>WIRE, CABLE AND CONNECTORS</td>
<td>All Electronics Corp.</td>
</tr>
<tr>
<td>WIRELESS PRODUCTS</td>
<td>DesignNotes.com, Inc.</td>
</tr>
<tr>
<td>OPTICS</td>
<td>Madell Technology</td>
</tr>
<tr>
<td>PROGRAMMERS</td>
<td>Electronics 123, microEngineering Labs</td>
</tr>
<tr>
<td>RF TRANSMITTERS/RECEIVERS</td>
<td>Abacom Technologies, Link Technologies, Matco, Inc.</td>
</tr>
<tr>
<td>ROBOTICS</td>
<td>ClubCrawler, Hobby Engineering, HobbyLab, hobbyboards, HobbyLab, IMET Corporation, Information Unlimited.</td>
</tr>
<tr>
<td>SATELLITE</td>
<td>Lemos International Co., Inc.</td>
</tr>
<tr>
<td>SECURITY</td>
<td>Information Unlimited</td>
</tr>
<tr>
<td>TOOLS</td>
<td>Madell Technology</td>
</tr>
<tr>
<td>WIRELESS PRODUCTS</td>
<td>MicroAutomata</td>
</tr>
</tbody>
</table>
Our Premium All in One Repairing System

• All in one system. Combines the function of a Hot Air Gun, a Soldering Iron and a Desoldering Gun.
• Microprocessor controlled ESD safe unit. All digital display of hot air temperature, soldering iron temperature, desoldering gun temperature and air pressure with touch type panel controls.
• The desoldering tool comes with zero crossing circuitry preventing electrical surges and is equipped with air cylinder type strong suction vacuum pump.
• The 24V soldering iron is compatible with the compound tip design by connecting the ceramic heater, sensor, control unit and tip as one. Designed for efficiency. Replacement of tips with easy slip in/out method.
• Compatible with various type of air nozzles.
• Compatible with different kinds of tips.
• Full compliment of nozzles & tips are available.

Programmable DC Power Supplies

The CSI 3600 Series Programmable DC Power Supplies are equipped with a back-lit LCD display, number keypad and a rotary code switch for ease of use & quick programming. Voltage, Current & Power can all be displayed on the LCD or computer screen (with optional RS-232 interface module). It can be operated at constant current mode, constant voltage mode & constant power mode. It also can be set with maximum limits for current & power output. Ideal instruments for scientific research, educational labs or any application requiring a sophisticated DC-power source.

Programmable DC Electronic Loads

The CSI 3700 series electronic loads are single input programmable DC electronic loads that provide a convenient way to test batteries and DC power supplies. It offers constant current mode, constant resistance mode and constant power mode. The backlight LCD, numerical keypad and rotary knob make it much easier to use. Up to 10 steps of program can be stored.

Circuit Specialists Soldering Station w/Ceramic Element & Separate Solder Stand

• Ceramic heating element for more accurate temp control.
• Temp control knob in F(392° to 896°) & C(200° to 489°).
• 3-prong grounded power cord/static safe tip.
• Separate heavy duty iron stand.
• Replaceable iron/easy disconnect.
• Extra tips etc. shown at web site.

Also Available w/Digital Display & MicroProcessor Controller

SMD Hot Tweezer Adaptor Fits CSI Stations 1A & 2A and CSI906

Details at Web Site
CNC9000 Motion Control Machine

- X, Y and Z Axes.
- Motor Type: Steppers, Nema 23 size motor mounts on all axes. 277 Oz/in torque.
- Travel: X-22" Y-24" Z-46"
- Footprint (overall size not including motors): 34" x 34.75" x 21.75"
- Travel: X-22" Y-24" Z-46"
- Nema 23 Ball Screws
- and linear rails and trucks on all axes
- 5mm per turn pitch lead screws.
- ABBA Brand Ball screws
- Table top size: 32" x 26"
- Motor Type: Steppers, Nema 23 size motor mounts on all axes
- Motor controllers and a
- Endmil (0.001) 2"x2"x.025" Using a Porter Cable router.
- Built-in Frequency Counter 5H3232 interface
- ResolutionResolution. PC based data acquisition,
- Visit our website for a complete listing of our offers. We have over 8,000 electronic items on line @
- TV LinesTV Lines
- 200MHz 5GS/s equiv. sampling USB
- PC based Digital Storage Oscilloscope, this Miniature Cameras(Board,Bullet,Mini's, B/W, Color)
- Sony Exview CCD
- Horizontal Resolution: 420TV lines
- Line scanning
- Sony HAD Color Camera
- Vertical rotation: 0.100”
- SONY Super HAD Color Camera
- Shown with optional wall mount
- Min. Illumination: 0 Lux (color) / 0.001Lux (B&W)
- Details at Web Site
- Sony Super HAD Color Camera
- Sensor System: NTSC
- Horizontal Resolution: 420TV lines
- Min. Illumination: 0 Lux (color) / 0.001Lux (B&W)
- Details at Web Site
- *Price*:
 - $79.95
 - $69.95
 - $819.00
 - $89.95
 - $59.95
 - $39.95

Visit our website for a complete listing of our offers. We have over 8,000 electronic items on line at www.CircuitSpecialists.com. PC based data acquisition, industrial computers, leads of test equipment, optics, LCD’s, transistors, diodes, resistors, potentiometers, power supplies, observtion cameras, panel meters, chemicals for electronics, do it yourself printed circuit supplies for PCB fabrication, educational DIY kits, cooling fans, heatsinks, cable lugs & other winch winding tools, hardware for electronics, breadboards, transistors, programmers & much much more. So what are you waiting for? Buy what you need today!